A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor
Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A...
Uloženo v:
| Vydáno v: | The Journal of biological chemistry Ročník 285; číslo 23; s. 17954 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
04.06.2010
|
| Témata: | |
| ISSN: | 1083-351X, 1083-351X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. |
|---|---|
| AbstractList | Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. |
| Author | Gawrisch, Klaus Grossfield, Alan Hurst, Dow P Pitman, Michael C Romo, Tod D Reggio, Patricia H Feller, Scott Lynch, Diane L |
| Author_xml | – sequence: 1 givenname: Dow P surname: Hurst fullname: Hurst, Dow P organization: Department of Chemistry and Biochemistry, Center for Drug Discovery, University of North Carolina, Greensboro, North Carolina 27402, USA – sequence: 2 givenname: Alan surname: Grossfield fullname: Grossfield, Alan – sequence: 3 givenname: Diane L surname: Lynch fullname: Lynch, Diane L – sequence: 4 givenname: Scott surname: Feller fullname: Feller, Scott – sequence: 5 givenname: Tod D surname: Romo fullname: Romo, Tod D – sequence: 6 givenname: Klaus surname: Gawrisch fullname: Gawrisch, Klaus – sequence: 7 givenname: Michael C surname: Pitman fullname: Pitman, Michael C – sequence: 8 givenname: Patricia H surname: Reggio fullname: Reggio, Patricia H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20220143$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUE1LxDAQDbLifujZm-TmqTVpkrY5LouuwooXBQ9CmSbpmqVNatMi_nsDu4LvMsO8N483s0Qz551B6JqSlJKC3x1qlT5TIlPCqZDkDC0oKVnCBH2f_evnaBnCgURwSS_QPCNZRihnC_Sxxq3trcY9jJ_f8IMbP8TJHpzGtXXauj22ATujTAgwHHnACpyDyPu4ucX94EdjXaL81LdG4yGq-9EPl-i8gTaYq1NdobeH-9fNY7J72T5t1rtEiZyPiSiFUSznTMsYjBaKZCXkKoZlYASBUhW5qiOkYA2UutFMqhIAClVzoCJbodujbwzyNZkwVp0NyrQtOOOnUBWMUcoKLqPy5qSc6s7oqh9sF6-q_h6S_QKIX2Uy |
| CitedBy_id | crossref_primary_10_1002_pro_3165 crossref_primary_10_1021_acschemneuro_5b00090 crossref_primary_10_1146_annurev_biophys_090821_083030 crossref_primary_10_1002_cmdc_201100010 crossref_primary_10_1016_j_plipres_2016_02_001 crossref_primary_10_3390_ijms24076406 crossref_primary_10_1124_mol_111_073825 crossref_primary_10_1111_j_1748_1716_2011_02280_x crossref_primary_10_1016_j_str_2017_11_020 crossref_primary_10_1038_onc_2015_467 crossref_primary_10_1016_j_ejmech_2017_11_076 crossref_primary_10_1016_j_bbamem_2012_08_009 crossref_primary_10_1016_j_chemphyslip_2013_01_009 crossref_primary_10_1124_mol_113_090209 crossref_primary_10_1038_nature11896 crossref_primary_10_1016_j_bbamem_2011_03_010 crossref_primary_10_1016_j_str_2018_01_014 crossref_primary_10_1177_2515256421995601 crossref_primary_10_1517_17460441_2013_783815 crossref_primary_10_1074_jbc_M113_478495 crossref_primary_10_1124_mol_117_108605 crossref_primary_10_1016_j_febslet_2011_07_014 crossref_primary_10_1002_minf_201100138 crossref_primary_10_3390_ijms19072105 crossref_primary_10_1016_j_jbc_2021_100282 crossref_primary_10_1371_journal_pcbi_1002473 crossref_primary_10_1016_j_mce_2019_01_018 crossref_primary_10_1016_j_str_2012_03_017 crossref_primary_10_1016_j_ejmech_2014_11_066 crossref_primary_10_1074_jbc_M111_268425 crossref_primary_10_1016_j_chembiol_2016_02_014 crossref_primary_10_3389_fnins_2016_00406 crossref_primary_10_1021_acs_jmedchem_7b00205 crossref_primary_10_1124_jpet_117_245522 crossref_primary_10_3389_fncel_2017_00039 crossref_primary_10_1371_journal_pone_0052633 crossref_primary_10_1080_07391102_2019_1567384 crossref_primary_10_1124_mol_115_102657 crossref_primary_10_1038_nature13494 crossref_primary_10_1016_j_addr_2016_02_005 crossref_primary_10_1124_mol_114_095471 crossref_primary_10_1016_j_bpj_2012_03_061 crossref_primary_10_1073_pnas_1503395112 crossref_primary_10_1074_jbc_M113_539916 crossref_primary_10_1042_BST20190048 crossref_primary_10_3389_fmolb_2020_604770 crossref_primary_10_1111_cbdd_12095 crossref_primary_10_1016_j_bpj_2020_03_008 crossref_primary_10_1021_jm500807e crossref_primary_10_3389_fphar_2019_00418 crossref_primary_10_3390_ph4010007 crossref_primary_10_1021_acs_jcim_5b00739 crossref_primary_10_1007_s00232_013_9627_7 crossref_primary_10_1016_j_scib_2022_12_023 crossref_primary_10_1038_nature20613 crossref_primary_10_1111_bph_13774 crossref_primary_10_1021_acs_jmedchem_7b00693 crossref_primary_10_3390_molecules25030725 crossref_primary_10_1002_prot_22974 crossref_primary_10_1517_17460441_2015_1067196 crossref_primary_10_1002_prot_22855 crossref_primary_10_1016_j_plipres_2011_03_002 crossref_primary_10_1074_jbc_M112_352328 crossref_primary_10_1016_j_bbalip_2012_01_009 crossref_primary_10_1124_molpharm_121_000285 crossref_primary_10_3390_molecules22020340 crossref_primary_10_1002_glia_24280 crossref_primary_10_1124_pr_116_013243 crossref_primary_10_1016_j_bpj_2023_02_022 crossref_primary_10_1111_bph_12113 crossref_primary_10_1016_j_jmb_2013_04_011 crossref_primary_10_1042_BJ20130960 crossref_primary_10_1038_npp_2017_206 crossref_primary_10_3390_biom10050686 crossref_primary_10_1016_j_sbi_2011_06_008 crossref_primary_10_1007_s10822_011_9517_y crossref_primary_10_1016_j_ejmech_2020_113087 crossref_primary_10_1111_bcp_12996 crossref_primary_10_1146_annurev_biophys_042910_155245 crossref_primary_10_1016_j_ejphar_2021_174659 crossref_primary_10_3390_ph14101062 crossref_primary_10_1002_cmdc_201800152 crossref_primary_10_1002_cmdc_201100568 crossref_primary_10_1111_j_1476_5381_2011_01364_x crossref_primary_10_1038_srep22639 crossref_primary_10_1016_j_bcp_2016_11_014 crossref_primary_10_1016_j_bmc_2014_12_034 crossref_primary_10_1111_bph_15573 crossref_primary_10_1073_pnas_1104614108 crossref_primary_10_3389_fmolb_2020_00144 crossref_primary_10_3390_molecules23102616 crossref_primary_10_1021_acs_jmedchem_7b00155 crossref_primary_10_1124_mol_118_115113 crossref_primary_10_1210_me_2011_1197 crossref_primary_10_1016_j_tips_2016_01_010 crossref_primary_10_3390_ph15010012 crossref_primary_10_4155_fmc_2018_0393 crossref_primary_10_3390_ijms20092300 crossref_primary_10_1007_s12311_014_0629_5 crossref_primary_10_1074_jbc_R115_668251 crossref_primary_10_1002_prot_24411 crossref_primary_10_1002_prot_22918 crossref_primary_10_1016_j_tips_2022_06_010 crossref_primary_10_1016_j_bmcl_2019_126644 crossref_primary_10_1038_ncomms14505 crossref_primary_10_1016_j_bbamem_2016_02_037 crossref_primary_10_1016_j_colsurfb_2022_113020 crossref_primary_10_1111_bph_13069 crossref_primary_10_1038_s41467_022_31817_z crossref_primary_10_1021_acs_jmedchem_6b00397 crossref_primary_10_3389_fphar_2018_01202 crossref_primary_10_1042_BST20221316 crossref_primary_10_3389_fphar_2019_00339 crossref_primary_10_1080_17460441_2016_1245289 crossref_primary_10_1111_bph_16172 crossref_primary_10_1021_acs_jcim_6b00499 crossref_primary_10_1016_j_bpj_2015_08_028 crossref_primary_10_1016_j_chemphyslip_2010_12_003 crossref_primary_10_1111_bph_14029 crossref_primary_10_1002_med_21418 crossref_primary_10_1126_science_1215904 crossref_primary_10_1016_j_isci_2025_112706 crossref_primary_10_1073_pnas_1722399115 crossref_primary_10_1016_j_tibs_2019_04_004 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1074/jbc.M109.041590 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1083-351X |
| ExternalDocumentID | 20220143 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: DA003934 – fundername: Intramural NIH HHS – fundername: NIDA NIH HHS grantid: K05 DA021358 – fundername: NIDA NIH HHS grantid: R01 DA003934 – fundername: NIDA NIH HHS grantid: DA021358 |
| GroupedDBID | --- -DZ -ET -~X 0R~ 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 79B 85S AAEDW AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM ADVLN AENEX AEXQZ AFFNX AFOSN AFPKN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CGR CJ0 CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE IH2 KQ8 L7B N9A NPM OK1 P-O P0W P2P R.V RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT W8F WH7 WOQ XSW YQT YSK YWH YZZ ZE2 ~02 ~KM .7T 7X8 AALRI AAYWO ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP |
| ID | FETCH-LOGICAL-c564t-585ec3643d920217c028a6c0043ae50a8c76cbbbb953fa8dfd39c8aaa7cb4a152 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278133400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1083-351X |
| IngestDate | Fri Sep 05 08:54:43 EDT 2025 Thu Apr 03 07:10:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-585ec3643d920217c028a6c0043ae50a8c76cbbbb953fa8dfd39c8aaa7cb4a152 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.jbc.org/article/S0021925819355358/pdf |
| PMID | 20220143 |
| PQID | 733113749 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_733113749 pubmed_primary_20220143 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-06-04 |
| PublicationDateYYYYMMDD | 2010-06-04 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of biological chemistry |
| PublicationTitleAlternate | J Biol Chem |
| PublicationYear | 2010 |
| SSID | ssj0000491 |
| Score | 2.4259133 |
| Snippet | Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 17954 |
| SubjectTerms | Animals Arachidonic Acids - chemistry Biophysics - methods Cannabinoids - chemistry Cattle Computer Simulation Eicosanoids - chemistry Endocannabinoids Glycerides - chemistry Hydrogen Bonding Ions Ligands Lipid Bilayers - chemistry Lipids - chemistry Protein Binding Receptors, G-Protein-Coupled - chemistry Rhodopsin - chemistry Solvents - chemistry |
| Title | A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20220143 https://www.proquest.com/docview/733113749 |
| Volume | 285 |
| WOSCitedRecordID | wos000278133400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAIsHC0XKUSx4QmyFpDscTqioKA606AMqAFDm2g4KKE5oW1H_Pcw6YEAMZMsSxFB9573t-x4fQOWih2BM-I4FIwECBt0jsOxaxE2UlUklXlXRAT_d0PA7CkE3q2JyiDqtsZGIpqGUmzBn5leEWtB3qsuv8nRjSKONcrRk0VlHLASRjIrpo-FMsHMCvXcXXOyZgPWwq-1D36jUWlyPb1KoEBcas3-FlqWaG2__8wB20VeNL3K82xC5aUbqNOn0NtvXbEl_gMuKzPEpvo41Bw_bWQc99PE3zVGJDUfzJlxjALDx54VriOC1TX3BaYK1MWgGfVe0cw8JoDu0Z9LzFZdGHVBORLfKpkhikqcrBqN9Dj8Obh8EdqZkXiPB8d07AhlDCAbAiWc8YLQJQCPeFcRty5Vk8ENQXMVzMcxIeyEQ6TASccypilwMk2EdrOtPqEGG_lyjOKLOVK1xAD0EcCymp50mPBRalXYSb6YxgyMZdwbXKFkX0PaFddFAtSZRXFTiinskPBqR39HfnY7RZOfx9YrknqJXAX61O0br4mKfF7KzcMXAfT0Zf4y_MVA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lipid+pathway+for+ligand+binding+is+necessary+for+a+cannabinoid+G+protein-coupled+receptor&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hurst%2C+Dow+P&rft.au=Grossfield%2C+Alan&rft.au=Lynch%2C+Diane+L&rft.au=Feller%2C+Scott&rft.date=2010-06-04&rft.eissn=1083-351X&rft.volume=285&rft.issue=23&rft.spage=17954&rft_id=info:doi/10.1074%2Fjbc.M109.041590&rft_id=info%3Apmid%2F20220143&rft_id=info%3Apmid%2F20220143&rft.externalDocID=20220143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-351X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-351X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-351X&client=summon |