Deep learning methods for medical image fusion: A review
The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image f...
Saved in:
| Published in: | Computers in biology and medicine Vol. 160; p. 106959 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.06.2023
Elsevier Limited |
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
[Display omitted]
•Summarizing various deep learning models of medical image fusion.•Discussing the applications of deep learning in medical image fusion field.•Summarizing medical image fusion methods based on deep learning and datasets used in image fusion tasks.•Analyzing the challenges and future development directions of medical image fusion. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 0010-4825 1879-0534 1879-0534 |
| DOI: | 10.1016/j.compbiomed.2023.106959 |