Lumbar Ultrasound Image Feature Extraction and Classification with Support Vector Machine
Needle entry site localization remains a challenge for procedures that involve lumbar puncture, for example, epidural anesthesia. To solve the problem, we have developed an image classification algorithm that can automatically identify the bone/interspinous region for ultrasound images obtained from...
Uložené v:
| Vydané v: | Ultrasound in medicine & biology Ročník 41; číslo 10; s. 2677 - 2689 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.10.2015
|
| Predmet: | |
| ISSN: | 1879-291X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Needle entry site localization remains a challenge for procedures that involve lumbar puncture, for example, epidural anesthesia. To solve the problem, we have developed an image classification algorithm that can automatically identify the bone/interspinous region for ultrasound images obtained from lumbar spine of pregnant patients in the transverse plane. The proposed algorithm consists of feature extraction, feature selection and machine learning procedures. A set of features, including matching values, positions and the appearance of black pixels within pre-defined windows along the midline, were extracted from the ultrasound images using template matching and midline detection methods. A support vector machine was then used to classify the bone images and interspinous images. The support vector machine model was trained with 1,040 images from 26 pregnant subjects and tested on 800 images from a separate set of 20 pregnant patients. A success rate of 95.0% on training set and 93.2% on test set was achieved with the proposed method. The trained support vector machine model was further tested on 46 off-line collected videos, and successfully identified the proper needle insertion site (interspinous region) in 45 of the cases. Therefore, the proposed method is able to process the ultrasound images of lumbar spine in an automatic manner, so as to facilitate the anesthetists' work of identifying the needle entry site. |
|---|---|
| AbstractList | Needle entry site localization remains a challenge for procedures that involve lumbar puncture, for example, epidural anesthesia. To solve the problem, we have developed an image classification algorithm that can automatically identify the bone/interspinous region for ultrasound images obtained from lumbar spine of pregnant patients in the transverse plane. The proposed algorithm consists of feature extraction, feature selection and machine learning procedures. A set of features, including matching values, positions and the appearance of black pixels within pre-defined windows along the midline, were extracted from the ultrasound images using template matching and midline detection methods. A support vector machine was then used to classify the bone images and interspinous images. The support vector machine model was trained with 1,040 images from 26 pregnant subjects and tested on 800 images from a separate set of 20 pregnant patients. A success rate of 95.0% on training set and 93.2% on test set was achieved with the proposed method. The trained support vector machine model was further tested on 46 off-line collected videos, and successfully identified the proper needle insertion site (interspinous region) in 45 of the cases. Therefore, the proposed method is able to process the ultrasound images of lumbar spine in an automatic manner, so as to facilitate the anesthetists' work of identifying the needle entry site. |
| Author | Sia, Alex Tiong Heng Tan, Kok Kiong Yu, Shuang Li, Shengjin Sng, Ban Leong |
| Author_xml | – sequence: 1 givenname: Shuang surname: Yu fullname: Yu, Shuang email: yushuang@nus.edu.sg organization: NUS Graduate School for Sciences and Engineering, Department of Electrical and Computer Engineering, National University of Singapore, Singapore. Electronic address: yushuang@nus.edu.sg – sequence: 2 givenname: Kok Kiong surname: Tan fullname: Tan, Kok Kiong organization: NUS Graduate School for Sciences and Engineering, Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 3 givenname: Ban Leong surname: Sng fullname: Sng, Ban Leong organization: Department of Women's Anesthesia, KK Womens and Childrens Hospital, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore – sequence: 4 givenname: Shengjin surname: Li fullname: Li, Shengjin organization: Duke-National University of Singapore Graduate Medical School, Singapore – sequence: 5 givenname: Alex Tiong Heng surname: Sia fullname: Sia, Alex Tiong Heng organization: Department of Women's Anesthesia, KK Womens and Childrens Hospital, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26119460$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kE1LxDAYhIMo7of-BQmevLQmaZs0R1l2dWHFg67oqbxNUzdL29QmQf33lnWFgYF5hjnMDJ12ttMIXVMSU0L57T4OjR_AtboqjY0ZoVlMRtHsBE1pLmTEJH2boJlze0KI4Ik4RxPGKZUpJ1P0vgltCQPeHlZs6Cq8buFD45UGHwaNl98jUN7YDsMIFw04Z2qj4BB9Gb_Dz6Hv7eDxq1beDvgR1M50-gKd1dA4fXn0Odquli-Lh2jzdL9e3G0ilfHUR1LkjKlS1yLlea2IqAEUVFJlldZZrVSSMSZZyZIkVWkKNIWKc1FTVgnIFGVzdPO32w_2M2jni9Y4pZsGOm2DK6ggeS45lXKsXh2roRwPK_rBtDD8FP93sF90L2ee |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2016_03_018 crossref_primary_10_1016_j_arth_2023_08_045 crossref_primary_10_1093_comjnl_bxab088 crossref_primary_10_1109_MCOMSTD_2025_3582997 crossref_primary_10_1007_s12046_021_01574_8 crossref_primary_10_1108_K_08_2020_0512 crossref_primary_10_1016_j_bspc_2021_102886 crossref_primary_10_1080_21681163_2022_2124545 crossref_primary_10_1016_j_cosrev_2020_100320 crossref_primary_10_1007_s00261_018_1517_0 crossref_primary_10_3389_fbioe_2018_00075 crossref_primary_10_7759_cureus_48078 crossref_primary_10_1016_j_ijoa_2024_104288 crossref_primary_10_1007_s40031_022_00745_3 crossref_primary_10_1108_IJWIS_01_2021_0007 crossref_primary_10_1186_s12871_019_0726_6 crossref_primary_10_1002_ima_22482 crossref_primary_10_1007_s10878_021_00770_w crossref_primary_10_1007_s12065_020_00400_0 crossref_primary_10_14366_usg_20080 crossref_primary_10_3390_diagnostics13152606 crossref_primary_10_1177_01617346231220000 crossref_primary_10_1007_s12065_020_00403_x crossref_primary_10_1177_21925682211049164 crossref_primary_10_1007_s10928_020_09685_1 crossref_primary_10_1108_IJICC_10_2019_0116 crossref_primary_10_1109_ACCESS_2020_2997663 crossref_primary_10_1093_comjnl_bxab171 crossref_primary_10_1007_s10877_023_01088_0 crossref_primary_10_1007_s12046_021_01631_2 crossref_primary_10_1108_SR_02_2020_0039 crossref_primary_10_1007_s11042_023_14606_8 crossref_primary_10_1007_s11042_024_18659_1 crossref_primary_10_1002_ima_22475 crossref_primary_10_1002_ase_2266 crossref_primary_10_1007_s13755_024_00301_x crossref_primary_10_1515_bams_2020_0053 crossref_primary_10_1038_s41598_023_39508_5 crossref_primary_10_3390_math8112008 crossref_primary_10_1093_comjnl_bxab068 crossref_primary_10_1016_j_bja_2024_01_036 crossref_primary_10_1002_ima_22519 crossref_primary_10_1109_TUFFC_2019_2956730 crossref_primary_10_1016_j_jksuci_2020_12_022 crossref_primary_10_1016_j_csi_2021_103518 crossref_primary_10_1007_s40009_025_01800_5 crossref_primary_10_1007_s11548_017_1575_8 crossref_primary_10_1002_ima_22665 crossref_primary_10_1109_TMI_2017_2739110 crossref_primary_10_4018_IJDST_300356 crossref_primary_10_1007_s10586_022_03960_1 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ultrasmedbio.2015.05.015 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1879-291X |
| EndPage | 2689 |
| ExternalDocumentID | 26119460 |
| Genre | Journal Article |
| GroupedDBID | --- --K -DZ .1- .55 .FO .GJ 0R~ 123 1B1 1P~ 1RT 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AALRI AAQFI AAQXK AAWTL AAXUO AAYWO ABDPE ABJNI ABLJU ABMAC ABNEU ABOCM ABWVN ACGFS ACIUM ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AENEX AEUPX AEVXI AFCTW AFJKZ AFPUW AFRHN AFTJW AGCQF AGQPQ AHHHB AIGII AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BELOY C5W CGR CS3 CUY CVF DU5 EBS ECM EFJIC EFKBS EIF EJD F5P FDB FEDTE FGOYB FIRID G-2 GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B M29 M41 MO0 NPM NQ- O9- OI~ OU0 P2P R2- RIG ROL RPZ SAE SDG SEL SES SEW SSZ WUQ X7M XH2 Z5R ZGI ZXP ZY4 ~S- 7X8 |
| ID | FETCH-LOGICAL-c564t-97822cbef7468fc07faacad9c5dee5fcc352292b2334c44a14ad667f12d7a5c12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366470400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Sun Nov 09 12:04:46 EST 2025 Mon Jul 21 06:08:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Medical image processing Feature selection Video processing Machine learning Feature extraction Support vector machine Epidural anesthesia |
| Language | English |
| License | Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-97822cbef7468fc07faacad9c5dee5fcc352292b2334c44a14ad667f12d7a5c12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26119460 |
| PQID | 1708896199 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1708896199 pubmed_primary_26119460 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Ultrasound in medicine & biology |
| PublicationTitleAlternate | Ultrasound Med Biol |
| PublicationYear | 2015 |
| SSID | ssj0007637 |
| Score | 2.4101322 |
| Snippet | Needle entry site localization remains a challenge for procedures that involve lumbar puncture, for example, epidural anesthesia. To solve the problem, we have... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2677 |
| SubjectTerms | Algorithms Anesthesia, Epidural - methods Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Lumbar Vertebrae - diagnostic imaging Pattern Recognition, Automated - methods Pregnancy Punctures Reproducibility of Results Sensitivity and Specificity Support Vector Machine Ultrasonography, Interventional - methods |
| Title | Lumbar Ultrasound Image Feature Extraction and Classification with Support Vector Machine |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26119460 https://www.proquest.com/docview/1708896199 |
| Volume | 41 |
| WOSCitedRecordID | wos000366470400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5qVby41K1uRPA6OEtmMjmJSIuCLT1YqaeSFQp2WmcR_ffmZab0JAhe5jDDQEje8iXvy_sQujFUg-AA9ahhxiPE7lNSwyPP90VCfaVsllFObIIOBul4zIbNgVvR0CqXMdEFajWXcEZ-G1Ag5Fi4z-4WHx6oRkF1tZHQWEetyEIZcEw6XnULt75Dl41GHaerei9zXtg0I6Zw8S-I666d8e_w0qWZ3t5_B7iPdhuAie9rizhAazpro61acvK7jbb7TTHdvnTsT1kcorfnaiZ4jkdu4CC0hJ9mNtBgAIhVrnH3q8zrGxCY249OSRM4Rm5ZMZzlYpAHtVAev7oyAO47kqY-QqNe9-Xh0Ws0FzwZJ6T0GCAGKbShJEmN9KnhXHLFZKy0jo2UANhYKMIoIpIQHhCukoSaIFSUxzIIj9FGNs_0KcKG8UQyIbnghghooqOgrTlXxBAeybSDrpcTObE2DYUKnul5VUxWU9lBJ_VqTBZ1842J3fEFjCT-2R_-Pkc7sMg19-4CtYz1aH2JNuVnOS3yK2cs9jkY9n8ADbvNYg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lumbar+Ultrasound+Image+Feature+Extraction+and+Classification+with+Support+Vector+Machine&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Yu%2C+Shuang&rft.au=Tan%2C+Kok+Kiong&rft.au=Sng%2C+Ban+Leong&rft.au=Li%2C+Shengjin&rft.date=2015-10-01&rft.eissn=1879-291X&rft.volume=41&rft.issue=10&rft.spage=2677&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2015.05.015&rft_id=info%3Apmid%2F26119460&rft_id=info%3Apmid%2F26119460&rft.externalDocID=26119460 |