Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm

The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomimetics (Basel, Switzerland) Ročník 8; číslo 3; s. 313
Hlavní autoři: Alharbi, Amal H., Towfek, S. K., Abdelhamid, Abdelaziz A., Ibrahim, Abdelhameed, Eid, Marwa M., Khafaga, Doaa Sami, Khodadadi, Nima, Abualigah, Laith, Saber, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.07.2023
MDPI
Témata:
ISSN:2313-7673, 2313-7673
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study’s overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.
AbstractList The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study’s overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.
The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, -Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, -Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.
The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.
Audience Academic
Author Alharbi, Amal H.
Ibrahim, Abdelhameed
Eid, Marwa M.
Abdelhamid, Abdelaziz A.
Khafaga, Doaa Sami
Abualigah, Laith
Khodadadi, Nima
Saber, Mohamed
Towfek, S. K.
AuthorAffiliation 16 Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt
13 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
8 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA
11 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
5 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
15 School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt
10 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
AuthorAffiliation_xml – name: 14 School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
– name: 12 MEU Research Unit, Middle East University, Amman 11831, Jordan
– name: 4 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia
– name: 5 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
– name: 10 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
– name: 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– name: 3 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
– name: 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt
– name: 6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
– name: 13 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
– name: 15 School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
– name: 2 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA
– name: 11 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
– name: 16 Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt
– name: 9 Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan
– name: 8 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA
Author_xml – sequence: 1
  givenname: Amal H.
  surname: Alharbi
  fullname: Alharbi, Amal H.
– sequence: 2
  givenname: S. K.
  surname: Towfek
  fullname: Towfek, S. K.
– sequence: 3
  givenname: Abdelaziz A.
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
– sequence: 4
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 5
  givenname: Marwa M.
  surname: Eid
  fullname: Eid, Marwa M.
– sequence: 6
  givenname: Doaa Sami
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
– sequence: 7
  givenname: Nima
  orcidid: 0000-0002-8348-6530
  surname: Khodadadi
  fullname: Khodadadi, Nima
– sequence: 8
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
– sequence: 9
  givenname: Mohamed
  orcidid: 0000-0003-2692-9507
  surname: Saber
  fullname: Saber, Mohamed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37504202$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu2zAQRYUiRZO6-YEuCgHddOOUD1GPVeEkfQRwkY2zJkbkUKYrkQ4pB02_vnScGnFaVFqQGp17NUPd19mR8w6z7C0lZ5w35GNr_WAHHK2KNeGEU_4iO2FpmVZlxY-e7I-z0xhXhBDalKIoyKvsmFeCFIywk-z20kLnfLQx9yb_7t0PvF_7n_mljQgR85toXZcvArhoMORzhOC2FXA6P7cOwn0-03fgFOqkWa8Ts1gGD2N6vl6PdrC_YLTe5bO-88GOy-FN9tJAH_H0cZ1kN18-Ly6-TefXX68uZvOpEmUxTjkDQA2pbTCGIxKqCmoYCN3WKNratEa1habA2lIzQwTyShFKaVVRQQD5JLva-WoPK7kOdkjNSg9WPhR86CSEdHw9Sgq6MVgBbwpVFGXR1kyUmqNCUzY8XZPs085rvWkH1ArdGKA_MD184-xSdv5OUlKTqhQ0OXx4dAj-doNxlIONCvseHPpNlKxOv4aTshEJff8MXflNcOmsElWwhlVN6mpPdZAmsM749GG1NZWzStS1SDNsqbN_UOnWOFiVEmVsqh8I3j2ddD_in8QkgO0AFXyMAc0eoURukyn_TmYS1c9Eyo4PuUjt2P5_0t9ARO0E
CitedBy_id crossref_primary_10_3390_machines12010044
crossref_primary_10_1016_j_bspc_2025_108254
crossref_primary_10_21015_vtse_v11i2_1566
crossref_primary_10_1007_s11831_024_10091_w
crossref_primary_10_1002_ima_23044
crossref_primary_10_1016_j_bspc_2025_108426
crossref_primary_10_1016_j_asoc_2024_112553
crossref_primary_10_1016_j_compeleceng_2024_109536
crossref_primary_10_1016_j_engappai_2025_110257
crossref_primary_10_32628_IJSRST241161119
crossref_primary_10_1109_ACCESS_2024_3370838
crossref_primary_10_1109_ACCESS_2025_3574244
crossref_primary_10_1016_j_knosys_2025_114503
crossref_primary_10_1038_s41598_025_87455_0
crossref_primary_10_1016_j_slast_2025_100336
Cites_doi 10.54216/JAIM.010104
10.1109/JBHI.2022.3168604
10.3390/math10234421
10.54216/JAIM.010103
10.1093/bioinformatics/btz259
10.1016/j.compbiomed.2018.12.007
10.3390/math10162912
10.1007/s00521-019-04051-w
10.3389/fenrg.2023.1172176
10.3390/math10173144
10.1109/ACCESS.2022.3196660
10.1109/ITHERM.2018.8419531
10.1186/s40537-019-0197-0
10.3126/nje.v12i2.45974
10.54216/JAIM.010101
10.3201/eid2704.203569
10.1145/3065386
10.3390/s23041783
10.1016/j.jocm.2020.100221
10.1007/s10916-022-01863-7
10.3390/math10203845
10.1016/j.bjid.2021.101609
10.1007/s11760-022-02155-w
10.3390/diagnostics12112892
10.3390/math10193614
10.1152/ajpheart.00208.2022
10.3390/diagnostics13122038
10.1038/nature21056
10.1109/CAIT56099.2022.10072140
10.1007/s10916-022-01868-2
10.54216/JAIM.010102
10.1016/j.neunet.2023.02.022
10.12968/bjon.2022.31.12.664
10.1007/s11671-008-9128-2
10.1167/tvst.9.2.35
10.3390/v12111257
10.1016/j.compbiomed.2022.105342
10.1007/s10916-023-01928-1
10.1109/ACCESS.2022.3190508
10.1017/ice.2019.60
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
10.1007/978-3-030-66840-2_109
10.3390/jpm12060988
10.3390/pr11051502
10.1016/j.eswa.2022.119483
10.1016/j.cmpb.2022.106624
10.1109/TMI.2016.2528162
10.3390/ijerph20054422
10.3389/fpsyt.2022.1016676
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics8030313
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333
PMC10807651
A758858259
37504202
10_3390_biomimetics8030313
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Princess Nourah bint Abdulrahman University
  grantid: PNURSP2023R 120
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c564t-32aaeda000aff3ee01c41f2a5db8e5b8fbfcb4d1a2b6d2f05e37c011177150ae3
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Fri Oct 03 12:35:59 EDT 2025
Tue Nov 04 02:06:08 EST 2025
Fri Sep 05 08:04:08 EDT 2025
Fri Jul 25 11:40:39 EDT 2025
Tue Nov 11 10:17:33 EST 2025
Sat Nov 29 10:58:30 EST 2025
Mon Jul 21 05:39:39 EDT 2025
Tue Nov 18 22:13:43 EST 2025
Sat Nov 29 07:17:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
monkeypox detection
transfer learning
biological mechanism
dipper throated optimization
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-32aaeda000aff3ee01c41f2a5db8e5b8fbfcb4d1a2b6d2f05e37c011177150ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9843-6392
0000-0002-8348-6530
0000-0001-7080-1979
0000-0002-8352-6731
0000-0003-2692-9507
0000-0002-2203-4549
OpenAccessLink https://doaj.org/article/1ad9fe7a394c4464b8256d3ecef69333
PMID 37504202
PQID 2842927969
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10807651
proquest_miscellaneous_2854430695
proquest_journals_2842927969
gale_infotracmisc_A758858259
gale_infotracacademiconefile_A758858259
pubmed_primary_37504202
crossref_primary_10_3390_biomimetics8030313
crossref_citationtrail_10_3390_biomimetics8030313
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Ahsan (ref_41) 2023; 216
Krizhevsky (ref_48) 2017; 60
Shorten (ref_28) 2019; 6
Alsayadi (ref_38) 2022; 1
ref_56
ref_11
Sharif (ref_6) 2022; 26
Takieldeen (ref_59) 2022; 72
ref_52
Rogers (ref_7) 2008; 3
ref_51
Abotaleb (ref_39) 2022; 1
Naemi (ref_57) 2023; 23
Shin (ref_16) 2016; 35
ref_19
Alhussan (ref_29) 2023; 11
Esteva (ref_46) 2017; 542
ref_18
ref_17
Sitaula (ref_8) 2022; 46
Duan (ref_22) 2022; 323
Shams (ref_37) 2022; 1
Alhussan (ref_33) 2022; 10
Le (ref_25) 2020; 9
Nguyen (ref_14) 2021; 27
Burlina (ref_15) 2019; 105
ref_24
ref_21
ref_20
Perkins (ref_23) 2019; 40
Vellido (ref_45) 2020; 32
Saber (ref_40) 2022; 1
Lin (ref_9) 2022; 13
Bloice (ref_44) 2019; 35
Bala (ref_53) 2023; 161
Vega (ref_27) 2023; 47
ref_34
Hillel (ref_54) 2021; 38
ref_32
Hossain (ref_12) 2022; 215
ref_31
ref_30
Khafaga (ref_3) 2022; 10
Alrusaini (ref_35) 2023; 14
Xu (ref_60) 2022; 144
Mohebbanaaz (ref_26) 2022; 16
Hill (ref_36) 2022; 31
Breman (ref_10) 1980; 58
ref_47
Takieldeen (ref_58) 2022; 73
Sahin (ref_13) 2022; 46
ref_43
ref_42
ref_1
ref_49
Cassenote (ref_55) 2021; 25
Banerjee (ref_2) 2022; 12
ref_5
ref_4
References_xml – volume: 1
  start-page: 35
  year: 2022
  ident: ref_39
  article-title: New Approach of Estimating Sarcasm based on the percentage of happiness of facial Expression using Fuzzy Inference System
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010104
– ident: ref_49
– volume: 26
  start-page: 4826
  year: 2022
  ident: ref_6
  article-title: Deep Perceptual Enhancement for Medical Image Analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3168604
– volume: 73
  start-page: 749
  year: 2022
  ident: ref_58
  article-title: Meta-heuristics for Feature Selection and Classification in Diagnostic Breast cancer
  publication-title: Comput. Mater. Contin.
– ident: ref_18
  doi: 10.3390/math10234421
– volume: 1
  start-page: 27
  year: 2022
  ident: ref_38
  article-title: Improving the Regression of Communities and Crime Using Ensemble of Machine Learning Models
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010103
– volume: 35
  start-page: 4522
  year: 2019
  ident: ref_44
  article-title: Biomedical image augmentation using Augmentor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz259
– volume: 105
  start-page: 151
  year: 2019
  ident: ref_15
  article-title: Automated detection of erythema migrans and other confounding skin lesions via deep learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.007
– ident: ref_11
  doi: 10.3390/math10162912
– volume: 32
  start-page: 18069
  year: 2020
  ident: ref_45
  article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04051-w
– ident: ref_1
– volume: 11
  start-page: 1172176
  year: 2023
  ident: ref_29
  article-title: Wind speed forecasting using optimized bidirectional LSTM based on dipper throated and genetic optimization algorithms
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1172176
– ident: ref_32
  doi: 10.3390/math10173144
– volume: 10
  start-page: 84188
  year: 2022
  ident: ref_33
  article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196660
– ident: ref_34
  doi: 10.1109/ITHERM.2018.8419531
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_28
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 12
  start-page: 1179
  year: 2022
  ident: ref_2
  article-title: Global re-emergence of human monkeypox: Population on high alert
  publication-title: Nepal J. Epidemiol.
  doi: 10.3126/nje.v12i2.45974
– volume: 1
  start-page: 8
  year: 2022
  ident: ref_40
  article-title: Removing Powerline Interference from EEG Signal using Optimized FIR Filters
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010101
– ident: ref_52
– volume: 27
  start-page: 1007
  year: 2021
  ident: ref_14
  article-title: Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017–2020
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2704.203569
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_48
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 23
  start-page: 1471
  year: 2023
  ident: ref_57
  article-title: Monkeypox detection using deep neural networks
  publication-title: BMC Infect. Dis.
– ident: ref_47
  doi: 10.3390/s23041783
– volume: 38
  start-page: 100221
  year: 2021
  ident: ref_54
  article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2020.100221
– volume: 58
  start-page: 165
  year: 1980
  ident: ref_10
  article-title: Human monkeypox, 1970–1979
  publication-title: Bull. World Health Organ.
– volume: 46
  start-page: 79
  year: 2022
  ident: ref_13
  article-title: Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-022-01863-7
– ident: ref_17
  doi: 10.3390/math10203845
– volume: 25
  start-page: 101609
  year: 2021
  ident: ref_55
  article-title: COVID-19-related hospital cost-outcome analysis: The impact of clinical and demographic factors
  publication-title: Braz. J. Infect. Dis.
  doi: 10.1016/j.bjid.2021.101609
– volume: 16
  start-page: 1945
  year: 2022
  ident: ref_26
  article-title: A new transfer learning approach to detect cardiac arrhythmia from ECG signals
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-022-02155-w
– ident: ref_24
– ident: ref_21
  doi: 10.3390/diagnostics12112892
– ident: ref_31
  doi: 10.3390/math10193614
– volume: 323
  start-page: H628
  year: 2022
  ident: ref_22
  article-title: Fully automated mouse echocardiography analysis using deep convolutional neural networks
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00208.2022
– ident: ref_30
  doi: 10.3390/diagnostics13122038
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_46
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref_4
  doi: 10.1109/CAIT56099.2022.10072140
– volume: 46
  start-page: 78
  year: 2022
  ident: ref_8
  article-title: Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-022-01868-2
– volume: 1
  start-page: 20
  year: 2022
  ident: ref_37
  article-title: Hybrid Neural Networks in Generic Biometric System: A Survey
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010102
– volume: 161
  start-page: 757
  year: 2023
  ident: ref_53
  article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.02.022
– volume: 31
  start-page: 664
  year: 2022
  ident: ref_36
  article-title: The 2022 multinational monkeypox outbreak in non-endemic countries
  publication-title: Br. J. Nurs.
  doi: 10.12968/bjon.2022.31.12.664
– volume: 3
  start-page: 129
  year: 2008
  ident: ref_7
  article-title: A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-008-9128-2
– volume: 9
  start-page: 35
  year: 2020
  ident: ref_25
  article-title: Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.35
– ident: ref_5
  doi: 10.3390/v12111257
– volume: 14
  start-page: 637
  year: 2023
  ident: ref_35
  article-title: Deep Learning Models for the Detection of Monkeypox Skin Lesion on Digital Skin Images
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 144
  start-page: 105342
  year: 2022
  ident: ref_60
  article-title: Forecasting COVID-19 new cases using deep learning methods
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105342
– volume: 47
  start-page: 37
  year: 2023
  ident: ref_27
  article-title: Analysis: Flawed Datasets of Monkeypox Skin Images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-023-01928-1
– volume: 10
  start-page: 74449
  year: 2022
  ident: ref_3
  article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190508
– volume: 40
  start-page: 621
  year: 2019
  ident: ref_23
  article-title: Investigation of healthcare infection risks from water-related organisms: Summary of CDC consultations, 2014–2017
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2019.60
– ident: ref_51
  doi: 10.1109/CVPR.2015.7298594
– volume: 72
  start-page: 1465
  year: 2022
  ident: ref_59
  article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection
  publication-title: Comput. Mater. Contin.
– ident: ref_50
  doi: 10.1109/CVPR.2016.90
– ident: ref_19
  doi: 10.1007/978-3-030-66840-2_109
– ident: ref_56
  doi: 10.3390/jpm12060988
– ident: ref_20
  doi: 10.3390/pr11051502
– volume: 216
  start-page: 119483
  year: 2023
  ident: ref_41
  article-title: Deep transfer learning approaches for Monkeypox disease diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119483
– volume: 215
  start-page: 106624
  year: 2022
  ident: ref_12
  article-title: Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2022.106624
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_16
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: ref_43
– ident: ref_42
  doi: 10.3390/ijerph20054422
– volume: 13
  start-page: 1016676
  year: 2022
  ident: ref_9
  article-title: A deep learning-based model for detecting depression in senior population
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2022.1016676
SSID ssj0001965440
Score 2.3835778
Snippet The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 313
SubjectTerms Accuracy
Algorithms
biological mechanism
Classification
COVID-19
Datasets
Deep learning
Diagnosis
dipper throated optimization
Epidemics
feature selection
Human monkeypox
Lyme disease
Medical imaging
Medical research
monkeypox detection
Mpox
Neural networks
Pandemics
Skin diseases
Skin lesions
Smallpox
Transfer learning
Vaccines
Viral infections
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCq1ACBRkJwQFFTfxI4hPaUioOqPRQpN4i27F3V-om6e4Wwb9nxvFuG1XqhWtsR3Y8nofzzTeEfNBCOekLl_qM6VRYVaRGMZNa9J2tFMabsNM_ypOT6vxcncYLt1WEVW50YlDUTWfxjvwA1ChTrFSF-tJfplg1Cv-uxhIa98kDZElgAbp3en3HogopRDbkynCI7g8wp32-wPTAVQXizXM-skeBtv-2cr5hncbIyRum6PjJ_y7iKXkcnVA6GaTmGbnn2udkd9JCAL74Sz_SAAsN9-275PJoAOPNV7TzFFQAnPq--0OPhj87NGAOaDB53i1p5GudUt029DAk-9JJxBnAmL6HPmezZQcubkN_gr5axERQOrmYwlTXs8UL8uv429nX72ms05BaWYh1ypnWrtHwwbX33LkstyL3TMvGVE6ayhtvjWhyzUzRMJ9Jx0uLNe7LEtxR7fhLstN2rXtFKDhnSjsLFrThopLKWJtZDk6JzcGPMToh-Wa3ahtJzLGWxkUNwQzucH17hxPyeTumHyg87ux9iEKw7Yn02-FBt5zW8TTXuW6Ud6XmSliIp4WBOLtouLPOF4pzeMknFKEalQRMz-qY6wCLRLqtegJRWiVhkErI_qgnHG47bt4IUh2Vy6q-lqKEvN8240gEzLWuu8I-SGyYFUomZG-Q2e2SOFL6s4wlpBpJ82jN45Z2PgvU44hILQuZv757Xm_II3g_H2DN-2Rnvbxyb8lD-3s9Xy3fhUP6D5XLS7U
  priority: 102
  providerName: ProQuest
Title Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/37504202
https://www.proquest.com/docview/2842927969
https://www.proquest.com/docview/2854430695
https://pubmed.ncbi.nlm.nih.gov/PMC10807651
https://doaj.org/article/1ad9fe7a394c4464b8256d3ecef69333
Volume 8
WOSCitedRecordID wos001038046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOCCCgUaWlZGQnBAUZPYTuJjlrYCCZYIFWk5RbZjd4O6yZLdIvj3jO10tVEluHC1x5I_ZjwzyZtnhF4JyjUzqQ5NlIiQKp6GkicyVDZ2VoxKI91Jf8xms3w-5-XOU18WE-bpgf3GncSi5kZngnCqIHWhElKatCZaaZNCMu54PqOM7yRT3z3pC6M08lUyBPL6E1vN3ixtYeA6B8UmMRl5IkfYf_ta3vFLY8zkjhM630cPh-gRF37Wj9Ad3T5GB0ULmfPyN36NHZ7TfSg_QD9OPYquWePOYLBdMNdV9wuf-l8y2IEFsPNVRvd4IFq9xKKt8dRV6eJiAAjAmNUKZC4WfQexaY0_w0WzHCo4cXF12fXNZrF8gr6en128ex8ODyyEiqV0E5JECF0L2C9hDNE6ihWNTSJYLXPNZG6kUZLWsUhkWicmYppkyj5On2UQRwpNnqK9tmv1IcIQVXGhFbi-mtCccalUpAhEEyqGAESKAMU3m12pgX3cPoJxVUEWYg-oun1AAXq7HbPy3Bt_lZ7aM9xKWt5s1wDaVA3aVP1LmwL0xmpAZa0bpqfEUKQAi7Q8WVUB6VXOYBAP0PFIEqxSjbtvdKgaboV1BaFAwpOMp9D9ctttR1qkW6u7aytjGQmjlLMAPfMqt10SsVz8SZQEKB8p42jN4562WTjOcAslzVIWP_8fu3SEHsAsiEctH6O9TX-tX6D76uemWfcTdDeb5xN0b3o2K79MnF1OLKS2hLbyw6fy2x8DpELS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8cBuXwgAjcXlA0RLbufgBoY4yrVpX-jCk8RRsx24rrUnXdsD-FL-R4yTtFk3a2x54rY_TODnnO5_jcwF4K7kwoY2MZ30qPa5F5ClBlacdd9YhV1aVb7ofDwbJ8bEYbsDfVS6MC6tcYWIJ1Fmh3TfyHYRRKmgsIvF5duq5rlHudHXVQqNSiwNz_hu3bItPvS6-33eU7n09-rLv1V0FPB1GfOkxKqXJJEKBtJYZ4weaB5bKMFOJCVVildWKZ4GkKsqo9UPDYu06sscxkidpGF73Fmxyp-wt2Bz2Doc_Lr7qiCjk3K-ycxgT_o7Lop9MXULiIkGDYgFreMCyUcBVd3DJHzZjNS85v737_9tjewD3appNOpVdPIQNkz-CrU4ul8X0nLwnZeBreaKwBafdKtxwsiCFJQhyiGuz4g_pVmdXpIyqIKVTt2ZO6oq0IyLzjOyW6cykU0dS4JzZDGWOxvMCSXxGviEiT-tUV9I5GeGjWY6nj-H7jSz-CbTyIjfPgCD9FNJo5AgZ40kolNa-Zki7dIBMTck2BCvtSHVdpt11CzlJcbvmNCq9qlFt-LieM6uKlFwrveuUbi3pCoyXPxTzUVrjVRrITFgTSya45jziKkFunDGjjY0EY3iRD05lUweDeHta1tkcuEhXUCzt4D40CXGSaMN2QxLhSzeHV4qb1vC5SC-0tg1v1sNupgsJzE1x5mRc6UY_EmEbnlY2sl4Sc00LqE_bkDSsp7Hm5kg-GZfF1V3MbRyFwfPr7-s13Nk_Ouyn_d7g4AXcxf9iVRD3NrSW8zPzEm7rX8vJYv6qhggCP2_avP4BIuWtHg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMojUGCReByQFXt3_dgDQikhImoJORSpnMzuejeJ1NhpkgL9a_w6Zm0nrVWptx64Zmcdrz3zzaz3mxmA15ILE9rIeNan0uNaRJ4SVHnaxc465Mqq8k0fxMNhcnQkRlvwd50L42iVa0wsgTortPtG3kEYpYLGIhIdW9MiRr3-x_mJ5zpIuZPWdTuNSkX2zdlv3L4tPwx6-K7fUNr_fPjpi1d3GPB0GPGVx6iUJpMIC9JaZowfaB5YKsNMJSZUiVVWK54Fkqooo9YPDYu1684exxhIScPwujdgG0NyTluwPRp8Hf04_8IjopBzv8rUYUz4HZdRP5255MRlgsbFAtbwhmXTgMuu4YJvbPI2LzjC_t3_-RHegzt1-E26lb3chy2TP4Cdbi5XxeyMvCUlIbY8adiBk15FQ5wuSWEJgh_i3bz4Q3rVmRYp2RakdPbWLEhdqXZMZJ6RvTLNmXRrhgXOmc9R5nCyKDC4z8g3ROpZnQJLusdjfDSryewhfL-WxT-CVl7k5gkQDEuFNBpjh4zxJBRKa18zDMd0gBGckm0I1pqS6rp8u-sicpziNs5pV3pZu9rwfjNnXhUvuVJ6zyngRtIVHi9_KBbjtMaxNJCZsCaWTHDNecRVgjFzxow2NhKM4UXeOfVNHTzi7WlZZ3ngIl2hsbSL-9MkxEmiDbsNSYQ13RxeK3Faw-oyPdfgNrzaDLuZjiqYm-LUybiSjn4kwjY8ruxlsyTmmhlQn7YhaVhSY83NkXw6KYuuOy5uHIXB06vv6yXcQptKDwbD_WdwG_-KVdzuXWitFqfmOdzUv1bT5eJFjRYEfl63df0Djt613g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Monkeypox+Disease+Using+Transfer+Learning+and+Binary+Advanced+Dipper+Throated+Optimization+Algorithm&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Amal+H.+Alharbi&rft.au=S.+K.+Towfek&rft.au=Abdelaziz+A.+Abdelhamid&rft.au=Abdelhameed+Ibrahim&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=3&rft.spage=313&rft_id=info:doi/10.3390%2Fbiomimetics8030313&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon