A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase

Ubiquitination of histones plays a critical role in the regulation of several processes within the nucleus, including maintenance of genome stability and transcriptional regulation. The only known ubiquitination site on histones is represented by a conserved Lys residue located at the C terminus of...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Vol. 11; no. 13; pp. 2538 - 2544
Main Authors: Gatti, Marco, Pinato, Sabrina, Maspero, Elena, Soffientini, Paolo, Polo, Simona, Penengo, Lorenza
Format: Journal Article
Language:English
Published: United States Taylor & Francis 01.07.2012
Landes Bioscience
Subjects:
ISSN:1538-4101, 1551-4005, 1551-4005
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ubiquitination of histones plays a critical role in the regulation of several processes within the nucleus, including maintenance of genome stability and transcriptional regulation. The only known ubiquitination site on histones is represented by a conserved Lys residue located at the C terminus of the protein. Here, we describe a novel ubiquitin mark at the N-terminal tail of histone H2As consisting of two Lys residues at positions 13 and 15 (K13/K15). This "bidentate" site is a target of the DNA damage response (DDR) ubiquitin ligases RNF8 and RNF168. Histone mutants lacking the K13/K15 site impair RNF168- and DNA damage-dependent ubiquitination. Conversely, inactivation of the canonical C-terminal site prevents the constitutive monoubiquitination of histone H2As but does not abolish the ubiquitination induced by RNF168. A ubiquitination-defective mutant is obtained by inactivating both the N- and the C-terminal sites, suggesting that these are unique, non-redundant acceptors of ubiquitination on histone H2As. This unprecedented result implies that RNF168 generates a qualitatively different Ub mark on chromatin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1538-4101
1551-4005
1551-4005
DOI:10.4161/cc.20919