Selective Inference for Hierarchical Clustering

Classical tests for a difference in means control the Type I error rate when the groups are defined a priori. However, when the groups are instead defined via clustering, then applying a classical test yields an extremely inflated Type I error rate. Notably, this problem persists even if two separat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 119; číslo 545; s. 332 - 342
Hlavní autori: Gao, Lucy L., Bien, Jacob, Witten, Daniela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 02.01.2024
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Classical tests for a difference in means control the Type I error rate when the groups are defined a priori. However, when the groups are instead defined via clustering, then applying a classical test yields an extremely inflated Type I error rate. Notably, this problem persists even if two separate and independent datasets are used to define the groups and to test for a difference in their means. To address this problem, in this article, we propose a selective inference approach to test for a difference in means between two clusters. Our procedure controls the selective Type I error rate by accounting for the fact that the choice of null hypothesis was made based on the data. We describe how to efficiently compute exact p-values for clusters obtained using agglomerative hierarchical clustering with many commonly used linkages. We apply our method to simulated data and to single-cell RNA-sequencing data. Supplementary materials for this article are available online.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2022.2116331