Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm
The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial s...
Uloženo v:
| Vydáno v: | Biomimetics (Basel, Switzerland) Ročník 8; číslo 3; s. 313 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.07.2023
MDPI |
| Témata: | |
| ISSN: | 2313-7673, 2313-7673 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study’s overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection. |
|---|---|
| AbstractList | The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study’s overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection. The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, -Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, -Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection. The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection. |
| Audience | Academic |
| Author | Alharbi, Amal H. Ibrahim, Abdelhameed Eid, Marwa M. Abdelhamid, Abdelaziz A. Khafaga, Doaa Sami Abualigah, Laith Khodadadi, Nima Saber, Mohamed Towfek, S. K. |
| AuthorAffiliation | 16 Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt 13 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan 8 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA 11 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan 5 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt 15 School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt 10 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman |
| AuthorAffiliation_xml | – name: 14 School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia – name: 12 MEU Research Unit, Middle East University, Amman 11831, Jordan – name: 4 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia – name: 5 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt – name: 10 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon – name: 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – name: 3 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt – name: 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt – name: 6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt – name: 13 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan – name: 15 School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia – name: 2 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA – name: 11 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan – name: 16 Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Mansoura P.O. Box 11152, Egypt – name: 9 Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan – name: 8 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA |
| Author_xml | – sequence: 1 givenname: Amal H. surname: Alharbi fullname: Alharbi, Amal H. – sequence: 2 givenname: S. K. surname: Towfek fullname: Towfek, S. K. – sequence: 3 givenname: Abdelaziz A. orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz A. – sequence: 4 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 5 givenname: Marwa M. surname: Eid fullname: Eid, Marwa M. – sequence: 6 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami – sequence: 7 givenname: Nima orcidid: 0000-0002-8348-6530 surname: Khodadadi fullname: Khodadadi, Nima – sequence: 8 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith – sequence: 9 givenname: Mohamed orcidid: 0000-0003-2692-9507 surname: Saber fullname: Saber, Mohamed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37504202$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu2zAQRYUiRZO6-YEuCgHddOOUD1GPVeEkfQRwkY2zJkbkUKYrkQ4pB02_vnScGnFaVFqQGp17NUPd19mR8w6z7C0lZ5w35GNr_WAHHK2KNeGEU_4iO2FpmVZlxY-e7I-z0xhXhBDalKIoyKvsmFeCFIywk-z20kLnfLQx9yb_7t0PvF_7n_mljQgR85toXZcvArhoMORzhOC2FXA6P7cOwn0-03fgFOqkWa8Ts1gGD2N6vl6PdrC_YLTe5bO-88GOy-FN9tJAH_H0cZ1kN18-Ly6-TefXX68uZvOpEmUxTjkDQA2pbTCGIxKqCmoYCN3WKNratEa1habA2lIzQwTyShFKaVVRQQD5JLva-WoPK7kOdkjNSg9WPhR86CSEdHw9Sgq6MVgBbwpVFGXR1kyUmqNCUzY8XZPs085rvWkH1ArdGKA_MD184-xSdv5OUlKTqhQ0OXx4dAj-doNxlIONCvseHPpNlKxOv4aTshEJff8MXflNcOmsElWwhlVN6mpPdZAmsM749GG1NZWzStS1SDNsqbN_UOnWOFiVEmVsqh8I3j2ddD_in8QkgO0AFXyMAc0eoURukyn_TmYS1c9Eyo4PuUjt2P5_0t9ARO0E |
| CitedBy_id | crossref_primary_10_3390_machines12010044 crossref_primary_10_1016_j_bspc_2025_108254 crossref_primary_10_21015_vtse_v11i2_1566 crossref_primary_10_1007_s11831_024_10091_w crossref_primary_10_1002_ima_23044 crossref_primary_10_1016_j_bspc_2025_108426 crossref_primary_10_1016_j_asoc_2024_112553 crossref_primary_10_1016_j_compeleceng_2024_109536 crossref_primary_10_1016_j_engappai_2025_110257 crossref_primary_10_32628_IJSRST241161119 crossref_primary_10_1109_ACCESS_2024_3370838 crossref_primary_10_1109_ACCESS_2025_3574244 crossref_primary_10_1016_j_knosys_2025_114503 crossref_primary_10_1038_s41598_025_87455_0 crossref_primary_10_1016_j_slast_2025_100336 |
| Cites_doi | 10.54216/JAIM.010104 10.1109/JBHI.2022.3168604 10.3390/math10234421 10.54216/JAIM.010103 10.1093/bioinformatics/btz259 10.1016/j.compbiomed.2018.12.007 10.3390/math10162912 10.1007/s00521-019-04051-w 10.3389/fenrg.2023.1172176 10.3390/math10173144 10.1109/ACCESS.2022.3196660 10.1109/ITHERM.2018.8419531 10.1186/s40537-019-0197-0 10.3126/nje.v12i2.45974 10.54216/JAIM.010101 10.3201/eid2704.203569 10.1145/3065386 10.3390/s23041783 10.1016/j.jocm.2020.100221 10.1007/s10916-022-01863-7 10.3390/math10203845 10.1016/j.bjid.2021.101609 10.1007/s11760-022-02155-w 10.3390/diagnostics12112892 10.3390/math10193614 10.1152/ajpheart.00208.2022 10.3390/diagnostics13122038 10.1038/nature21056 10.1109/CAIT56099.2022.10072140 10.1007/s10916-022-01868-2 10.54216/JAIM.010102 10.1016/j.neunet.2023.02.022 10.12968/bjon.2022.31.12.664 10.1007/s11671-008-9128-2 10.1167/tvst.9.2.35 10.3390/v12111257 10.1016/j.compbiomed.2022.105342 10.1007/s10916-023-01928-1 10.1109/ACCESS.2022.3190508 10.1017/ice.2019.60 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.90 10.1007/978-3-030-66840-2_109 10.3390/jpm12060988 10.3390/pr11051502 10.1016/j.eswa.2022.119483 10.1016/j.cmpb.2022.106624 10.1109/TMI.2016.2528162 10.3390/ijerph20054422 10.3389/fpsyt.2022.1016676 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/biomimetics8030313 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333 PMC10807651 A758858259 37504202 10_3390_biomimetics8030313 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University grantid: PNURSP2023R 120 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c564t-32aaeda000aff3ee01c41f2a5db8e5b8fbfcb4d1a2b6d2f05e37c011177150ae3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:35:59 EDT 2025 Tue Nov 04 02:06:08 EST 2025 Fri Sep 05 08:04:08 EDT 2025 Fri Jul 25 11:40:39 EDT 2025 Tue Nov 11 10:17:33 EST 2025 Sat Nov 29 10:58:30 EST 2025 Mon Jul 21 05:39:39 EDT 2025 Tue Nov 18 22:13:43 EST 2025 Sat Nov 29 07:17:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | deep learning monkeypox detection transfer learning biological mechanism dipper throated optimization feature selection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-32aaeda000aff3ee01c41f2a5db8e5b8fbfcb4d1a2b6d2f05e37c011177150ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9843-6392 0000-0002-8348-6530 0000-0001-7080-1979 0000-0002-8352-6731 0000-0003-2692-9507 0000-0002-2203-4549 |
| OpenAccessLink | https://doaj.org/article/1ad9fe7a394c4464b8256d3ecef69333 |
| PMID | 37504202 |
| PQID | 2842927969 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10807651 proquest_miscellaneous_2854430695 proquest_journals_2842927969 gale_infotracmisc_A758858259 gale_infotracacademiconefile_A758858259 pubmed_primary_37504202 crossref_primary_10_3390_biomimetics8030313 crossref_citationtrail_10_3390_biomimetics8030313 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Ahsan (ref_41) 2023; 216 Krizhevsky (ref_48) 2017; 60 Shorten (ref_28) 2019; 6 Alsayadi (ref_38) 2022; 1 ref_56 ref_11 Sharif (ref_6) 2022; 26 Takieldeen (ref_59) 2022; 72 ref_52 Rogers (ref_7) 2008; 3 ref_51 Abotaleb (ref_39) 2022; 1 Naemi (ref_57) 2023; 23 Shin (ref_16) 2016; 35 ref_19 Alhussan (ref_29) 2023; 11 Esteva (ref_46) 2017; 542 ref_18 ref_17 Sitaula (ref_8) 2022; 46 Duan (ref_22) 2022; 323 Shams (ref_37) 2022; 1 Alhussan (ref_33) 2022; 10 Le (ref_25) 2020; 9 Nguyen (ref_14) 2021; 27 Burlina (ref_15) 2019; 105 ref_24 ref_21 ref_20 Perkins (ref_23) 2019; 40 Vellido (ref_45) 2020; 32 Saber (ref_40) 2022; 1 Lin (ref_9) 2022; 13 Bloice (ref_44) 2019; 35 Bala (ref_53) 2023; 161 Vega (ref_27) 2023; 47 ref_34 Hillel (ref_54) 2021; 38 ref_32 Hossain (ref_12) 2022; 215 ref_31 ref_30 Khafaga (ref_3) 2022; 10 Alrusaini (ref_35) 2023; 14 Xu (ref_60) 2022; 144 Mohebbanaaz (ref_26) 2022; 16 Hill (ref_36) 2022; 31 Breman (ref_10) 1980; 58 ref_47 Takieldeen (ref_58) 2022; 73 Sahin (ref_13) 2022; 46 ref_43 ref_42 ref_1 ref_49 Cassenote (ref_55) 2021; 25 Banerjee (ref_2) 2022; 12 ref_5 ref_4 |
| References_xml | – volume: 1 start-page: 35 year: 2022 ident: ref_39 article-title: New Approach of Estimating Sarcasm based on the percentage of happiness of facial Expression using Fuzzy Inference System publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010104 – ident: ref_49 – volume: 26 start-page: 4826 year: 2022 ident: ref_6 article-title: Deep Perceptual Enhancement for Medical Image Analysis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3168604 – volume: 73 start-page: 749 year: 2022 ident: ref_58 article-title: Meta-heuristics for Feature Selection and Classification in Diagnostic Breast cancer publication-title: Comput. Mater. Contin. – ident: ref_18 doi: 10.3390/math10234421 – volume: 1 start-page: 27 year: 2022 ident: ref_38 article-title: Improving the Regression of Communities and Crime Using Ensemble of Machine Learning Models publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010103 – volume: 35 start-page: 4522 year: 2019 ident: ref_44 article-title: Biomedical image augmentation using Augmentor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz259 – volume: 105 start-page: 151 year: 2019 ident: ref_15 article-title: Automated detection of erythema migrans and other confounding skin lesions via deep learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.12.007 – ident: ref_11 doi: 10.3390/math10162912 – volume: 32 start-page: 18069 year: 2020 ident: ref_45 article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04051-w – ident: ref_1 – volume: 11 start-page: 1172176 year: 2023 ident: ref_29 article-title: Wind speed forecasting using optimized bidirectional LSTM based on dipper throated and genetic optimization algorithms publication-title: Front. Energy Res. doi: 10.3389/fenrg.2023.1172176 – ident: ref_32 doi: 10.3390/math10173144 – volume: 10 start-page: 84188 year: 2022 ident: ref_33 article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196660 – ident: ref_34 doi: 10.1109/ITHERM.2018.8419531 – volume: 6 start-page: 60 year: 2019 ident: ref_28 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 12 start-page: 1179 year: 2022 ident: ref_2 article-title: Global re-emergence of human monkeypox: Population on high alert publication-title: Nepal J. Epidemiol. doi: 10.3126/nje.v12i2.45974 – volume: 1 start-page: 8 year: 2022 ident: ref_40 article-title: Removing Powerline Interference from EEG Signal using Optimized FIR Filters publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010101 – ident: ref_52 – volume: 27 start-page: 1007 year: 2021 ident: ref_14 article-title: Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017–2020 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2704.203569 – volume: 60 start-page: 84 year: 2017 ident: ref_48 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 23 start-page: 1471 year: 2023 ident: ref_57 article-title: Monkeypox detection using deep neural networks publication-title: BMC Infect. Dis. – ident: ref_47 doi: 10.3390/s23041783 – volume: 38 start-page: 100221 year: 2021 ident: ref_54 article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice publication-title: J. Choice Model. doi: 10.1016/j.jocm.2020.100221 – volume: 58 start-page: 165 year: 1980 ident: ref_10 article-title: Human monkeypox, 1970–1979 publication-title: Bull. World Health Organ. – volume: 46 start-page: 79 year: 2022 ident: ref_13 article-title: Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application publication-title: J. Med. Syst. doi: 10.1007/s10916-022-01863-7 – ident: ref_17 doi: 10.3390/math10203845 – volume: 25 start-page: 101609 year: 2021 ident: ref_55 article-title: COVID-19-related hospital cost-outcome analysis: The impact of clinical and demographic factors publication-title: Braz. J. Infect. Dis. doi: 10.1016/j.bjid.2021.101609 – volume: 16 start-page: 1945 year: 2022 ident: ref_26 article-title: A new transfer learning approach to detect cardiac arrhythmia from ECG signals publication-title: Signal Image Video Process. doi: 10.1007/s11760-022-02155-w – ident: ref_24 – ident: ref_21 doi: 10.3390/diagnostics12112892 – ident: ref_31 doi: 10.3390/math10193614 – volume: 323 start-page: H628 year: 2022 ident: ref_22 article-title: Fully automated mouse echocardiography analysis using deep convolutional neural networks publication-title: Am. J. Physiol.-Heart Circ. Physiol. doi: 10.1152/ajpheart.00208.2022 – ident: ref_30 doi: 10.3390/diagnostics13122038 – volume: 542 start-page: 115 year: 2017 ident: ref_46 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref_4 doi: 10.1109/CAIT56099.2022.10072140 – volume: 46 start-page: 78 year: 2022 ident: ref_8 article-title: Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches publication-title: J. Med. Syst. doi: 10.1007/s10916-022-01868-2 – volume: 1 start-page: 20 year: 2022 ident: ref_37 article-title: Hybrid Neural Networks in Generic Biometric System: A Survey publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010102 – volume: 161 start-page: 757 year: 2023 ident: ref_53 article-title: MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.02.022 – volume: 31 start-page: 664 year: 2022 ident: ref_36 article-title: The 2022 multinational monkeypox outbreak in non-endemic countries publication-title: Br. J. Nurs. doi: 10.12968/bjon.2022.31.12.664 – volume: 3 start-page: 129 year: 2008 ident: ref_7 article-title: A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-008-9128-2 – volume: 9 start-page: 35 year: 2020 ident: ref_25 article-title: Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.35 – ident: ref_5 doi: 10.3390/v12111257 – volume: 14 start-page: 637 year: 2023 ident: ref_35 article-title: Deep Learning Models for the Detection of Monkeypox Skin Lesion on Digital Skin Images publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 144 start-page: 105342 year: 2022 ident: ref_60 article-title: Forecasting COVID-19 new cases using deep learning methods publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105342 – volume: 47 start-page: 37 year: 2023 ident: ref_27 article-title: Analysis: Flawed Datasets of Monkeypox Skin Images publication-title: J. Med. Syst. doi: 10.1007/s10916-023-01928-1 – volume: 10 start-page: 74449 year: 2022 ident: ref_3 article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190508 – volume: 40 start-page: 621 year: 2019 ident: ref_23 article-title: Investigation of healthcare infection risks from water-related organisms: Summary of CDC consultations, 2014–2017 publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2019.60 – ident: ref_51 doi: 10.1109/CVPR.2015.7298594 – volume: 72 start-page: 1465 year: 2022 ident: ref_59 article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection publication-title: Comput. Mater. Contin. – ident: ref_50 doi: 10.1109/CVPR.2016.90 – ident: ref_19 doi: 10.1007/978-3-030-66840-2_109 – ident: ref_56 doi: 10.3390/jpm12060988 – ident: ref_20 doi: 10.3390/pr11051502 – volume: 216 start-page: 119483 year: 2023 ident: ref_41 article-title: Deep transfer learning approaches for Monkeypox disease diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119483 – volume: 215 start-page: 106624 year: 2022 ident: ref_12 article-title: Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2022.106624 – volume: 35 start-page: 1285 year: 2016 ident: ref_16 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: ref_43 – ident: ref_42 doi: 10.3390/ijerph20054422 – volume: 13 start-page: 1016676 year: 2022 ident: ref_9 article-title: A deep learning-based model for detecting depression in senior population publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2022.1016676 |
| SSID | ssj0001965440 |
| Score | 2.3835778 |
| Snippet | The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 313 |
| SubjectTerms | Accuracy Algorithms biological mechanism Classification COVID-19 Datasets Deep learning Diagnosis dipper throated optimization Epidemics feature selection Human monkeypox Lyme disease Medical imaging Medical research monkeypox detection Mpox Neural networks Pandemics Skin diseases Skin lesions Smallpox Transfer learning Vaccines Viral infections |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCq1ACBRkJwQFFTfxI4hPaUioOqPRQpN4i27F3V-om6e4Wwb9nxvFuG1XqhWtsR3Y8nofzzTeEfNBCOekLl_qM6VRYVaRGMZNa9J2tFMabsNM_ypOT6vxcncYLt1WEVW50YlDUTWfxjvwA1ChTrFSF-tJfplg1Cv-uxhIa98kDZElgAbp3en3HogopRDbkynCI7g8wp32-wPTAVQXizXM-skeBtv-2cr5hncbIyRum6PjJ_y7iKXkcnVA6GaTmGbnn2udkd9JCAL74Sz_SAAsN9-275PJoAOPNV7TzFFQAnPq--0OPhj87NGAOaDB53i1p5GudUt029DAk-9JJxBnAmL6HPmezZQcubkN_gr5axERQOrmYwlTXs8UL8uv429nX72ms05BaWYh1ypnWrtHwwbX33LkstyL3TMvGVE6ayhtvjWhyzUzRMJ9Jx0uLNe7LEtxR7fhLstN2rXtFKDhnSjsLFrThopLKWJtZDk6JzcGPMToh-Wa3ahtJzLGWxkUNwQzucH17hxPyeTumHyg87ux9iEKw7Yn02-FBt5zW8TTXuW6Ud6XmSliIp4WBOLtouLPOF4pzeMknFKEalQRMz-qY6wCLRLqtegJRWiVhkErI_qgnHG47bt4IUh2Vy6q-lqKEvN8240gEzLWuu8I-SGyYFUomZG-Q2e2SOFL6s4wlpBpJ82jN45Z2PgvU44hILQuZv757Xm_II3g_H2DN-2Rnvbxyb8lD-3s9Xy3fhUP6D5XLS7U priority: 102 providerName: ProQuest |
| Title | Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37504202 https://www.proquest.com/docview/2842927969 https://www.proquest.com/docview/2854430695 https://pubmed.ncbi.nlm.nih.gov/PMC10807651 https://doaj.org/article/1ad9fe7a394c4464b8256d3ecef69333 |
| Volume | 8 |
| WOSCitedRecordID | wos001038046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOCCCgUaWlZGQnBAUZPYTuJjlrYCCZYIFWk5RbZjd4O6yZLdIvj3jO10tVEluHC1x5I_ZjwzyZtnhF4JyjUzqQ5NlIiQKp6GkicyVDZ2VoxKI91Jf8xms3w-5-XOU18WE-bpgf3GncSi5kZngnCqIHWhElKatCZaaZNCMu54PqOM7yRT3z3pC6M08lUyBPL6E1vN3ixtYeA6B8UmMRl5IkfYf_ta3vFLY8zkjhM630cPh-gRF37Wj9Ad3T5GB0ULmfPyN36NHZ7TfSg_QD9OPYquWePOYLBdMNdV9wuf-l8y2IEFsPNVRvd4IFq9xKKt8dRV6eJiAAjAmNUKZC4WfQexaY0_w0WzHCo4cXF12fXNZrF8gr6en128ex8ODyyEiqV0E5JECF0L2C9hDNE6ihWNTSJYLXPNZG6kUZLWsUhkWicmYppkyj5On2UQRwpNnqK9tmv1IcIQVXGhFbi-mtCccalUpAhEEyqGAESKAMU3m12pgX3cPoJxVUEWYg-oun1AAXq7HbPy3Bt_lZ7aM9xKWt5s1wDaVA3aVP1LmwL0xmpAZa0bpqfEUKQAi7Q8WVUB6VXOYBAP0PFIEqxSjbtvdKgaboV1BaFAwpOMp9D9ctttR1qkW6u7aytjGQmjlLMAPfMqt10SsVz8SZQEKB8p42jN4562WTjOcAslzVIWP_8fu3SEHsAsiEctH6O9TX-tX6D76uemWfcTdDeb5xN0b3o2K79MnF1OLKS2hLbyw6fy2x8DpELS |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8cBuXwgAjcXlA0RLbufgBoY4yrVpX-jCk8RRsx24rrUnXdsD-FL-R4yTtFk3a2x54rY_TODnnO5_jcwF4K7kwoY2MZ30qPa5F5ClBlacdd9YhV1aVb7ofDwbJ8bEYbsDfVS6MC6tcYWIJ1Fmh3TfyHYRRKmgsIvF5duq5rlHudHXVQqNSiwNz_hu3bItPvS6-33eU7n09-rLv1V0FPB1GfOkxKqXJJEKBtJYZ4weaB5bKMFOJCVVildWKZ4GkKsqo9UPDYu06sscxkidpGF73Fmxyp-wt2Bz2Doc_Lr7qiCjk3K-ycxgT_o7Lop9MXULiIkGDYgFreMCyUcBVd3DJHzZjNS85v737_9tjewD3appNOpVdPIQNkz-CrU4ul8X0nLwnZeBreaKwBafdKtxwsiCFJQhyiGuz4g_pVmdXpIyqIKVTt2ZO6oq0IyLzjOyW6cykU0dS4JzZDGWOxvMCSXxGviEiT-tUV9I5GeGjWY6nj-H7jSz-CbTyIjfPgCD9FNJo5AgZ40kolNa-Zki7dIBMTck2BCvtSHVdpt11CzlJcbvmNCq9qlFt-LieM6uKlFwrveuUbi3pCoyXPxTzUVrjVRrITFgTSya45jziKkFunDGjjY0EY3iRD05lUweDeHta1tkcuEhXUCzt4D40CXGSaMN2QxLhSzeHV4qb1vC5SC-0tg1v1sNupgsJzE1x5mRc6UY_EmEbnlY2sl4Sc00LqE_bkDSsp7Hm5kg-GZfF1V3MbRyFwfPr7-s13Nk_Ouyn_d7g4AXcxf9iVRD3NrSW8zPzEm7rX8vJYv6qhggCP2_avP4BIuWtHg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMojUGCReByQFXt3_dgDQikhImoJORSpnMzuejeJ1NhpkgL9a_w6Zm0nrVWptx64Zmcdrz3zzaz3mxmA15ILE9rIeNan0uNaRJ4SVHnaxc465Mqq8k0fxMNhcnQkRlvwd50L42iVa0wsgTortPtG3kEYpYLGIhIdW9MiRr3-x_mJ5zpIuZPWdTuNSkX2zdlv3L4tPwx6-K7fUNr_fPjpi1d3GPB0GPGVx6iUJpMIC9JaZowfaB5YKsNMJSZUiVVWK54Fkqooo9YPDYu1684exxhIScPwujdgG0NyTluwPRp8Hf04_8IjopBzv8rUYUz4HZdRP5255MRlgsbFAtbwhmXTgMuu4YJvbPI2LzjC_t3_-RHegzt1-E26lb3chy2TP4Cdbi5XxeyMvCUlIbY8adiBk15FQ5wuSWEJgh_i3bz4Q3rVmRYp2RakdPbWLEhdqXZMZJ6RvTLNmXRrhgXOmc9R5nCyKDC4z8g3ROpZnQJLusdjfDSryewhfL-WxT-CVl7k5gkQDEuFNBpjh4zxJBRKa18zDMd0gBGckm0I1pqS6rp8u-sicpziNs5pV3pZu9rwfjNnXhUvuVJ6zyngRtIVHi9_KBbjtMaxNJCZsCaWTHDNecRVgjFzxow2NhKM4UXeOfVNHTzi7WlZZ3ngIl2hsbSL-9MkxEmiDbsNSYQ13RxeK3Faw-oyPdfgNrzaDLuZjiqYm-LUybiSjn4kwjY8ruxlsyTmmhlQn7YhaVhSY83NkXw6KYuuOy5uHIXB06vv6yXcQptKDwbD_WdwG_-KVdzuXWitFqfmOdzUv1bT5eJFjRYEfl63df0Djt613g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Monkeypox+Disease+Using+Transfer+Learning+and+Binary+Advanced+Dipper+Throated+Optimization+Algorithm&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Amal+H.+Alharbi&rft.au=S.+K.+Towfek&rft.au=Abdelaziz+A.+Abdelhamid&rft.au=Abdelhameed+Ibrahim&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=3&rft.spage=313&rft_id=info:doi/10.3390%2Fbiomimetics8030313&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad9fe7a394c4464b8256d3ecef69333 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |