Customer churn prediction in telecom using machine learning in big data platform
Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that inc...
Saved in:
| Published in: | Journal of big data Vol. 6; no. 1; pp. 1 - 24 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
20.03.2019
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model. |
|---|---|
| AbstractList | Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model. Abstract Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model. |
| ArticleNumber | 28 |
| Author | Jafar, Assef Aljoumaa, Kadan Ahmad, Abdelrahim Kasem |
| Author_xml | – sequence: 1 givenname: Abdelrahim Kasem orcidid: 0000-0002-6980-5267 surname: Ahmad fullname: Ahmad, Abdelrahim Kasem email: Abdelrahim.ahmad@hiast.edu.sy organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology – sequence: 2 givenname: Assef surname: Jafar fullname: Jafar, Assef organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology – sequence: 3 givenname: Kadan surname: Aljoumaa fullname: Aljoumaa, Kadan organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology |
| BookMark | eNp9UcFq3DAUFCWBptt8QG-Cnt3oWbJsH8vSNoFAemjPQpaeNlpsaStpD_37ynFDSyFFPCQeM6Nh5g25CDEgIe-AfQAY5E0WrON9w2BcBxr5ily1MMoGALqLv96vyXXOR8YY8EqR4op83Z9ziQsmah7PKdBTQutN8TFQH2jBGU1c6Dn7cKCLNo8-IJ1Rp7AuKmLyB2p10fQ06-JiWt6SS6fnjNe_7x35_vnTt_1tc__w5W7_8b4x9d_SjAPCgAyN5MIYh1Orez1aJkxn5DQyZN3AgE0We90bgdbh0DsYmWydnTjnO3K36dqoj-qU_KLTTxW1V0-LmA5Kp-LNjMrCxNFxa6UehGjlKHTbD2PXoXMa3Fi13m9apxR_nDEXdYw1jGpf1eiEGDjUsyP9hjIp5pzQKeOLXqMqSftZAVNrG2prQ9Um1gElKxP-YT77_R-n3Ti5YsMB0x9PL5N-ATmHnog |
| CitedBy_id | crossref_primary_10_1016_j_apt_2024_104761 crossref_primary_10_3390_technologies13030088 crossref_primary_10_1186_s40537_020_00290_0 crossref_primary_10_1109_ACCESS_2024_3402092 crossref_primary_10_1007_s00521_022_07603_9 crossref_primary_10_1186_s40537_019_0264_6 crossref_primary_10_1016_j_cie_2023_109606 crossref_primary_10_34088_kojose_1526621 crossref_primary_10_1155_2022_1703696 crossref_primary_10_3390_electronics14020325 crossref_primary_10_1007_s10586_024_05070_6 crossref_primary_10_1007_s00607_021_00908_y crossref_primary_10_1186_s40537_021_00451_9 crossref_primary_10_1109_ACCESS_2024_3437648 crossref_primary_10_1109_TCE_2025_3563905 crossref_primary_10_1007_s42488_024_00126_z crossref_primary_10_1016_j_eswa_2020_113779 crossref_primary_10_3390_app12168270 crossref_primary_10_3390_fi13070175 crossref_primary_10_1109_MCOM_001_2000258 crossref_primary_10_1007_s11135_022_01500_y crossref_primary_10_1007_s10660_025_10000_8 crossref_primary_10_53704_fujnas_v13i2_469 crossref_primary_10_1007_s10844_022_00739_z crossref_primary_10_1016_j_techfore_2024_123250 crossref_primary_10_1007_s11227_024_06675_9 crossref_primary_10_1038_s41598_024_79603_9 crossref_primary_10_3390_fi14030094 crossref_primary_10_1108_K_04_2020_0214 crossref_primary_10_1109_ACCESS_2024_3349950 crossref_primary_10_1016_j_jobe_2023_107187 