Student assessment in cybersecurity training automated by pattern mining and clustering

Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Education and information technologies Jg. 27; H. 7; S. 9231 - 9262
Hauptverfasser: Švábenský, Valdemar, Vykopal, Jan, Čeleda, Pavel, Tkáčik, Kristián, Popovič, Daniel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:1360-2357, 1573-7608
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees’ interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees’ learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.
AbstractList Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees’ interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees’ learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.
Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.
Audience Academic
Author Tkáčik, Kristián
Popovič, Daniel
Vykopal, Jan
Čeleda, Pavel
Švábenský, Valdemar
Author_xml – sequence: 1
  givenname: Valdemar
  orcidid: 0000-0001-8546-280X
  surname: Švábenský
  fullname: Švábenský, Valdemar
  email: svabensky@ics.muni.cz
  organization: Institute of Computer Science, Masaryk University, Faculty of Informatics, Masaryk University
– sequence: 2
  givenname: Jan
  surname: Vykopal
  fullname: Vykopal, Jan
  organization: Institute of Computer Science, Masaryk University
– sequence: 3
  givenname: Pavel
  surname: Čeleda
  fullname: Čeleda, Pavel
  organization: Institute of Computer Science, Masaryk University
– sequence: 4
  givenname: Kristián
  surname: Tkáčik
  fullname: Tkáčik, Kristián
  organization: Faculty of Informatics, Masaryk University
– sequence: 5
  givenname: Daniel
  surname: Popovič
  fullname: Popovič, Daniel
  organization: Faculty of Informatics, Masaryk University
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1347145$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/35370440$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1rFTEUDVKxH_oHBGXAjZup-c5kI5RSvyi4UHEZMknmmTKTPJNM4f17M85ra4uULHKTe85J7r3nGByEGBwALxE8RRCKdxlBTmQLMW4RlIy29Ak4QkyQVnDYHdSYcNhiwsQhOM75CkIoBcXPwCFhREBK4RH4-a3M1oXS6JxdztMS-tCYXe9SdmZOvuyakrQPPmwaPZc46eJs0--arS7FpdBM-1ywjRnnXO_q8Tl4Ougxuxf7_QT8-HDx_fxTe_n14-fzs8vWME5KSyyixtEBS9pDS3nvCGVOCoGQxLwnjEvH5QBNzxGyUltpdDfIgWvdQ2EZOQHvV93t3E_Omvr_pEe1TX7Saaei9up-JvhfahOvVSc5lVhUgbd7gRR_zy4XNfls3Djq4OKcFeaUS4oEWd568wB6FecUankKC9h1gmEC71AbPTrlwxDru2YRVWcCMYkJ7Rat0_-g6rJu8qbOefD1_h7h9b-F3lZ4M8oKeLUCav_NbfriCyJUILoIdGvepJhzcoMyvuji49IXPyoE1eIqtbpKVVepv65StFLxA-qN_KMkspLydjGES3fdeoT1B4Ci3dA
CitedBy_id crossref_primary_10_1007_s10639_023_12090_z
crossref_primary_10_1007_s10639_024_12480_x
crossref_primary_10_1016_j_is_2025_102627
crossref_primary_10_1038_s41598_025_04622_z
crossref_primary_10_1109_COMST_2024_3365076
crossref_primary_10_3389_fcomp_2024_1499490
crossref_primary_10_7717_peerj_cs_2041
Cites_doi 10.1007/3-540-44503-X_27
10.18608/hla17
10.1016/j.datak.2006.01.013
10.1145/3375462.3375468
10.1017/9781108654555.015
10.1007/s10115-015-0884-x
10.1145/3335814
10.1145/304181.304187
10.1109/MSP.2017.54
10.1109/FIE49875.2021.9637180
10.1371/journal.pone.0144059
10.1145/3467967
10.1145/3231644.3231676
10.1007/s11036-019-01442-0
10.1007/978-3-642-30353-1_6
10.1145/3328778.3366924
10.1145/2839509.2844646
10.1201/b10274
10.1145/2724660.2728695
10.1145/3478431.3499414
10.1145/2157136.2157182
10.9790/3021-0204719725
10.1145/3328778.3366935
10.5281/zenodo.6024825
10.1109/ACCESS.2018.2846590
10.1007/3-540-49257-7_15
10.1016/j.promfg.2015.07.621
10.1016/j.dib.2021.107398
10.1145/3408877.3432439
10.1109/EuroSPW51379.2020.00013
10.1145/3293881.3295778
10.1109/FIE49875.2021.9637052
10.1109/TIT.1982.1056489
10.1002/widm.1355
10.1007/978-3-319-06608-0_4
10.1109/TSMCC.2010.2053532
10.1145/3408877.3432538
10.1109/iCCECE46942.2019.8941804
10.1007/978-3-319-46131-1_8
10.1109/MILCOM.2016.7795423
10.1007/978-3-319-70290-2_8
10.1016/j.promfg.2015.07.523
10.1109/ACCESS.2017.2654247
10.1007/s10111-015-0350-2
10.1007/978-3-319-46257-8_25
10.5555/3447051.3447055
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Aug 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Aug 2022
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
NPM
0-V
3V.
7XB
88B
8FK
8G5
ABUWG
AFKRA
AHOVV
ALSLI
AZQEC
BENPR
CCPQU
CJNVE
DWQXO
GNUQQ
GUQSH
M0P
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10639-022-10954-4
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Education Collection
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Education Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ERIC
PubMed
ProQuest One Education
Social Science Premium Collection
Education Collection
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Education

ERIC


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Computer Science
EISSN 1573-7608
ERIC EJ1347145
EndPage 9262
ExternalDocumentID PMC8964927
A715923485
35370440
EJ1347145
10_1007_s10639_022_10954_4
Genre Journal Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: European Regional Development Fund
  grantid: CZ.02.1.01/0.0/0.0/16˙019/0000822
  funderid: https://doi.org/10.13039/501100008530
– fundername: ;
  grantid: CZ.02.1.01/0.0/0.0/16˙019/0000822
GroupedDBID -W8
-Y2
-~C
.86
.GO
.VR
0-V
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOPQ
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACYUM
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDJ
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IEA
IER
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M0P
M2O
M4Y
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PHGZM
PHGZT
PQEDU
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAYXX
AFFHD
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
-4Z
-59
-5G
-BR
-EM
AAAVM
ADINQ
GQ6
NPM
Z81
Z83
Z88
3V.
7XB
8FK
AHOVV
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c563t-3d14ce4f294b0d46be345e97711926b3569e69f0cb611d9ad9ca8f9f6aab07d53
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000775723900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1360-2357
IngestDate Tue Nov 04 01:52:29 EST 2025
Sun Nov 09 11:26:18 EST 2025
Tue Dec 02 18:42:58 EST 2025
Sat Nov 29 13:31:58 EST 2025
Mon Nov 24 15:50:29 EST 2025
Wed Feb 19 02:26:15 EST 2025
Tue Dec 02 16:40:36 EST 2025
Sat Nov 29 08:03:36 EST 2025
Tue Nov 18 22:02:20 EST 2025
Mon Jul 21 06:06:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Data science
Educational data mining
Learning analytics
Security training
Cybersecurity education
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-3d14ce4f294b0d46be345e97711926b3569e69f0cb611d9ad9ca8f9f6aab07d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8546-280X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8964927
PMID 35370440
PQID 2708875230
PQPubID 55384
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8964927
proquest_miscellaneous_2646941735
proquest_journals_2708875230
gale_infotracmisc_A715923485
gale_infotracacademiconefile_A715923485
pubmed_primary_35370440
eric_primary_EJ1347145
crossref_citationtrail_10_1007_s10639_022_10954_4
crossref_primary_10_1007_s10639_022_10954_4
springer_journals_10_1007_s10639_022_10954_4
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
PublicationSubtitle The Official Journal of the IFIP Technical Committee on Education
PublicationTitle Education and information technologies
PublicationTitleAbbrev Educ Inf Technol
PublicationTitleAlternate Educ Inf Technol (Dordr)
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References C Romero (10954_CR52) 2010; 40
10954_CR60
M Granåsen (10954_CR23) 2016; 18
P Fournier-Viger (10954_CR18) 2017; 1
TS Madhulatha (10954_CR33) 2012; 2
10954_CR5
10954_CR6
10954_CR67
10954_CR22
D McCall (10954_CR41) 2019; 19
C Romero (10954_CR53) 2020; 10
10954_CR66
10954_CR21
10954_CR65
10954_CR64
10954_CR63
10954_CR62
10954_CR29
10954_CR27
10954_CR26
10954_CR25
Shirkhorshidi (10954_CR56) 2015; 10
10954_CR69
10954_CR70
M Ankerst (10954_CR4) 1999; 28
10954_CR35
10954_CR34
RG Abbott (10954_CR1) 2015; 3
M Andreolini (10954_CR3) 2019; 25
10954_CR31
10954_CR30
(10954_CR54) 2010
10954_CR39
10954_CR38
10954_CR37
10954_CR36
D Birant (10954_CR7) 2007; 6
J McClain (10954_CR42) 2015; 3
F Fumarola (10954_CR20) 2016; 48
10954_CR46
10954_CR45
10954_CR44
10954_CR43
R Weiss (10954_CR68) 2017; 15
10954_CR40
10954_CR49
Z Tian (10954_CR58) 2018; 6
10954_CR48
10954_CR47
A Dutt (10954_CR9) 2017; 5
J Han (10954_CR24) 2011
Q Vinlove (10954_CR61) 2020; 36
10954_CR13
10954_CR57
10954_CR12
10954_CR11
S Lloyd (10954_CR32) 1982; 28
10954_CR55
10954_CR2
10954_CR10
CC2020 Task Force (10954_CR8) 2020
Y Kobayashi (10954_CR28) 2014; 2014
10954_CR51
10954_CR50
10954_CR19
10954_CR17
10954_CR16
10954_CR15
10954_CR59
10954_CR14
References_xml – ident: 10954_CR2
  doi: 10.1007/3-540-44503-X_27
– ident: 10954_CR31
  doi: 10.18608/hla17
– ident: 10954_CR13
– volume: 6
  start-page: 208
  issue: 1
  year: 2007
  ident: 10954_CR7
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2006.01.013
– ident: 10954_CR46
– ident: 10954_CR36
  doi: 10.1145/3375462.3375468
– ident: 10954_CR55
– ident: 10954_CR30
  doi: 10.1017/9781108654555.015
– volume: 48
  start-page: 429
  issue: 2
  year: 2016
  ident: 10954_CR20
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-015-0884-x
– volume: 19
  start-page: 38:1
  issue: 4
  year: 2019
  ident: 10954_CR41
  publication-title: ACM Transactions on Computing Education
  doi: 10.1145/3335814
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 10954_CR4
  publication-title: SIGMOD Record
  doi: 10.1145/304181.304187
– volume: 15
  start-page: 90
  issue: 3
  year: 2017
  ident: 10954_CR68
  publication-title: IEEE Security & Privacy
  doi: 10.1109/MSP.2017.54
– ident: 10954_CR66
  doi: 10.1109/FIE49875.2021.9637180
– ident: 10954_CR51
– volume: 10
  start-page: 1
  issue: 12
  year: 2015
  ident: 10954_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0144059
– volume-title: Computing Curricula 2020: Paradigms for global computing education
  year: 2020
  ident: 10954_CR8
  doi: 10.1145/3467967
– ident: 10954_CR59
– ident: 10954_CR49
  doi: 10.1145/3231644.3231676
– volume: 25
  start-page: 236
  year: 2019
  ident: 10954_CR3
  publication-title: Mobile Networks and Applications
  doi: 10.1007/s11036-019-01442-0
– volume: 1
  start-page: 54
  issue: 1
  year: 2017
  ident: 10954_CR18
  publication-title: Data Science and Pattern Recognition
– ident: 10954_CR12
– ident: 10954_CR19
  doi: 10.1007/978-3-642-30353-1_6
– ident: 10954_CR26
– ident: 10954_CR10
  doi: 10.1145/3328778.3366924
– ident: 10954_CR67
  doi: 10.1145/2839509.2844646
– volume-title: Handbook of educational data mining
  year: 2010
  ident: 10954_CR54
  doi: 10.1201/b10274
– ident: 10954_CR27
– ident: 10954_CR70
  doi: 10.1145/2724660.2728695
– ident: 10954_CR65
  doi: 10.1145/3478431.3499414
– ident: 10954_CR50
  doi: 10.1145/2157136.2157182
– volume: 2
  start-page: 719
  issue: 4
  year: 2012
  ident: 10954_CR33
  publication-title: IOSR Journal of Engineering
  doi: 10.9790/3021-0204719725
– ident: 10954_CR43
  doi: 10.1145/3328778.3366935
– ident: 10954_CR37
– ident: 10954_CR64
  doi: 10.5281/zenodo.6024825
– volume: 6
  start-page: 35355
  year: 2018
  ident: 10954_CR58
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2846590
– ident: 10954_CR5
  doi: 10.1007/3-540-49257-7_15
– volume: 3
  start-page: 5301
  year: 2015
  ident: 10954_CR42
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2015.07.621
– ident: 10954_CR22
  doi: 10.1201/b10274
– ident: 10954_CR44
– ident: 10954_CR62
  doi: 10.1016/j.dib.2021.107398
– ident: 10954_CR15
– ident: 10954_CR40
– ident: 10954_CR21
  doi: 10.1145/3408877.3432439
– ident: 10954_CR60
  doi: 10.1201/b10274
– ident: 10954_CR34
  doi: 10.1109/EuroSPW51379.2020.00013
– ident: 10954_CR48
  doi: 10.1145/3293881.3295778
– ident: 10954_CR63
  doi: 10.1109/FIE49875.2021.9637052
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10954_CR32
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 10954_CR11
– volume: 10
  start-page: e1355
  issue: 3
  year: 2020
  ident: 10954_CR53
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1355
– ident: 10954_CR16
  doi: 10.1007/978-3-319-06608-0_4
– ident: 10954_CR38
– ident: 10954_CR6
– volume: 40
  start-page: 601
  issue: 6
  year: 2010
  ident: 10954_CR52
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2010.2053532
– ident: 10954_CR69
  doi: 10.1145/3408877.3432538
– ident: 10954_CR47
  doi: 10.1109/iCCECE46942.2019.8941804
– ident: 10954_CR14
– ident: 10954_CR17
  doi: 10.1007/978-3-319-46131-1_8
– ident: 10954_CR25
  doi: 10.1109/MILCOM.2016.7795423
– ident: 10954_CR35
  doi: 10.1007/978-3-319-70290-2_8
– volume: 3
  start-page: 5088
  year: 2015
  ident: 10954_CR1
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2015.07.523
– ident: 10954_CR45
– volume: 5
  start-page: 15991
  year: 2017
  ident: 10954_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2654247
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: 10954_CR24
– ident: 10954_CR29
– volume: 18
  start-page: 121
  issue: 1
  year: 2016
  ident: 10954_CR23
  publication-title: Cognition, Technology & Work
  doi: 10.1007/s10111-015-0350-2
– volume: 2014
  start-page: 127
  year: 2014
  ident: 10954_CR28
  publication-title: Proceedings of the Conference on Language and Technology
– ident: 10954_CR57
  doi: 10.1007/978-3-319-46257-8_25
– volume: 36
  start-page: 26
  issue: 1
  year: 2020
  ident: 10954_CR61
  publication-title: Journal of Computing Sciences in Colleges
  doi: 10.5555/3447051.3447055
– ident: 10954_CR39
SSID ssj0009742
Score 2.3082645
Snippet Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an...
SourceID pubmedcentral
proquest
gale
pubmed
eric
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9231
SubjectTerms Analysis
Artificial Intelligence
Automation
Clustering
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computer Security
Computers and Education
Cybersecurity
Cyberterrorism
Data Analysis
Data Collection
Data mining
Data science
Data security
Education
Educational Environment
Educational Researchers
Educational Technology
Information Retrieval
Information Security
Information Systems Applications (incl.Internet)
Interactive learning
Internet
Learning Processes
Machine learning
Pattern Recognition
Safety and security measures
Student Behavior
Student Evaluation
Training
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOPAoFQ0GLhMQBLGzvy3tCBaVCHKKKh-jN8j4sIhUnNAlS_z0zztqpI9ELR2tn493MY0frme8DeFVYW3oCH-QWnVwIZ1OjsybNVOHqwktZe9GRTejptDw7M6fxwm0Zyyr7mNgFaj93dEf-rtDkD3SH-X7xOyXWKPq6Gik0bsI-IZWhne9_mExPv2xhd3VHn5NzlaUE7BLbZmLzHJ7OKVWz55hniFSMjqZY_bwbp68cVLtFlDtfUrsD6uTe_27tPtyNqSk73tjSA7gR2gNidY4VIAdw5wp44UP48XUDi8nqAdyTzVrmLi1mlJEVj_UMFKxer-aYHAfP7CVbdKCeLfsVx1rP3PmaIBvw8RF8P5l8-_gpjTQNqZOKr1Luc-GCaAojbOaFsoELGTCvRI0UynKpTFCmyZxVee5N7Y2ry8Y0qq5tpr3kh7DXztvwBJjKgmkw5xFBN4KHkiJxE3zZSJyjvUkg7zVUuYhhThs5r7boy6TVCrVadVqtRAJvhjmLDYLHtdKHpPhBcvKZem1zIRN4TaZQkd_jK10d2xdw4YSgVR1rTAwLLkqUPBpJor-68XBvBVWMF8tqawIJvByGaSbVwLVhvkYZJajrWHP8iccb2xuWySXXRB6egB5Z5SBAKOLjkXb2s0MTL40SptAJvO3td7usf_9PT6_fxTO4XZBndZWSR7C3uliH53DL_VnNlhcvopf-BWdHQbQ
  priority: 102
  providerName: ProQuest
Title Student assessment in cybersecurity training automated by pattern mining and clustering
URI https://link.springer.com/article/10.1007/s10639-022-10954-4
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1347145
https://www.ncbi.nlm.nih.gov/pubmed/35370440
https://www.proquest.com/docview/2708875230
https://www.proquest.com/docview/2646941735
https://pubmed.ncbi.nlm.nih.gov/PMC8964927
Volume 27
WOSCitedRecordID wos000775723900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQd42KAwCIzKSEg8QKQk_oofB-qEkCgV46NvUfwRrdJIp7WdtP8eX-qkTQVI8BLJ8jmxL3fnS3z3O4BXmda5RfBBqr2SM2Z0rGRSxYnITJlZzkvLmmITcjzOp1M1CUlhizbavT2SbCz1VrKb301jjD5PvV_AYrYHBxzRZvAb_fz7BmpXNiVzUiqSGMFcQqrM7-_R245CxPOubd7anHYDJ3dOT5tN6ezo_5bzAA6DE0pO11LzEO64egBHbYEHEvR9gCWdQ_jHAO5vIRc-gh_na0xMUnbInmRWE3OrvTsZSuKRtvwEKVfLufeMnSX6llw1iJ41-Rn6akvM5QrxGnzzMXw7G319_yEONRpiwwVdxtSmzDhWZYrpxDKhHWXceacy9a6j0JQL5YSqEqNFmlpVWmXKvFKVKEudSMvpMezX89o9BSISpyrv8DAnK0Zdjma4cjavuB8jrYogbV9VYQKAOS7ksthALyNPC8_TouFpwSJ40425WsN3_JX6GCWgoxx9xETblPEIXqNMFKj0_pGmDLkLfuIIn1WcSu8VZpTlnvKkR-mV1fS7W6kqgrFYFJlEU4-_5yN42XXjSAyAq9185WkEw5RjSf0tnqyFsJsm5VRi5fAIZE88OwKEEO_31LOLBko8V4KpTEbwthXSzbT-zKdn_0b-HO5lKOdN2OQJ7C-vV-4F3DU3y9niegh7cpoP4eDdaDz54lufkgles8_DRq1_AXObQRM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKRJw4KNQMBRYJBAHsLC9613vAaECqVpaogpa0ZvxflhEKk5oElD-FL-RHXvtNJHorQeO0c4mu86b2bE98x7As0SpzCD5IFXOyRnTKpQiKsOIJ7pITJoWhtViE2IwyE5O5OEa_Gl7YbCsso2JdaA2I43PyF8nAv0Bn2G-Hf8MUTUK3662EhoNLPbt_Le7ZZu82fvg_t_nSbLTP3q_G3pVgVCnnE5DamKmLSsTyVRkGFeWstS6NCh2yQ5XNOXScllGWvE4NrIwUhdZKUteFCoSBlUiXMhfZ5TxtAfr7_qDw88Lml9Ry_XElEchEsn4Nh3frOeygRCr52OX17CQLR2Fvtp69Vw4dzCuFm2uvLmtD8Sdm__bpbwFN3zqTbYbX7kNa7baQNVqX-GyAdfPkTPega9fGtpPUnTkpWRYET1XLmP2qn-kVdggxWw6csm_NUTNybgmLa3IDz9WGaJPZ0hJ4T7eheNL2eUm9KpRZe8D4ZGVpcvpmBUlozbDk6a0JitTN0cYGUDcIiLXnqMdN3KaL9ilEUW5Q1FeoyhnAbzs5owbhpILrTcRaJ1l_yP2EscsDeAFQi_HuOZ-Uhe-PcMtHBnC8m3hEt-EssxZbi1Zunikl4db1OU-Hk7yBeQCeNoN40ys8avsaOZsOMOuakHdV9xrsN4tk6ZUoDh6AGLJCzoDZElfHqmG32u29ExyJhMRwKvWXxbL-vd1enDxLp7A1d2jTwf5wd5g_yFcS9Cr66rQLehNz2b2EVzRv6bDydljHyEIfLtsT_oLpdmfGQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamgRA88GMwFhhgJBAPEC2xHTt-QGhiqxiDMgkQewvxj4hKW1rWFtR_jb-Ou9RJ10rsbQ88Vj63dvrd-ZLcfR8hz5gxuUPyQW7AyYWwJtYqqeJEMlsyl2WlE43YhOr38-NjfbRG_rS9MFhW2cbEJlC7ocVn5DtMoT_gM8ydKpRFHO313ox-xqgghW9aWzmNOUQO_ew33L6NXx_swX_9nLHe_pe37-KgMBDbTPJJzF0qrBcV08IkTkjjucg8pEQpJD7S8ExqL3WVWCPT1OnSaVvmla5kWZpEOVSMgPB_RYlMoHd9ZJ8WhL-qEe5JuUxipJQJDTuhbQ_yghjr6FPIcEQslg7FUHe9ekKcOyJXyzdX3uE2R2Pv1v98UW-TmyEhp7tzD7pD1ny9gVrWoe5lg9w4R9l4l3z7PCcDpWVHaUoHNbUzA3l00AKkre4GLaeTIdwSeEfNjI4aKtOanoax2lF7MkWiCvh4j3y9lF1ukvV6WPstQmXidQWZnvCqEtzneP5U3uVVBnOU0xFJW3QUNjC340ZOigXnNCKqAEQVDaIKEZGX3ZzRnLfkQutNBF1nuf8eO4xTkUXkBcKwwGgHP2nL0LQBC0fesGJXQTrMuMjBcnvJEqKUXR5uEViEKDkuFvCLyNNuGGdi5V_th1OwkQJ7rRWHr7g_x323TJ5xhZLpEVFLHtEZIHf68kg9-NFwqOdaCs1URF61vrNY1r-v04OLd_GEXAP3KT4c9A8fkusMHbwpFd0m65OzqX9Ertpfk8H47HETKij5ftlu9BfM0KaF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+assessment+in+cybersecurity+training+automated+by+pattern+mining+and+clustering&rft.jtitle=Education+and+information+technologies&rft.au=%C5%A0v%C3%A1bensk%C3%BD%2C+Valdemar&rft.au=Vykopal%2C+Jan&rft.au=%C4%8Celeda%2C+Pavel&rft.au=Tk%C3%A1%C4%8Dik%2C+Kristi%C3%A1n&rft.date=2022-08-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=27&rft.issue=7&rft.spage=9231&rft.epage=9262&rft_id=info:doi/10.1007%2Fs10639-022-10954-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_022_10954_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon