Customer churn prediction in telecom using machine learning in big data platform

Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that inc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data Vol. 6; no. 1; pp. 1 - 24
Main Authors: Ahmad, Abdelrahim Kasem, Jafar, Assef, Aljoumaa, Kadan
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 20.03.2019
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2196-1115, 2196-1115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model.
AbstractList Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model.
Abstract Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies, especially in the telecom field, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn. The main contribution of our work is to develop a churn prediction model which assists telecom operators to predict customers who are most likely subject to churn. The model developed in this work uses machine learning techniques on big data platform and builds a new way of features’ engineering and selection. In order to measure the performance of the model, the Area Under Curve (AUC) standard measure is adopted, and the AUC value obtained is 93.3%. Another main contribution is to use customer social network in the prediction model by extracting Social Network Analysis (SNA) features. The use of SNA enhanced the performance of the model from 84 to 93.3% against AUC standard. The model was prepared and tested through Spark environment by working on a large dataset created by transforming big raw data provided by SyriaTel telecom company. The dataset contained all customers’ information over 9 months, and was used to train, test, and evaluate the system at SyriaTel. The model experimented four algorithms: Decision Tree, Random Forest, Gradient Boosted Machine Tree “GBM” and Extreme Gradient Boosting “XGBOOST”. However, the best results were obtained by applying XGBOOST algorithm. This algorithm was used for classification in this churn predictive model.
ArticleNumber 28
Author Jafar, Assef
Aljoumaa, Kadan
Ahmad, Abdelrahim Kasem
Author_xml – sequence: 1
  givenname: Abdelrahim Kasem
  orcidid: 0000-0002-6980-5267
  surname: Ahmad
  fullname: Ahmad, Abdelrahim Kasem
  email: Abdelrahim.ahmad@hiast.edu.sy
  organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology
– sequence: 2
  givenname: Assef
  surname: Jafar
  fullname: Jafar, Assef
  organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology
– sequence: 3
  givenname: Kadan
  surname: Aljoumaa
  fullname: Aljoumaa, Kadan
  organization: Faculty of Information Technology, Higher Institute for Applied Sciences and Technology
BookMark eNp9UcFq3DAUFCWBptt8QG-Cnt3oWbJsH8vSNoFAemjPQpaeNlpsaStpD_37ynFDSyFFPCQeM6Nh5g25CDEgIe-AfQAY5E0WrON9w2BcBxr5ily1MMoGALqLv96vyXXOR8YY8EqR4op83Z9ziQsmah7PKdBTQutN8TFQH2jBGU1c6Dn7cKCLNo8-IJ1Rp7AuKmLyB2p10fQ06-JiWt6SS6fnjNe_7x35_vnTt_1tc__w5W7_8b4x9d_SjAPCgAyN5MIYh1Orez1aJkxn5DQyZN3AgE0We90bgdbh0DsYmWydnTjnO3K36dqoj-qU_KLTTxW1V0-LmA5Kp-LNjMrCxNFxa6UehGjlKHTbD2PXoXMa3Fi13m9apxR_nDEXdYw1jGpf1eiEGDjUsyP9hjIp5pzQKeOLXqMqSftZAVNrG2prQ9Um1gElKxP-YT77_R-n3Ti5YsMB0x9PL5N-ATmHnog
CitedBy_id crossref_primary_10_1016_j_apt_2024_104761
crossref_primary_10_3390_technologies13030088
crossref_primary_10_1186_s40537_020_00290_0
crossref_primary_10_1109_ACCESS_2024_3402092
crossref_primary_10_1007_s00521_022_07603_9
crossref_primary_10_1186_s40537_019_0264_6