crossref_primary_10_3390_su15054543 crossref_primary_10_1016_j_ijinfomgt_2021_102357 crossref_primary_10_21015_vtse_v12i2_1811 crossref_primary_10_1038_s41598_023_44396_w crossref_primary_10_1038_s41598_024_71168_x crossref_primary_10_1108_IJCHM_06_2022_0737 crossref_primary_10_1093_jas_skz274 crossref_primary_10_3846_jbem_2020_13194 crossref_primary_10_1016_j_is_2023_102311 crossref_primary_10_3233_JIFS_179946 crossref_primary_10_1108_JCM_12_2019_3540 crossref_primary_10_1038_s41598_025_99119_0 crossref_primary_10_1287_mnsc_2021_01832 crossref_primary_10_1051_e3sconf_202448402004 crossref_primary_10_1007_s10844_023_00803_2 crossref_primary_10_1016_j_eswa_2024_123352 crossref_primary_10_1371_journal_pone_0330338 crossref_primary_10_1016_j_jksuci_2020_11_024 crossref_primary_10_54569_aair_1709274 crossref_primary_10_1051_itmconf_20235605012 crossref_primary_10_1016_j_joitmc_2024_100425 crossref_primary_10_1007_s42979_024_02722_7 crossref_primary_10_3390_jrfm14110544 crossref_primary_10_1016_j_asoc_2023_110103 crossref_primary_10_1016_j_procs_2024_05_139 crossref_primary_10_37394_232032_2025_3_34 crossref_primary_10_1109_MCOM_110_2100145 crossref_primary_10_1134_S2070048224700182 crossref_primary_10_1007_s11042_023_17267_9 crossref_primary_10_1108_ACI_06_2021_0155 crossref_primary_10_1016_j_sciaf_2023_e02054 crossref_primary_10_1080_10528008_2021_1871849 crossref_primary_10_1186_s40537_023_00721_8 crossref_primary_10_1007_s42979_024_03057_z crossref_primary_10_1016_j_sciaf_2024_e02223 crossref_primary_10_12688_f1000research_73597_1 crossref_primary_10_1088_1742_6596_1881_3_032061 crossref_primary_10_1109_ACCESS_2024_3443318 crossref_primary_10_1186_s40537_019_0244_x crossref_primary_10_3390_data7050061 crossref_primary_10_7717_peerj_cs_1756 crossref_primary_10_1109_ACCESS_2024_3401247 crossref_primary_10_1088_1757_899X_768_5_052070 crossref_primary_10_3390_systems11070325 crossref_primary_10_1177_03611981221143106 crossref_primary_10_32604_cmc_2023_036098 crossref_primary_10_1038_s41598_023_41093_6 crossref_primary_10_1080_24751839_2025_2528440 crossref_primary_10_1155_2022_8534739 crossref_primary_10_1080_16522354_2024_2444075 crossref_primary_10_1016_j_techfore_2023_122945 crossref_primary_10_1080_09720529_2022_2133238 crossref_primary_10_1016_j_envpol_2023_122787 crossref_primary_10_53753_jame_1_2_03 crossref_primary_10_1016_j_eswa_2022_118177 crossref_primary_10_1016_j_telpol_2024_102816 crossref_primary_10_1186_s40537_020_00304_x crossref_primary_10_1007_s12652_023_04605_w crossref_primary_10_1088_1757_899X_879_1_012090 crossref_primary_10_1016_j_eswa_2024_126199 crossref_primary_10_1038_s41598_024_63750_0 crossref_primary_10_2139_ssrn_5048518 crossref_primary_10_1007_s40622_020_00261_7 crossref_primary_10_33003_fjs_2025_0906_3556 crossref_primary_10_3390_info10090274 crossref_primary_10_3390_computation9030034 crossref_primary_10_1080_10580530_2021_1887981 crossref_primary_10_1016_j_trip_2025_101600 crossref_primary_10_1007_s10489_022_03614_0 crossref_primary_10_1016_j_tre_2025_104417 crossref_primary_10_1080_02533839_2025_2478185 crossref_primary_10_1186_s40537_023_00715_6 crossref_primary_10_1371_journal_pone_0319998 crossref_primary_10_1111_rssc_12597 crossref_primary_10_1007_s42452_023_05389_6 crossref_primary_10_1109_ACCESS_2023_3304669 crossref_primary_10_3390_technologies11060167 crossref_primary_10_1007_s12652_024_04846_3 crossref_primary_10_1007_s00521_025_11027_6 crossref_primary_10_38124_ijisrt_25jun1816 crossref_primary_10_1002_cpe_6627 crossref_primary_10_3390_s23020908 crossref_primary_10_1186_s40537_024_00993_8 |
| Cites_doi | 10.1016/S0169-7552(98)00110-X 10.1140/epjb/e2004-00111-4 10.1016/j.dss.2008.06.007 10.1016/j.eswa.2008.05.027 10.1016/S0308-5961(00)00097-5 10.1509/jmr.13.0483 10.1109/ACCESS.2016.2619719 10.1186/s40537-016-0050-7 10.1016/S0957-4174(02)00030-1 10.1145/2487575.2487597 10.1145/2939672.2939785 10.1109/ICSMC.2012.6377917 10.1145/2723372.2742794 10.1007/0-387-25465-X_40 10.1145/1401890.1401948 10.1109/ICDIM.2013.6693977 10.1109/ICComm.2016.7528311 10.1109/FSKD.2009.767 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-019-0191-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business |
| EISSN | 2196-1115 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9 10_1186_s40537_019_0191_6 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB PRQQA 7XB 8AL 8FK JQ2 L.- PKEHL POGQB PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c564t-98e18e0ec634ccfeb2a7a9d04c5c6b90e058010bde7a7c4edfe87f19062fdb333 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599131800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Tue Oct 14 14:42:12 EDT 2025 Fri Nov 14 19:24:16 EST 2025 Sat Nov 29 02:28:02 EST 2025 Tue Nov 18 21:41:36 EST 2025 Fri Feb 21 02:36:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Customer churn prediction Feature selection Machine learning Classification Mobile Social Network Analysis Big data Churn in telecom |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-98e18e0ec634ccfeb2a7a9d04c5c6b90e058010bde7a7c4edfe87f19062fdb333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6980-5267 |
| OpenAccessLink | https://doaj.org/article/d1b3ef3dd6a8442694a278955effa1f9 |
| PQID | 2194483131 |
| PQPubID | 2046140 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9 proquest_journals_2194483131 crossref_citationtrail_10_1186_s40537_019_0191_6 crossref_primary_10_1186_s40537_019_0191_6 springer_journals_10_1186_s40537_019_0191_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-20 |
| PublicationDateYYYYMMDD | 2019-03-20 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Bott (CR5) 2014; 11 Xie, Rojkova, Pal, Coggeshall (CR26) 2009; 7 Amin, Anwar, Adnan, Nawaz, Howard, Qadir, Hawalah, Hussain (CR17) 2016; 4 Umayaparvathi, Iyakutti (CR6) 2016; 3 Barthelemy (CR10) 2004; 38 CR19 CR18 CR15 CR14 Wei, Chiu (CR2) 2002; 23 CR13 Kiss, Bichler (CR21) 2008; 46 CR12 CR11 Ascarza, Iyengar, Schleicher (CR4) 2016; 53 Brin, Page (CR22) 1998; 30 Kiss, Bichler (CR20) 2008; 46 CR3 CR7 CR27 CR25 CR24 Makhtar, Nafis, Mohamed, Awang, Rahman, Deris (CR16) 2017; 9 CR23 Gerpott, Rams, Schindler (CR1) 2001; 25 Burez, den Poel (CR8) 2009; 36 Zhan, Guidibande, Parsa (CR9) 2016; 3 CP Wei (191_CR2) 2002; 23 E Ascarza (191_CR4) 2016; 53 191_CR7 V Umayaparvathi (191_CR6) 2016; 3 191_CR11 191_CR12 191_CR13 C Kiss (191_CR21) 2008; 46 191_CR18 191_CR19 191_CR3 Bott (191_CR5) 2014; 11 191_CR14 191_CR15 M Makhtar (191_CR16) 2017; 9 A Amin (191_CR17) 2016; 4 J Xie (191_CR26) 2009; 7 D Burez (191_CR8) 2009; 36 S Brin (191_CR22) 1998; 30 J Zhan (191_CR9) 2016; 3 C Kiss (191_CR20) 2008; 46 191_CR23 191_CR24 M Barthelemy (191_CR10) 2004; 38 191_CR25 191_CR27 TJ Gerpott (191_CR1) 2001; 25 |
| References_xml | – ident: CR18 – volume: 30 start-page: 107 issue: 1–7 year: 1998 end-page: 117 ident: CR22 article-title: The anatomy of a large-scale hypertextual web search engine publication-title: Comput Netw ISDN Syst doi: 10.1016/S0169-7552(98)00110-X – ident: CR14 – volume: 38 start-page: 163 issue: 2 year: 2004 end-page: 168 ident: CR10 article-title: Betweenness centrality in large complex networks publication-title: Eur Phys J B doi: 10.1140/epjb/e2004-00111-4 – ident: CR12 – volume: 46 start-page: 233 issue: 1 year: 2008 end-page: 253 ident: CR20 article-title: Identification of influencers—measuring influence in customer networks publication-title: Decis Support Syst doi: 10.1016/j.dss.2008.06.007 – volume: 3 start-page: 1065 issue: 4 year: 2016 end-page: 1070 ident: CR6 article-title: A survey on customer churn prediction in telecom industry: datasets, methods and metric publication-title: Int Res J Eng Technol – ident: CR25 – volume: 7 start-page: 35 year: 2009 end-page: 43 ident: CR26 article-title: A combination of boosting and bagging for kdd cup 2009—fast scoring on a large database publication-title: J Mach Learn Res Proc Track – volume: 36 start-page: 4626 issue: 3 year: 2009 end-page: 4636 ident: CR8 article-title: Handling class imbalance in customer churn prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.05.027 – ident: CR27 – ident: CR23 – volume: 25 start-page: 249 year: 2001 end-page: 269 ident: CR1 article-title: Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market publication-title: Telecommun Policy doi: 10.1016/S0308-5961(00)00097-5 – volume: 53 start-page: 46 issue: 1 year: 2016 end-page: 60 ident: CR4 article-title: The perils of proactive churn prevention using plan recommendations: evidence from a field experiment publication-title: J Market Res doi: 10.1509/jmr.13.0483 – volume: 46 start-page: 233 issue: 1 year: 2008 end-page: 253 ident: CR21 article-title: Identification of influencers—measuring influence in customer networks publication-title: Decis Support Syst doi: 10.1016/j.dss.2008.06.007 – ident: CR19 – volume: 4 start-page: 7940 year: 2016 end-page: 7957 ident: CR17 article-title: Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2619719 – ident: CR3 – ident: CR15 – ident: CR13 – ident: CR11 – volume: 9 start-page: 854 issue: 6 year: 2017 end-page: 868 ident: CR16 article-title: Churn classification model for local telecommunication company based on rough set theory publication-title: J Fundam Appl Sci – volume: 11 start-page: 1 issue: 1 year: 2014 end-page: 5 ident: CR5 article-title: Predicting customer churn in telecom industry using multilayer preceptron neural networks: modeling and analysis publication-title: Igarss – ident: CR7 – volume: 3 start-page: 16 issue: 1 year: 2016 ident: CR9 article-title: Identification of top-k influential communities in big networks publication-title: J Big Data doi: 10.1186/s40537-016-0050-7 – ident: CR24 – volume: 23 start-page: 103 issue: 2 year: 2002 end-page: 112 ident: CR2 article-title: Turning telecommunications call details to churn prediction: a data mining approach publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(02)00030-1 – ident: 191_CR11 – volume: 3 start-page: 1065 issue: 4 year: 2016 ident: 191_CR6 publication-title: Int Res J Eng Technol – volume: 7 start-page: 35 year: 2009 ident: 191_CR26 publication-title: J Mach Learn Res Proc Track – volume: 46 start-page: 233 issue: 1 year: 2008 ident: 191_CR20 publication-title: Decis Support Syst doi: 10.1016/j.dss.2008.06.007 – ident: 191_CR23 doi: 10.1145/2487575.2487597 – ident: 191_CR27 doi: 10.1145/2939672.2939785 – volume: 23 start-page: 103 issue: 2 year: 2002 ident: 191_CR2 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(02)00030-1 – ident: 191_CR14 doi: 10.1109/ICSMC.2012.6377917 – ident: 191_CR19 – volume: 9 start-page: 854 issue: 6 year: 2017 ident: 191_CR16 publication-title: J Fundam Appl Sci – ident: 191_CR15 doi: 10.1145/2723372.2742794 – ident: 191_CR18 doi: 10.1007/0-387-25465-X_40 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 191_CR5 publication-title: Igarss – ident: 191_CR25 – volume: 36 start-page: 4626 issue: 3 year: 2009 ident: 191_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.05.027 – ident: 191_CR24 doi: 10.1145/1401890.1401948 – volume: 46 start-page: 233 issue: 1 year: 2008 ident: 191_CR21 publication-title: Decis Support Syst doi: 10.1016/j.dss.2008.06.007 – volume: 30 start-page: 107 issue: 1–7 year: 1998 ident: 191_CR22 publication-title: Comput Netw ISDN Syst doi: 10.1016/S0169-7552(98)00110-X – ident: 191_CR3 doi: 10.1109/ICDIM.2013.6693977 – volume: 4 start-page: 7940 year: 2016 ident: 191_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2619719 – volume: 3 start-page: 16 issue: 1 year: 2016 ident: 191_CR9 publication-title: J Big Data doi: 10.1186/s40537-016-0050-7 – ident: 191_CR7 – volume: 38 start-page: 163 issue: 2 year: 2004 ident: 191_CR10 publication-title: Eur Phys J B doi: 10.1140/epjb/e2004-00111-4 – volume: 53 start-page: 46 issue: 1 year: 2016 ident: 191_CR4 publication-title: J Market Res doi: 10.1509/jmr.13.0483 – volume: 25 start-page: 249 year: 2001 ident: 191_CR1 publication-title: Telecommun Policy doi: 10.1016/S0308-5961(00)00097-5 – ident: 191_CR12 doi: 10.1109/ICComm.2016.7528311 – ident: 191_CR13 doi: 10.1109/FSKD.2009.767 |
| SSID | ssj0001340564 |
| Score | 2.5779827 |
| Snippet | Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies,... Abstract Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Big Data Business Churn in telecom Classification Communications Engineering Companies Computational Science and Engineering Computer Science Consumers Customer churn prediction Customers Data management Data Mining and Knowledge Discovery Database Management Decision making Decision trees Feature extraction Feature selection Information Storage and Retrieval Machine learning Mathematical Applications in Computer Science Mathematical models Mobile Social Network Analysis Network analysis Networks Operators Performance evaluation Prediction models Predictions Social network analysis Social networks Telecommunications Telecommunications industry |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgLhQJioSAfOIGixrFjOycEKyoOUPUAUm9W_FpW6j7YTfn9zHidropELxxycWzL8jz8jWc8A_C2M43W2vPKByphJn2qutCi4UropDNRRZ_zzH7VZ2fm4qI7Lxdu2xJWOerErKjDytMd-QlKFloSggv-Yf2roqpR5F0tJTTuwj1CNhTS962e7u9YBMIRJYszkxt1spWUvwTtZwoS6nilbhxHOWv_Daj5l3c0Hzqnh_-73MfwqMBN9nHHH0_gTlwewYMx2v0IDseqDqwI-VM4n14hIFxgk_-Jo9l6Q74coh-bL9lAdXNWC0YzzNgih2JGVmpPzKiHm88YxZ2y9WU_ECR-Bj9OP3-ffqlK3YXK424NFZKIm1hHr4T0PqHt3eu-C7X0rVeuq2Pd4rlWuxB1r72MIUWjE6eMxyk4IcRzOFiulvEFMN_IIFPHW8d7mRrhItfOONkgykioCyZQj9tvfUlKTrUxLm02ToyyO4pZpBZ93KoJvLsest5l5Lit8yei6XVHSqadG1abmS2yaQN3IiYRguqNzE97e3of3LYxpZ4nXOTxSGNbJHxr9wSewPuRS_a__7mil7dP9goeNpk7BeqvYzgYNlfxNdz3v4f5dvMms_cfMKwAng priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagcOBCoYAaKMgHTkWrrtdeP44QEXFAVQ8g5WatX2mkvJRs-vuZcbxFQYAEh714x5I147FnPDPfEPLe6EYp5VnlA7YwEz5VJrTguKJ1YnSU0Wec2a_q-lpPp-am1HHvhmz3ISSZT-qs1lpe7QRCj4Dri_k9hlXyIXnUMm0wj29cShzywwoHQilKBPO3M4_uoAzVf2Rf_hISzTfN5PS_1viMPC2GJf142AnPyYO4OiOnQ9MGWnT4BbkZ78HeW8KQv4UpdLPFUA2Kh85XtMe2OOslxXT4GV3mTMtIS2uJGVK4-YxiWindLLoeLd6X5Pvk87fxl6q0Vag88KWvQAJMxzp6yYX3CVzrTnUm1MK3XjpTx7qFa6t2IapOeRFDilolhoDGKTjO-Styslqv4jmhvhFBJMNaxzqRGu4iU0470YARkUDVR6QeGG19wRzH1hcLm30PLe2BYxa4hR-zckQu76dsDoAbfyP-hNK7J0Ss7Dyw3s5sUT0bmOMx8RBkp0Wu3O2w_LdtY0odS7DIi0H2tijwzsJBDo4rZ5yNyIdB1j9__3FFr_-J-g150uTNwuG0uiAn_XYf35LH_q6f77bv8r7-AeyO8kk priority: 102 providerName: Springer Nature |
| Title | Customer churn prediction in telecom using machine learning in big data platform |
| URI | https://link.springer.com/article/10.1186/s40537-019-0191-6 https://www.proquest.com/docview/2194483131 https://doaj.org/article/d1b3ef3dd6a8442694a278955effa1f9 |
| Volume | 6 |
| WOSCitedRecordID | wos000599131800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 7WY dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M0C dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: P5Z dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: K7- dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Social Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M2R dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/socscijournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCG7FQVj5wAkWNY8ePY7tqBYKuIgSi5WLFr-1K3e1qN-X3d8bJlhYJuHCIpdhjaTIe2zPx-BtC3hpdKaU8K3zAFGbCp8KEGhxXtE6MjjL6jDP7WU2n-uTENDdSfWFMWA8P3AtuLzDHY-IhyFaLfO-yxcubdR1TalnKV_dKZW44U_nvCgdDRIrhGJNpubcRiFwCnjOGBxlWyFsbUcbrv2Vk_nYumrebo8fk4WAn0v2evyfkTlw-JY-2ORjoMCWfkWZyCebbAqr8GXShqzWevKC06XxJO8xyc7GgGN0-o4scOBnpkClihhRuPqMYJUpX522HBuxz8u3o8OvkQzFkSSg8fGFXgECZjmX0kgvvE3jKrWpNKIWvvXSmjGUNu1DpQlSt8iKGFLVKDPGJU3Cc8xdkZ3mxjC8J9ZUIIhlWO9aKVHEXmXLaiQpsggQzd0TKrcisHyDEMZPFuc2uhJa2l7IFCePDrByRd9ddVj1-xt-ID3AcrgkR-jpXgELYQSHsvxRiRHa3o2iH-bixsC6DH8oZZyPyfjuyv5r_yNGr_8HRa_KgynrHYU3aJTvd-jK-Iff9z26-WY_JXfX9dEzuHRxOmy_wNqnEOCszlJ9UAeVxOcGywtam_gG0zcfj5vQKgCn4rA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQEXCgXElgI-wAUUNY4d2zkgBIWq1S6rHorUm4m_lpW6H91NQfwpfiMeb9JVkeitBw65OI7lJM_PM_Z4HsCrShVSSksz61DCjNuQVa6MjitaJ5XywtuUZ3Ygh0N1elodb8Dv7iwMhlV2nJiI2s0srpHvxZEVPQlGGX0_P89QNQp3VzsJjRUs-v7Xz-iyLd8dfYr_93VRHHw-2T_MWlWBzJaCN1nsAFU-91Ywbm2InmUt68rl3JZWmCr3eRlZOzfOy1pa7l3wSgaK-XyDMwwXQCPl3-JMSRxXfZmt13RYNH8EbzdPqRJ7S475UqK_jkFJFc3ElekvqQRcMW3_2o1Nk9zB1v_2eR7A_dacJh9W-H8IG366DXe6aP5t2OpUK0hLYo_geP8iGryTWGS_x6fJfIF7VYhPMp6SBnWBZhOCLYzIJIWaetJqa4ywhhmPCMbVkvlZ3aDJ_xi-3sgrPoHN6WzqnwKxBXc8VLQ0tOahYMZTaZThRbSiQuS6HuTd79a2TbqO2h9nOjlfSugVQnREB15Uix68uXxkvso4cl3lj4ihy4qYLDwVzBYj3XKPdtQwH5hzolY8HV2u8fxzWfoQahpiJ3c7TOmWwZZ6DagevO1Qub79zx7tXN_YS7h7ePJloAdHw_4zuFekkcEiV-_CZrO48M_htv3RjJeLF2loEfh202D9A2mnX_s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5Sm2FPCBEyhqHDu2c4SFFYhqtQeQerPi13albna1m_L763GcoiJAQhxyScaSNQ97JjPzDcCbRlVSSksL63CEGbehaFwdA1f0ThrlhbcJZ_ZUzufq7KxZ5Dmn-7HafUxJDj0NiNLU9SdbFwYTV-JkzxGGJIbBWOvT0ELchjuYkEIVn-Z2h_SThUVCwXM287crb9xHCbb_hq_5S3o03Tqzw__e70N4kB1O8n7QkEdwy3eP4XAc5kCybT-BxfQy-oHr-MqexyVku8MUDoqNrDrS47iczZpgmfySrFMFpid55MQSKcxqSbDclGwv2h494afwffbp2_RzkcctFDbyqC-iZKjypbeCcWtDDLlb2Tau5La2wjSlL-t4nZXGedlKy70LXslAEeg4OMMYewYH3abzz4HYijseGlob2vJQMeOpNMrwKjoXIR4BEyhHpmubschxJMaFTjGJEnrgmI7cwodqMYG310u2AxDH34g_oCSvCRFDO73Y7JY6m6R21DAfmHOiVTx19LbYFlzXPoSWhrjJ41EPdDbsvY4HfAxoGWV0Au9Guf_8_McdHf0T9Wu4t_g406df5l9fwP0q6Q2LB9oxHPS7S_8S7tof_Wq_e5XU_Qrao_4S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customer+churn+prediction+in+telecom+using+machine+learning+in+big+data+platform&rft.jtitle=Journal+of+big+data&rft.au=Abdelrahim+Kasem+Ahmad&rft.au=Assef+Jafar&rft.au=Kadan+Aljoumaa&rft.date=2019-03-20&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1186%2Fs40537-019-0191-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |