Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options

This paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multidimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretely exercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science Jg. 50; H. 9; S. 1222 - 1234
Hauptverfasser: Andersen, Leif, Broadie, Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Linthicum INFORMS 01.09.2004
Institute for Operations Research and the Management Sciences
Schriftenreihe:Management Science
Schlagworte:
ISSN:0025-1909, 1526-5501
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multidimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretely exercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of primal algorithms. Upper bounds are generated using a new Monte Carlo algorithm based on the duality representation of the Bermudan value function suggested independently in Haugh and Kogan (2004) and Rogers (2002). Our proposed algorithm can handle virtually any type of process dynamics, factor structure, and payout specification. Computational results for a variety of multifactor equity and interest-rate options demonstrate the simplicity and efficiency of the proposed algorithm. In particular, we use the proposed method to examine and verify the tightness of frequently used exercise rules in Bermudan swaption markets.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0025-1909
1526-5501
DOI:10.1287/mnsc.1040.0258