A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor

Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 285; no. 23; p. 17954
Main Authors: Hurst, Dow P, Grossfield, Alan, Lynch, Diane L, Feller, Scott, Romo, Tod D, Gawrisch, Klaus, Pitman, Michael C, Reggio, Patricia H
Format: Journal Article
Language:English
Published: United States 04.06.2010
Subjects:
ISSN:1083-351X, 1083-351X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.
AbstractList Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.
Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.
Author Gawrisch, Klaus
Grossfield, Alan
Hurst, Dow P
Pitman, Michael C
Romo, Tod D
Reggio, Patricia H
Feller, Scott
Lynch, Diane L
Author_xml – sequence: 1
  givenname: Dow P
  surname: Hurst
  fullname: Hurst, Dow P
  organization: Department of Chemistry and Biochemistry, Center for Drug Discovery, University of North Carolina, Greensboro, North Carolina 27402, USA
– sequence: 2
  givenname: Alan
  surname: Grossfield
  fullname: Grossfield, Alan
– sequence: 3
  givenname: Diane L
  surname: Lynch
  fullname: Lynch, Diane L
– sequence: 4
  givenname: Scott
  surname: Feller
  fullname: Feller, Scott
– sequence: 5
  givenname: Tod D
  surname: Romo
  fullname: Romo, Tod D
– sequence: 6
  givenname: Klaus
  surname: Gawrisch
  fullname: Gawrisch, Klaus
– sequence: 7
  givenname: Michael C
  surname: Pitman
  fullname: Pitman, Michael C
– sequence: 8
  givenname: Patricia H
  surname: Reggio
  fullname: Reggio, Patricia H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20220143$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1LxDAQDbLifujZm-TmqTVpkrY5LouuwooXBQ9CmSbpmqVNatMi_nsDu4LvMsO8N483s0Qz551B6JqSlJKC3x1qlT5TIlPCqZDkDC0oKVnCBH2f_evnaBnCgURwSS_QPCNZRihnC_Sxxq3trcY9jJ_f8IMbP8TJHpzGtXXauj22ATujTAgwHHnACpyDyPu4ucX94EdjXaL81LdG4yGq-9EPl-i8gTaYq1NdobeH-9fNY7J72T5t1rtEiZyPiSiFUSznTMsYjBaKZCXkKoZlYASBUhW5qiOkYA2UutFMqhIAClVzoCJbodujbwzyNZkwVp0NyrQtOOOnUBWMUcoKLqPy5qSc6s7oqh9sF6-q_h6S_QKIX2Uy
CitedBy_id crossref_primary_10_1002_pro_3165
crossref_primary_10_1021_acschemneuro_5b00090
crossref_primary_10_1146_annurev_biophys_090821_083030
crossref_primary_10_1002_cmdc_201100010
crossref_primary_10_1016_j_plipres_2016_02_001
crossref_primary_10_3390_ijms24076406
crossref_primary_10_1124_mol_111_073825
crossref_primary_10_1111_j_1748_1716_2011_02280_x
crossref_primary_10_1016_j_str_2017_11_020
crossref_primary_10_1038_onc_2015_467
crossref_primary_10_1016_j_ejmech_2017_11_076
crossref_primary_10_1016_j_bbamem_2012_08_009
crossref_primary_10_1016_j_chemphyslip_2013_01_009
crossref_primary_10_1124_mol_113_090209
crossref_primary_10_1038_nature11896
crossref_primary_10_1016_j_bbamem_2011_03_010
crossref_primary_10_1016_j_str_2018_01_014
crossref_primary_10_1177_2515256421995601
crossref_primary_10_1517_17460441_2013_783815
crossref_primary_10_1074_jbc_M113_478495
crossref_primary_10_1124_mol_117_108605
crossref_primary_10_1016_j_febslet_2011_07_014
crossref_primary_10_1002_minf_201100138
crossref_primary_10_3390_ijms19072105
crossref_primary_10_1016_j_jbc_2021_100282
crossref_primary_10_1371_journal_pcbi_1002473
crossref_primary_10_1016_j_mce_2019_01_018
crossref_primary_10_1016_j_str_2012_03_017
crossref_primary_10_1016_j_ejmech_2014_11_066
crossref_primary_10_1074_jbc_M111_268425
crossref_primary_10_1016_j_chembiol_2016_02_014
crossref_primary_10_3389_fnins_2016_00406
crossref_primary_10_1021_acs_jmedchem_7b00205
crossref_primary_10_1124_jpet_117_245522
crossref_primary_10_3389_fncel_2017_00039