crossref_primary_10_1016_j_cie_2023_109606
crossref_primary_10_34088_kojose_1526621
crossref_primary_10_1155_2022_1703696
crossref_primary_10_3390_electronics14020325
crossref_primary_10_1007_s10586_024_05070_6
crossref_primary_10_1007_s00607_021_00908_y
crossref_primary_10_1186_s40537_021_00451_9
crossref_primary_10_1109_ACCESS_2024_3437648
crossref_primary_10_1109_TCE_2025_3563905
crossref_primary_10_1007_s42488_024_00126_z
crossref_primary_10_1016_j_eswa_2020_113779
crossref_primary_10_3390_app12168270
crossref_primary_10_3390_fi13070175
crossref_primary_10_1109_MCOM_001_2000258
crossref_primary_10_1007_s11135_022_01500_y
crossref_primary_10_1007_s10660_025_10000_8
crossref_primary_10_53704_fujnas_v13i2_469
crossref_primary_10_1007_s10844_022_00739_z
crossref_primary_10_1016_j_techfore_2024_123250
crossref_primary_10_1007_s11227_024_06675_9
crossref_primary_10_1038_s41598_024_79603_9
crossref_primary_10_3390_fi14030094
crossref_primary_10_1108_K_04_2020_0214
crossref_primary_10_1109_ACCESS_2024_3349950
crossref_primary_10_1016_j_jobe_2023_107187
crossref_primary_10_3390_su15054543
crossref_primary_10_1016_j_ijinfomgt_2021_102357
crossref_primary_10_21015_vtse_v12i2_1811
crossref_primary_10_1038_s41598_023_44396_w
crossref_primary_10_1038_s41598_024_71168_x
crossref_primary_10_1108_IJCHM_06_2022_0737
crossref_primary_10_1093_jas_skz274
crossref_primary_10_3846_jbem_2020_13194
crossref_primary_10_1016_j_is_2023_102311
crossref_primary_10_3233_JIFS_179946
crossref_primary_10_1108_JCM_12_2019_3540
crossref_primary_10_1038_s41598_025_99119_0
crossref_primary_10_1287_mnsc_2021_01832
crossref_primary_10_1051_e3sconf_202448402004
crossref_primary_10_1007_s10844_023_00803_2
crossref_primary_10_1016_j_eswa_2024_123352
crossref_primary_10_1371_journal_pone_0330338
crossref_primary_10_1016_j_jksuci_2020_11_024
crossref_primary_10_54569_aair_1709274
crossref_primary_10_1051_itmconf_20235605012
crossref_primary_10_1016_j_joitmc_2024_100425
crossref_primary_10_1007_s42979_024_02722_7
crossref_primary_10_3390_jrfm14110544
crossref_primary_10_1016_j_asoc_2023_110103
crossref_primary_10_1016_j_procs_2024_05_139
crossref_primary_10_37394_232032_2025_3_34
crossref_primary_10_1109_MCOM_110_2100145
crossref_primary_10_1134_S2070048224700182
crossref_primary_10_1007_s11042_023_17267_9
crossref_primary_10_1108_ACI_06_2021_0155
crossref_primary_10_1016_j_sciaf_2023_e02054
crossref_primary_10_1080_10528008_2021_1871849
crossref_primary_10_1186_s40537_023_00721_8
crossref_primary_10_1007_s42979_024_03057_z
crossref_primary_10_1016_j_sciaf_2024_e02223
crossref_primary_10_12688_f1000research_73597_1
crossref_primary_10_1088_1742_6596_1881_3_032061
crossref_primary_10_1109_ACCESS_2024_3443318
crossref_primary_10_1186_s40537_019_0244_x
crossref_primary_10_3390_data7050061
crossref_primary_10_7717_peerj_cs_1756
crossref_primary_10_1109_ACCESS_2024_3401247
crossref_primary_10_1088_1757_899X_768_5_052070
crossref_primary_10_3390_systems11070325
crossref_primary_10_1177_03611981221143106
crossref_primary_10_32604_cmc_2023_036098
crossref_primary_10_1038_s41598_023_41093_6
crossref_primary_10_1080_24751839_2025_2528440
crossref_primary_10_1155_2022_8534739
crossref_primary_10_1080_16522354_2024_2444075
crossref_primary_10_1016_j_techfore_2023_122945
crossref_primary_10_1080_09720529_2022_2133238
crossref_primary_10_1016_j_envpol_2023_122787