crossref_primary_10_1371_journal_pone_0052633
crossref_primary_10_1080_07391102_2019_1567384
crossref_primary_10_1124_mol_115_102657
crossref_primary_10_1038_nature13494
crossref_primary_10_1016_j_addr_2016_02_005
crossref_primary_10_1124_mol_114_095471
crossref_primary_10_1016_j_bpj_2012_03_061
crossref_primary_10_1073_pnas_1503395112
crossref_primary_10_1074_jbc_M113_539916
crossref_primary_10_1042_BST20190048
crossref_primary_10_3389_fmolb_2020_604770
crossref_primary_10_1111_cbdd_12095
crossref_primary_10_1016_j_bpj_2020_03_008
crossref_primary_10_1021_jm500807e
crossref_primary_10_3389_fphar_2019_00418
crossref_primary_10_3390_ph4010007
crossref_primary_10_1021_acs_jcim_5b00739
crossref_primary_10_1007_s00232_013_9627_7
crossref_primary_10_1016_j_scib_2022_12_023
crossref_primary_10_1038_nature20613
crossref_primary_10_1111_bph_13774
crossref_primary_10_1021_acs_jmedchem_7b00693
crossref_primary_10_3390_molecules25030725
crossref_primary_10_1002_prot_22974
crossref_primary_10_1517_17460441_2015_1067196
crossref_primary_10_1002_prot_22855
crossref_primary_10_1016_j_plipres_2011_03_002
crossref_primary_10_1074_jbc_M112_352328
crossref_primary_10_1016_j_bbalip_2012_01_009
crossref_primary_10_1124_molpharm_121_000285
crossref_primary_10_3390_molecules22020340
crossref_primary_10_1002_glia_24280
crossref_primary_10_1124_pr_116_013243
crossref_primary_10_1016_j_bpj_2023_02_022
crossref_primary_10_1111_bph_12113
crossref_primary_10_1016_j_jmb_2013_04_011
crossref_primary_10_1042_BJ20130960
crossref_primary_10_1038_npp_2017_206
crossref_primary_10_3390_biom10050686
crossref_primary_10_1016_j_sbi_2011_06_008
crossref_primary_10_1007_s10822_011_9517_y
crossref_primary_10_1016_j_ejmech_2020_113087
crossref_primary_10_1111_bcp_12996
crossref_primary_10_1146_annurev_biophys_042910_155245
crossref_primary_10_1016_j_ejphar_2021_174659
crossref_primary_10_3390_ph14101062
crossref_primary_10_1002_cmdc_201800152
crossref_primary_10_1002_cmdc_201100568
crossref_primary_10_1111_j_1476_5381_2011_01364_x
crossref_primary_10_1038_srep22639
crossref_primary_10_1016_j_bcp_2016_11_014
crossref_primary_10_1016_j_bmc_2014_12_034
crossref_primary_10_1111_bph_15573
crossref_primary_10_1073_pnas_1104614108
crossref_primary_10_3389_fmolb_2020_00144
crossref_primary_10_3390_molecules23102616
crossref_primary_10_1021_acs_jmedchem_7b00155
crossref_primary_10_1124_mol_118_115113
crossref_primary_10_1210_me_2011_1197
crossref_primary_10_1016_j_tips_2016_01_010
crossref_primary_10_3390_ph15010012
crossref_primary_10_4155_fmc_2018_0393
crossref_primary_10_3390_ijms20092300
crossref_primary_10_1007_s12311_014_0629_5
crossref_primary_10_1074_jbc_R115_668251
crossref_primary_10_1002_prot_24411
crossref_primary_10_1002_prot_22918
crossref_primary_10_1016_j_tips_2022_06_010
crossref_primary_10_1016_j_bmcl_2019_126644
crossref_primary_10_1038_ncomms14505
crossref_primary_10_1016_j_bbamem_2016_02_037
crossref_primary_10_1016_j_colsurfb_2022_113020
crossref_primary_10_1111_bph_13069
crossref_primary_10_1038_s41467_022_31817_z
crossref_primary_10_1021_acs_jmedchem_6b00397
crossref_primary_10_3389_fphar_2018_01202
crossref_primary_10_1042_BST20221316
crossref_primary_10_3389_fphar_2019_00339
crossref_primary_10_1080_17460441_2016_1245289
crossref_primary_10_1111_bph_16172
crossref_primary_10_1021_acs_jcim_6b00499
crossref_primary_10_1016_j_bpj_2015_08_028
crossref_primary_10_1016_j_chemphyslip_2010_12_003
crossref_primary_10_1111_bph_14029
crossref_primary_10_1002_med_21418
crossref_primary_10_1126_science_1215904
crossref_primary_10_1016_j_isci_2025_112706
crossref_primary_10_1073_pnas_1722399115
crossref_primary_10_1016_j_tibs_2019_04_004
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1074/jbc.M109.041590
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID 20220143
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: DA003934
– fundername: Intramural NIH HHS
– fundername: NIDA NIH HHS
  grantid: K05 DA021358
– fundername: NIDA NIH HHS
  grantid: R01 DA003934
– fundername: NIDA NIH HHS
  grantid: DA021358
GroupedDBID ---
-DZ
-ET
-~X
0R~
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
79B
85S
AAEDW
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
ADVLN
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
IH2
KQ8
L7B
N9A
NPM
OK1
P-O
P0W
P2P
R.V
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZE2
~02
~KM
.7T
7X8
AALRI
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
ID FETCH-LOGICAL-c564t-585ec3643d920217c028a6c0043ae50a8c76cbbbb953fa8dfd39c8aaa7cb4a152
IEDL.DBID 7X8
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278133400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-351X
IngestDate Fri Sep 05 08:54:43 EDT 2025
Thu Apr 03 07:10:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-585ec3643d920217c028a6c0043ae50a8c76cbbbb953fa8dfd39c8aaa7cb4a152
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.jbc.org/article/S0021925819355358/pdf
PMID 20220143
PQID 733113749
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733113749
pubmed_primary_20220143
PublicationCentury 2000
PublicationDate 2010-06-04
PublicationDateYYYYMMDD 2010-06-04
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2010
SSID ssj0000491
Score 2.4258325
Snippet Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 17954
SubjectTerms Animals
Arachidonic Acids - chemistry
Biophysics - methods
Cannabinoids - chemistry
Cattle
Computer Simulation
Eicosanoids - chemistry
Endocannabinoids
Glycerides - chemistry
Hydrogen Bonding
Ions
Ligands
Lipid Bilayers - chemistry
Lipids - chemistry
Protein Binding
Receptors, G-Protein-Coupled - chemistry
Rhodopsin - chemistry
Solvents - chemistry
Title A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor
URI https://www.ncbi.nlm.nih.gov/pubmed/20220143
https://www.proquest.com/docview/733113749
Volume 285
WOSCitedRecordID wos000278133400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4SbDwfpSXPCA2Q5O4sTOhCvEYoGIA1AGputgXFFScQCmIf885SWFCDGTwEMtS4ud3vu_uY-wgbBtCsZ1M6DSIhTRK0pJKUARWYoyJidIql979ler1dL-f3DTcnFFDq5zsidVGbQvj78iPvbZgECmZnJQvwotGeedqo6AxzWYjQjKe0aX6P8nCCfwGNb8-8oT1_iSzj5LHT6k5ug58rko6wJL27_CyOmbOl_75gctsscGXvFtPiBU2hW6VrXUd2dbPn_yQV4zP6ip9lc2fTtTe1thDlw_zMrfcSxR_wCcnMEtvHsFZnuZV6AvPR9yhDyuA17oeOA2MA6ovqOUFr5I-5E6YYlwO0XLaTbEko36d3Z2f3Z5eikZ5QZhOLN8E2RBoIgIrNgm90WIIhUBsvNsQsNMGbVRsUnqSTpSBtpmNEqMBQJlUAkGCDTbjCodbjKtIIeo4QA1aAlCZBhlKixYg1DZsMT7pzgH9sndXgMNiPBp8d2iLbdZDMijrDByD0McHE9Lb_rvxDluoHf6xaMtdNpvRqsY9Nmfe3_LR6341Y6js3Vx_AQ7uzFM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lipid+pathway+for+ligand+binding+is+necessary+for+a+cannabinoid+G+protein-coupled+receptor&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hurst%2C+Dow+P&rft.au=Grossfield%2C+Alan&rft.au=Lynch%2C+Diane+L&rft.au=Feller%2C+Scott&rft.date=2010-06-04&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=285&rft.issue=23&rft.spage=17954&rft_id=info:doi/10.1074%2Fjbc.M109.041590&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-351X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-351X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-351X&client=summon