crossref_primary_10_53753_jame_1_2_03
crossref_primary_10_1016_j_eswa_2022_118177
crossref_primary_10_1016_j_telpol_2024_102816
crossref_primary_10_1186_s40537_020_00304_x
crossref_primary_10_1007_s12652_023_04605_w
crossref_primary_10_1088_1757_899X_879_1_012090
crossref_primary_10_1016_j_eswa_2024_126199
crossref_primary_10_1038_s41598_024_63750_0
crossref_primary_10_2139_ssrn_5048518
crossref_primary_10_1007_s40622_020_00261_7
crossref_primary_10_33003_fjs_2025_0906_3556
crossref_primary_10_3390_info10090274
crossref_primary_10_3390_computation9030034
crossref_primary_10_1080_10580530_2021_1887981
crossref_primary_10_1016_j_trip_2025_101600
crossref_primary_10_1007_s10489_022_03614_0
crossref_primary_10_1016_j_tre_2025_104417
crossref_primary_10_1080_02533839_2025_2478185
crossref_primary_10_1186_s40537_023_00715_6
crossref_primary_10_1371_journal_pone_0319998
crossref_primary_10_1111_rssc_12597
crossref_primary_10_1007_s42452_023_05389_6
crossref_primary_10_1109_ACCESS_2023_3304669
crossref_primary_10_3390_technologies11060167
crossref_primary_10_1007_s12652_024_04846_3
crossref_primary_10_1007_s00521_025_11027_6
crossref_primary_10_38124_ijisrt_25jun1816
crossref_primary_10_1002_cpe_6627
crossref_primary_10_3390_s23020908
crossref_primary_10_1186_s40537_024_00993_8
Cites_doi 10.1016/S0169-7552(98)00110-X
10.1140/epjb/e2004-00111-4
10.1016/j.dss.2008.06.007
10.1016/j.eswa.2008.05.027
10.1016/S0308-5961(00)00097-5
10.1509/jmr.13.0483
10.1109/ACCESS.2016.2619719
10.1186/s40537-016-0050-7
10.1016/S0957-4174(02)00030-1
10.1145/2487575.2487597
10.1145/2939672.2939785
10.1109/ICSMC.2012.6377917
10.1145/2723372.2742794
10.1007/0-387-25465-X_40
10.1145/1401890.1401948
10.1109/ICDIM.2013.6693977
10.1109/ICComm.2016.7528311
10.1109/FSKD.2009.767
ContentType Journal Article
Copyright The Author(s) 2019
Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-019-0191-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISSN 2196-1115
EndPage 24
ExternalDocumentID oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9
10_1186_s40537_019_0191_6
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
7XB
8AL
8FK
JQ2
L.-
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c564t-98e18e0ec634ccfeb2a7a9d04c5c6b90e058010bde7a7c4edfe87f19062fdb333
IEDL.DBID DOA
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599131800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Tue Oct 14 14:42:12 EDT 2025
Fri Nov 14 19:24:16 EST 2025
Sat Nov 29 02:28:02 EST 2025
Tue Nov 18 21:41:36 EST 2025
Fri Feb 21 02:36:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Customer churn prediction
Feature selection
Machine learning
Classification
Mobile Social Network Analysis
Big data
Churn in telecom
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-98e18e0ec634ccfeb2a7a9d04c5c6b90e058010bde7a7c4edfe87f19062fdb333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6980-5267
OpenAccessLink https://doaj.org/article/d1b3ef3dd6a8442694a278955effa1f9
PQID 2194483131
PQPubID 2046140
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9
proquest_journals_2194483131
crossref_citationtrail_10_1186_s40537_019_0191_6
crossref_primary_10_1186_s40537_019_0191_6
springer_journals_10_1186_s40537_019_0191_6
PublicationCentury 2000
PublicationDate 2019-03-20
PublicationDateYYYYMMDD 2019-03-20
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-20
  day: 20
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Bott (CR5) 2014; 11
Xie, Rojkova, Pal, Coggeshall (CR26) 2009; 7
Amin, Anwar, Adnan, Nawaz, Howard, Qadir, Hawalah, Hussain (CR17) 2016; 4
Umayaparvathi, Iyakutti (CR6) 2016; 3
Barthelemy (CR10) 2004; 38
CR19
CR18
CR15
CR14
Wei, Chiu (CR2) 2002; 23
CR13
Kiss, Bichler (CR21) 2008; 46
CR12
CR11
Ascarza, Iyengar, Schleicher (CR4) 2016; 53
Brin, Page (CR22) 1998; 30
Kiss, Bichler (CR20) 2008; 46
CR3
CR7
CR27
CR25
CR24
Makhtar, Nafis, Mohamed, Awang, Rahman, Deris (CR16) 2017; 9
CR23
Gerpott, Rams, Schindler (CR1) 2001; 25
Burez, den Poel (CR8) 2009; 36
Zhan, Guidibande, Parsa (CR9) 2016; 3
CP Wei (191_CR2) 2002; 23
E Ascarza (191_CR4) 2016; 53
191_CR7
V Umayaparvathi (191_CR6) 2016; 3
191_CR11
191_CR12
191_CR13
C Kiss (191_CR21) 2008; 46
191_CR18
191_CR19
191_CR3
Bott (191_CR5) 2014; 11
191_CR14
191_CR15
M Makhtar (191_CR16) 2017; 9
A Amin (191_CR17) 2016; 4
J Xie (191_CR26) 2009; 7
D Burez (191_CR8) 2009; 36
S Brin (191_CR22) 1998; 30
J Zhan (191_CR9) 2016; 3
C Kiss (191_CR20) 2008; 46
191_CR23
191_CR24
M Barthelemy (191_CR10) 2004; 38
191_CR25
191_CR27
TJ Gerpott (191_CR1) 2001; 25
References_xml – ident: CR18
– volume: 30
  start-page: 107
  issue: 1–7
  year: 1998
  end-page: 117
  ident: CR22
  article-title: The anatomy of a large-scale hypertextual web search engine
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00110-X
– ident: CR14
– volume: 38
  start-page: 163
  issue: 2
  year: 2004
  end-page: 168
  ident: CR10
  article-title: Betweenness centrality in large complex networks
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2004-00111-4
– ident: CR12
– volume: 46
  start-page: 233
  issue: 1
  year: 2008
  end-page: 253
  ident: CR20
  article-title: Identification of influencers—measuring influence in customer networks
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2008.06.007
– volume: 3
  start-page: 1065
  issue: 4
  year: 2016
  end-page: 1070
  ident: CR6
  article-title: A survey on customer churn prediction in telecom industry: datasets, methods and metric
  publication-title: Int Res J Eng Technol
– ident: CR25
– volume: 7
  start-page: 35
  year: 2009
  end-page: 43
  ident: CR26
  article-title: A combination of boosting and bagging for kdd cup 2009—fast scoring on a large database
  publication-title: J Mach Learn Res Proc Track
– volume: 36
  start-page: 4626
  issue: 3
  year: 2009
  end-page: 4636
  ident: CR8
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.05.027
– ident: CR27
– ident: CR23
– volume: 25
  start-page: 249
  year: 2001
  end-page: 269
  ident: CR1
  article-title: Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market
  publication-title: Telecommun Policy
  doi: 10.1016/S0308-5961(00)00097-5
– volume: 53
  start-page: 46
  issue: 1
  year: 2016
  end-page: 60
  ident: CR4
  article-title: The perils of proactive churn prevention using plan recommendations: evidence from a field experiment
  publication-title: J Market Res
  doi: 10.1509/jmr.13.0483
– volume: 46
  start-page: 233
  issue: 1
  year: 2008
  end-page: 253
  ident: CR21
  article-title: Identification of influencers—measuring influence in customer networks
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2008.06.007
– ident: CR19
– volume: 4
  start-page: 7940
  year: 2016
  end-page: 7957
  ident: CR17
  article-title: Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2619719
– ident: CR3
– ident: CR15
– ident: CR13
– ident: CR11
– volume: 9
  start-page: 854
  issue: 6
  year: 2017
  end-page: 868
  ident: CR16
  article-title: Churn classification model for local telecommunication company based on rough set theory
  publication-title: J Fundam Appl Sci
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  end-page: 5
  ident: CR5
  article-title: Predicting customer churn in telecom industry using multilayer preceptron neural networks: modeling and analysis
  publication-title: Igarss
– ident: CR7
– volume: 3
  start-page: 16
  issue: 1
  year: 2016
  ident: CR9
  article-title: Identification of top-k influential communities in big networks
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0050-7
– ident: CR24
– volume: 23
  start-page: 103
  issue: 2
  year: 2002
  end-page: 112
  ident: CR2
  article-title: Turning telecommunications call details to churn prediction: a data mining approach
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(02)00030-1
– ident: 191_CR11
– volume: 3
  start-page: 1065
  issue: 4
  year: 2016
  ident: 191_CR6
  publication-title: Int Res J Eng Technol
– volume: 7
  start-page: 35
  year: 2009
  ident: 191_CR26
  publication-title: J Mach Learn Res Proc Track
– volume: 46
  start-page: 233
  issue: 1
  year: 2008
  ident: 191_CR20
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2008.06.007
– ident: 191_CR23
  doi: 10.1145/2487575.2487597
– ident: 191_CR27
  doi: 10.1145/2939672.2939785
– volume: 23
  start-page: 103
  issue: 2
  year: 2002
  ident: 191_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(02)00030-1
– ident: 191_CR14
  doi: 10.1109/ICSMC.2012.6377917
– ident: 191_CR19
– volume: 9
  start-page: 854
  issue: 6
  year: 2017
  ident: 191_CR16
  publication-title: J Fundam Appl Sci
– ident: 191_CR15
  doi: 10.1145/2723372.2742794
– ident: 191_CR18
  doi: 10.1007/0-387-25465-X_40
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 191_CR5
  publication-title: Igarss
– ident: 191_CR25
– volume: 36
  start-page: 4626
  issue: 3
  year: 2009
  ident: 191_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.05.027
– ident: 191_CR24
  doi: 10.1145/1401890.1401948
– volume: 46
  start-page: 233
  issue: 1
  year: 2008
  ident: 191_CR21
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2008.06.007
– volume: 30
  start-page: 107
  issue: 1–7
  year: 1998
  ident: 191_CR22
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00110-X
– ident: 191_CR3
  doi: 10.1109/ICDIM.2013.6693977
– volume: 4
  start-page: 7940
  year: 2016
  ident: 191_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2619719
– volume: 3
  start-page: 16
  issue: 1
  year: 2016
  ident: 191_CR9
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0050-7
– ident: 191_CR7
– volume: 38
  start-page: 163
  issue: 2
  year: 2004
  ident: 191_CR10
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2004-00111-4
– volume: 53
  start-page: 46
  issue: 1
  year: 2016
  ident: 191_CR4
  publication-title: J Market Res
  doi: 10.1509/jmr.13.0483
– volume: 25
  start-page: 249
  year: 2001
  ident: 191_CR1
  publication-title: Telecommun Policy
  doi: 10.1016/S0308-5961(00)00097-5
– ident: 191_CR12
  doi: 10.1109/ICComm.2016.7528311
– ident: 191_CR13
  doi: 10.1109/FSKD.2009.767
SSID ssj0001340564
Score 2.5779827
Snippet Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the companies,...
Abstract Customer churn is a major problem and one of the most important concerns for large companies. Due to the direct effect on the revenues of the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Big Data
Business
Churn in telecom
Classification
Communications Engineering
Companies
Computational Science and Engineering
Computer Science
Consumers
Customer churn prediction
Customers
Data management
Data Mining and Knowledge Discovery
Database Management
Decision making
Decision trees
Feature extraction
Feature selection
Information Storage and Retrieval
Machine learning
Mathematical Applications in Computer Science
Mathematical models
Mobile Social Network Analysis
Network analysis
Networks
Operators
Performance evaluation
Prediction models
Predictions
Social network analysis
Social networks
Telecommunications
Telecommunications industry
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgLhQJioSAfOIGixrFjOycEKyoOUPUAUm9W_FpW6j7YTfn9zHidropELxxycWzL8jz8jWc8A_C2M43W2vPKByphJn2qutCi4UropDNRRZ_zzH7VZ2fm4qI7Lxdu2xJWOerErKjDytMd-QlKFloSggv-Yf2roqpR5F0tJTTuwj1CNhTS962e7u9YBMIRJYszkxt1spWUvwTtZwoS6nilbhxHOWv_Daj5l3c0Hzqnh_-73MfwqMBN9nHHH0_gTlwewYMx2v0IDseqDqwI-VM4n14hIFxgk_-Jo9l6Q74coh-bL9lAdXNWC0YzzNgih2JGVmpPzKiHm88YxZ2y9WU_ECR-Bj9OP3-ffqlK3YXK424NFZKIm1hHr4T0PqHt3eu-C7X0rVeuq2Pd4rlWuxB1r72MIUWjE6eMxyk4IcRzOFiulvEFMN_IIFPHW8d7mRrhItfOONkgykioCyZQj9tvfUlKTrUxLm02ToyyO4pZpBZ93KoJvLsest5l5Lit8yei6XVHSqadG1abmS2yaQN3IiYRguqNzE97e3of3LYxpZ4nXOTxSGNbJHxr9wSewPuRS_a__7mil7dP9goeNpk7BeqvYzgYNlfxNdz3v4f5dvMms_cfMKwAng
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagcOBCoYAaKMgHTkWrrtdeP44QEXFAVQ8g5WatX2mkvJRs-vuZcbxFQYAEh714x5I147FnPDPfEPLe6EYp5VnlA7YwEz5VJrTguKJ1YnSU0Wec2a_q-lpPp-am1HHvhmz3ISSZT-qs1lpe7QRCj4Dri_k9hlXyIXnUMm0wj29cShzywwoHQilKBPO3M4_uoAzVf2Rf_hISzTfN5PS_1viMPC2GJf142AnPyYO4OiOnQ9MGWnT4BbkZ78HeW8KQv4UpdLPFUA2Kh85XtMe2OOslxXT4GV3mTMtIS2uJGVK4-YxiWindLLoeLd6X5Pvk87fxl6q0Vag88KWvQAJMxzp6yYX3CVzrTnUm1MK3XjpTx7qFa6t2IapOeRFDilolhoDGKTjO-Styslqv4jmhvhFBJMNaxzqRGu4iU0470YARkUDVR6QeGG19wRzH1hcLm30PLe2BYxa4hR-zckQu76dsDoAbfyP-hNK7J0Ss7Dyw3s5sUT0bmOMx8RBkp0Wu3O2w_LdtY0odS7DIi0H2tijwzsJBDo4rZ5yNyIdB1j9__3FFr_-J-g150uTNwuG0uiAn_XYf35LH_q6f77bv8r7-AeyO8kk
  priority: 102
  providerName: Springer Nature
Title Customer churn prediction in telecom using machine learning in big data platform
URI https://link.springer.com/article/10.1186/s40537-019-0191-6
https://www.proquest.com/docview/2194483131
https://doaj.org/article/d1b3ef3dd6a8442694a278955effa1f9
Volume 6
WOSCitedRecordID wos000599131800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: 7WY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M0C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: P5Z
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: K7-
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M2R
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCG7FQVj5wAkWNY8ePY7tqBYKuIgSi5WLFr-1K3e1qN-X3d8bJlhYJuHCIpdhjaTIe2zPx-BtC3hpdKaU8K3zAFGbCp8KEGhxXtE6MjjL6jDP7WU2n-uTENDdSfWFMWA8P3AtuLzDHY-IhyFaLfO-yxcubdR1TalnKV_dKZW44U_nvCgdDRIrhGJNpubcRiFwCnjOGBxlWyFsbUcbrv2Vk_nYumrebo8fk4WAn0v2evyfkTlw-JY-2ORjoMCWfkWZyCebbAqr8GXShqzWevKC06XxJO8xyc7GgGN0-o4scOBnpkClihhRuPqMYJUpX522HBuxz8u3o8OvkQzFkSSg8fGFXgECZjmX0kgvvE3jKrWpNKIWvvXSmjGUNu1DpQlSt8iKGFLVKDPGJU3Cc8xdkZ3mxjC8J9ZUIIhlWO9aKVHEXmXLaiQpsggQzd0TKrcisHyDEMZPFuc2uhJa2l7IFCePDrByRd9ddVj1-xt-ID3AcrgkR-jpXgELYQSHsvxRiRHa3o2iH-bixsC6DH8oZZyPyfjuyv5r_yNGr_8HRa_KgynrHYU3aJTvd-jK-Iff9z26-WY_JXfX9dEzuHRxOmy_wNqnEOCszlJ9UAeVxOcGywtam_gG0zcfj5vQKgCn4rA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQEXCgXElgI-wAUUNY4d2zkgBIWq1S6rHorUm4m_lpW6H91NQfwpfiMeb9JVkeitBw65OI7lJM_PM_Z4HsCrShVSSksz61DCjNuQVa6MjitaJ5XywtuUZ3Ygh0N1elodb8Dv7iwMhlV2nJiI2s0srpHvxZEVPQlGGX0_P89QNQp3VzsJjRUs-v7Xz-iyLd8dfYr_93VRHHw-2T_MWlWBzJaCN1nsAFU-91Ywbm2InmUt68rl3JZWmCr3eRlZOzfOy1pa7l3wSgaK-XyDMwwXQCPl3-JMSRxXfZmt13RYNH8EbzdPqRJ7S475UqK_jkFJFc3ElekvqQRcMW3_2o1Nk9zB1v_2eR7A_dacJh9W-H8IG366DXe6aP5t2OpUK0hLYo_geP8iGryTWGS_x6fJfIF7VYhPMp6SBnWBZhOCLYzIJIWaetJqa4ywhhmPCMbVkvlZ3aDJ_xi-3sgrPoHN6WzqnwKxBXc8VLQ0tOahYMZTaZThRbSiQuS6HuTd79a2TbqO2h9nOjlfSugVQnREB15Uix68uXxkvso4cl3lj4ihy4qYLDwVzBYj3XKPdtQwH5hzolY8HV2u8fxzWfoQahpiJ3c7TOmWwZZ6DagevO1Qub79zx7tXN_YS7h7ePJloAdHw_4zuFekkcEiV-_CZrO48M_htv3RjJeLF2loEfh202D9A2mnX_s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5Sm2FPCBEyhqHDu2c4SFFYhqtQeQerPi13albna1m_L763GcoiJAQhxyScaSNQ97JjPzDcCbRlVSSksL63CEGbehaFwdA1f0ThrlhbcJZ_ZUzufq7KxZ5Dmn-7HafUxJDj0NiNLU9SdbFwYTV-JkzxGGJIbBWOvT0ELchjuYkEIVn-Z2h_SThUVCwXM287crb9xHCbb_hq_5S3o03Tqzw__e70N4kB1O8n7QkEdwy3eP4XAc5kCybT-BxfQy-oHr-MqexyVku8MUDoqNrDrS47iczZpgmfySrFMFpid55MQSKcxqSbDclGwv2h494afwffbp2_RzkcctFDbyqC-iZKjypbeCcWtDDLlb2Tau5La2wjSlL-t4nZXGedlKy70LXslAEeg4OMMYewYH3abzz4HYijseGlob2vJQMeOpNMrwKjoXIR4BEyhHpmubschxJMaFTjGJEnrgmI7cwodqMYG310u2AxDH34g_oCSvCRFDO73Y7JY6m6R21DAfmHOiVTx19LbYFlzXPoSWhrjJ41EPdDbsvY4HfAxoGWV0Au9Guf_8_McdHf0T9Wu4t_g406df5l9fwP0q6Q2LB9oxHPS7S_8S7tof_Wq_e5XU_Qrao_4S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customer+churn+prediction+in+telecom+using+machine+learning+in+big+data+platform&rft.jtitle=Journal+of+big+data&rft.au=Abdelrahim+Kasem+Ahmad&rft.au=Assef+Jafar&rft.au=Kadan+Aljoumaa&rft.date=2019-03-20&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1186%2Fs40537-019-0191-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1b3ef3dd6a8442694a278955effa1f9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon