Student assessment in cybersecurity training automated by pattern mining and clustering
Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During...
Gespeichert in:
| Veröffentlicht in: | Education and information technologies Jg. 27; H. 7; S. 9231 - 9262 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2022
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1360-2357, 1573-7608 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees’ interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees’ learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available. |
|---|---|
| AbstractList | Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees’ interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees’ learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available. Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available. |
| Audience | Academic |
| Author | Tkáčik, Kristián Popovič, Daniel Vykopal, Jan Čeleda, Pavel Švábenský, Valdemar |
| Author_xml | – sequence: 1 givenname: Valdemar orcidid: 0000-0001-8546-280X surname: Švábenský fullname: Švábenský, Valdemar email: svabensky@ics.muni.cz organization: Institute of Computer Science, Masaryk University, Faculty of Informatics, Masaryk University – sequence: 2 givenname: Jan surname: Vykopal fullname: Vykopal, Jan organization: Institute of Computer Science, Masaryk University – sequence: 3 givenname: Pavel surname: Čeleda fullname: Čeleda, Pavel organization: Institute of Computer Science, Masaryk University – sequence: 4 givenname: Kristián surname: Tkáčik fullname: Tkáčik, Kristián organization: Faculty of Informatics, Masaryk University – sequence: 5 givenname: Daniel surname: Popovič fullname: Popovič, Daniel organization: Faculty of Informatics, Masaryk University |
| BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1347145$$DView record in ERIC https://www.ncbi.nlm.nih.gov/pubmed/35370440$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1rFTEUDVKxH_oHBGXAjZup-c5kI5RSvyi4UHEZMknmmTKTPJNM4f17M85ra4uULHKTe85J7r3nGByEGBwALxE8RRCKdxlBTmQLMW4RlIy29Ak4QkyQVnDYHdSYcNhiwsQhOM75CkIoBcXPwCFhREBK4RH4-a3M1oXS6JxdztMS-tCYXe9SdmZOvuyakrQPPmwaPZc46eJs0--arS7FpdBM-1ywjRnnXO_q8Tl4Ougxuxf7_QT8-HDx_fxTe_n14-fzs8vWME5KSyyixtEBS9pDS3nvCGVOCoGQxLwnjEvH5QBNzxGyUltpdDfIgWvdQ2EZOQHvV93t3E_Omvr_pEe1TX7Saaei9up-JvhfahOvVSc5lVhUgbd7gRR_zy4XNfls3Djq4OKcFeaUS4oEWd568wB6FecUankKC9h1gmEC71AbPTrlwxDru2YRVWcCMYkJ7Rat0_-g6rJu8qbOefD1_h7h9b-F3lZ4M8oKeLUCav_NbfriCyJUILoIdGvepJhzcoMyvuji49IXPyoE1eIqtbpKVVepv65StFLxA-qN_KMkspLydjGES3fdeoT1B4Ci3dA |
| CitedBy_id | crossref_primary_10_1007_s10639_023_12090_z crossref_primary_10_1007_s10639_024_12480_x crossref_primary_10_1016_j_is_2025_102627 crossref_primary_10_1038_s41598_025_04622_z crossref_primary_10_1109_COMST_2024_3365076 crossref_primary_10_3389_fcomp_2024_1499490 crossref_primary_10_7717_peerj_cs_2041 |
| Cites_doi | 10.1007/3-540-44503-X_27 10.18608/hla17 10.1016/j.datak.2006.01.013 10.1145/3375462.3375468 10.1017/9781108654555.015 10.1007/s10115-015-0884-x 10.1145/3335814 10.1145/304181.304187 10.1109/MSP.2017.54 10.1109/FIE49875.2021.9637180 10.1371/journal.pone.0144059 10.1145/3467967 10.1145/3231644.3231676 10.1007/s11036-019-01442-0 10.1007/978-3-642-30353-1_6 10.1145/3328778.3366924 10.1145/2839509.2844646 10.1201/b10274 10.1145/2724660.2728695 10.1145/3478431.3499414 10.1145/2157136.2157182 10.9790/3021-0204719725 10.1145/3328778.3366935 10.5281/zenodo.6024825 10.1109/ACCESS.2018.2846590 10.1007/3-540-49257-7_15 10.1016/j.promfg.2015.07.621 10.1016/j.dib.2021.107398 10.1145/3408877.3432439 10.1109/EuroSPW51379.2020.00013 10.1145/3293881.3295778 10.1109/FIE49875.2021.9637052 10.1109/TIT.1982.1056489 10.1002/widm.1355 10.1007/978-3-319-06608-0_4 10.1109/TSMCC.2010.2053532 10.1145/3408877.3432538 10.1109/iCCECE46942.2019.8941804 10.1007/978-3-319-46131-1_8 10.1109/MILCOM.2016.7795423 10.1007/978-3-319-70290-2_8 10.1016/j.promfg.2015.07.523 10.1109/ACCESS.2017.2654247 10.1007/s10111-015-0350-2 10.1007/978-3-319-46257-8_25 10.5555/3447051.3447055 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. COPYRIGHT 2022 Springer Copyright Springer Nature B.V. Aug 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: COPYRIGHT 2022 Springer – notice: Copyright Springer Nature B.V. Aug 2022 |
| DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN NPM 0-V 3V. 7XB 88B 8FK 8G5 ABUWG AFKRA AHOVV ALSLI AZQEC BENPR CCPQU CJNVE DWQXO GNUQQ GUQSH M0P M2O MBDVC PHGZM PHGZT PKEHL PQEDU PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1007/s10639-022-10954-4 |
| DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Education Research Index Social Science Premium Collection ProQuest Central Essentials - QC ProQuest Central ProQuest One Education Collection ProQuest Central ProQuest Central Student ProQuest Research Library Education Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef ERIC PubMed ProQuest One Education Social Science Premium Collection Education Collection Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Education Journals ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Education ERIC PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education Computer Science |
| EISSN | 1573-7608 |
| ERIC | EJ1347145 |
| EndPage | 9262 |
| ExternalDocumentID | PMC8964927 A715923485 35370440 EJ1347145 10_1007_s10639_022_10954_4 |
| Genre | Journal Article |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GrantInformation_xml | – fundername: European Regional Development Fund grantid: CZ.02.1.01/0.0/0.0/16˙019/0000822 funderid: https://doi.org/10.13039/501100008530 – fundername: ; grantid: CZ.02.1.01/0.0/0.0/16˙019/0000822 |
| GroupedDBID | -W8 -Y2 -~C .86 .GO .VR 0-V 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOPQ ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACYUM ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDJ EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO ICD IEA IER IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M0P M2O M4Y MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PHGZM PHGZT PQEDU PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX AFFHD CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN -4Z -59 -5G -BR -EM AAAVM ADINQ GQ6 NPM Z81 Z83 Z88 3V. 7XB 8FK AHOVV MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c563t-3d14ce4f294b0d46be345e97711926b3569e69f0cb611d9ad9ca8f9f6aab07d53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000775723900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1360-2357 |
| IngestDate | Tue Nov 04 01:52:29 EST 2025 Sun Nov 09 11:26:18 EST 2025 Tue Dec 02 18:42:58 EST 2025 Sat Nov 29 13:31:58 EST 2025 Mon Nov 24 15:50:29 EST 2025 Wed Feb 19 02:26:15 EST 2025 Tue Dec 02 16:40:36 EST 2025 Sat Nov 29 08:03:36 EST 2025 Tue Nov 18 22:02:20 EST 2025 Mon Jul 21 06:06:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Data science Educational data mining Learning analytics Security training Cybersecurity education |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-3d14ce4f294b0d46be345e97711926b3569e69f0cb611d9ad9ca8f9f6aab07d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8546-280X |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8964927 |
| PMID | 35370440 |
| PQID | 2708875230 |
| PQPubID | 55384 |
| PageCount | 32 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8964927 proquest_miscellaneous_2646941735 proquest_journals_2708875230 gale_infotracmisc_A715923485 gale_infotracacademiconefile_A715923485 pubmed_primary_35370440 eric_primary_EJ1347145 crossref_citationtrail_10_1007_s10639_022_10954_4 crossref_primary_10_1007_s10639_022_10954_4 springer_journals_10_1007_s10639_022_10954_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Netherlands |
| PublicationSubtitle | The Official Journal of the IFIP Technical Committee on Education |
| PublicationTitle | Education and information technologies |
| PublicationTitleAbbrev | Educ Inf Technol |
| PublicationTitleAlternate | Educ Inf Technol (Dordr) |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | C Romero (10954_CR52) 2010; 40 10954_CR60 M Granåsen (10954_CR23) 2016; 18 P Fournier-Viger (10954_CR18) 2017; 1 TS Madhulatha (10954_CR33) 2012; 2 10954_CR5 10954_CR6 10954_CR67 10954_CR22 D McCall (10954_CR41) 2019; 19 C Romero (10954_CR53) 2020; 10 10954_CR66 10954_CR21 10954_CR65 10954_CR64 10954_CR63 10954_CR62 10954_CR29 10954_CR27 10954_CR26 10954_CR25 Shirkhorshidi (10954_CR56) 2015; 10 10954_CR69 10954_CR70 M Ankerst (10954_CR4) 1999; 28 10954_CR35 10954_CR34 RG Abbott (10954_CR1) 2015; 3 M Andreolini (10954_CR3) 2019; 25 10954_CR31 10954_CR30 (10954_CR54) 2010 10954_CR39 10954_CR38 10954_CR37 10954_CR36 D Birant (10954_CR7) 2007; 6 J McClain (10954_CR42) 2015; 3 F Fumarola (10954_CR20) 2016; 48 10954_CR46 10954_CR45 10954_CR44 10954_CR43 R Weiss (10954_CR68) 2017; 15 10954_CR40 10954_CR49 Z Tian (10954_CR58) 2018; 6 10954_CR48 10954_CR47 A Dutt (10954_CR9) 2017; 5 J Han (10954_CR24) 2011 Q Vinlove (10954_CR61) 2020; 36 10954_CR13 10954_CR57 10954_CR12 10954_CR11 S Lloyd (10954_CR32) 1982; 28 10954_CR55 10954_CR2 10954_CR10 CC2020 Task Force (10954_CR8) 2020 Y Kobayashi (10954_CR28) 2014; 2014 10954_CR51 10954_CR50 10954_CR19 10954_CR17 10954_CR16 10954_CR15 10954_CR59 10954_CR14 |
| References_xml | – ident: 10954_CR2 doi: 10.1007/3-540-44503-X_27 – ident: 10954_CR31 doi: 10.18608/hla17 – ident: 10954_CR13 – volume: 6 start-page: 208 issue: 1 year: 2007 ident: 10954_CR7 publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2006.01.013 – ident: 10954_CR46 – ident: 10954_CR36 doi: 10.1145/3375462.3375468 – ident: 10954_CR55 – ident: 10954_CR30 doi: 10.1017/9781108654555.015 – volume: 48 start-page: 429 issue: 2 year: 2016 ident: 10954_CR20 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-015-0884-x – volume: 19 start-page: 38:1 issue: 4 year: 2019 ident: 10954_CR41 publication-title: ACM Transactions on Computing Education doi: 10.1145/3335814 – volume: 28 start-page: 49 issue: 2 year: 1999 ident: 10954_CR4 publication-title: SIGMOD Record doi: 10.1145/304181.304187 – volume: 15 start-page: 90 issue: 3 year: 2017 ident: 10954_CR68 publication-title: IEEE Security & Privacy doi: 10.1109/MSP.2017.54 – ident: 10954_CR66 doi: 10.1109/FIE49875.2021.9637180 – ident: 10954_CR51 – volume: 10 start-page: 1 issue: 12 year: 2015 ident: 10954_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0144059 – volume-title: Computing Curricula 2020: Paradigms for global computing education year: 2020 ident: 10954_CR8 doi: 10.1145/3467967 – ident: 10954_CR59 – ident: 10954_CR49 doi: 10.1145/3231644.3231676 – volume: 25 start-page: 236 year: 2019 ident: 10954_CR3 publication-title: Mobile Networks and Applications doi: 10.1007/s11036-019-01442-0 – volume: 1 start-page: 54 issue: 1 year: 2017 ident: 10954_CR18 publication-title: Data Science and Pattern Recognition – ident: 10954_CR12 – ident: 10954_CR19 doi: 10.1007/978-3-642-30353-1_6 – ident: 10954_CR26 – ident: 10954_CR10 doi: 10.1145/3328778.3366924 – ident: 10954_CR67 doi: 10.1145/2839509.2844646 – volume-title: Handbook of educational data mining year: 2010 ident: 10954_CR54 doi: 10.1201/b10274 – ident: 10954_CR27 – ident: 10954_CR70 doi: 10.1145/2724660.2728695 – ident: 10954_CR65 doi: 10.1145/3478431.3499414 – ident: 10954_CR50 doi: 10.1145/2157136.2157182 – volume: 2 start-page: 719 issue: 4 year: 2012 ident: 10954_CR33 publication-title: IOSR Journal of Engineering doi: 10.9790/3021-0204719725 – ident: 10954_CR43 doi: 10.1145/3328778.3366935 – ident: 10954_CR37 – ident: 10954_CR64 doi: 10.5281/zenodo.6024825 – volume: 6 start-page: 35355 year: 2018 ident: 10954_CR58 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2846590 – ident: 10954_CR5 doi: 10.1007/3-540-49257-7_15 – volume: 3 start-page: 5301 year: 2015 ident: 10954_CR42 publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2015.07.621 – ident: 10954_CR22 doi: 10.1201/b10274 – ident: 10954_CR44 – ident: 10954_CR62 doi: 10.1016/j.dib.2021.107398 – ident: 10954_CR15 – ident: 10954_CR40 – ident: 10954_CR21 doi: 10.1145/3408877.3432439 – ident: 10954_CR60 doi: 10.1201/b10274 – ident: 10954_CR34 doi: 10.1109/EuroSPW51379.2020.00013 – ident: 10954_CR48 doi: 10.1145/3293881.3295778 – ident: 10954_CR63 doi: 10.1109/FIE49875.2021.9637052 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10954_CR32 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056489 – ident: 10954_CR11 – volume: 10 start-page: e1355 issue: 3 year: 2020 ident: 10954_CR53 publication-title: WIREs Data Mining and Knowledge Discovery doi: 10.1002/widm.1355 – ident: 10954_CR16 doi: 10.1007/978-3-319-06608-0_4 – ident: 10954_CR38 – ident: 10954_CR6 – volume: 40 start-page: 601 issue: 6 year: 2010 ident: 10954_CR52 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2010.2053532 – ident: 10954_CR69 doi: 10.1145/3408877.3432538 – ident: 10954_CR47 doi: 10.1109/iCCECE46942.2019.8941804 – ident: 10954_CR14 – ident: 10954_CR17 doi: 10.1007/978-3-319-46131-1_8 – ident: 10954_CR25 doi: 10.1109/MILCOM.2016.7795423 – ident: 10954_CR35 doi: 10.1007/978-3-319-70290-2_8 – volume: 3 start-page: 5088 year: 2015 ident: 10954_CR1 publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2015.07.523 – ident: 10954_CR45 – volume: 5 start-page: 15991 year: 2017 ident: 10954_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2654247 – volume-title: Data mining: Concepts and techniques year: 2011 ident: 10954_CR24 – ident: 10954_CR29 – volume: 18 start-page: 121 issue: 1 year: 2016 ident: 10954_CR23 publication-title: Cognition, Technology & Work doi: 10.1007/s10111-015-0350-2 – volume: 2014 start-page: 127 year: 2014 ident: 10954_CR28 publication-title: Proceedings of the Conference on Language and Technology – ident: 10954_CR57 doi: 10.1007/978-3-319-46257-8_25 – volume: 36 start-page: 26 issue: 1 year: 2020 ident: 10954_CR61 publication-title: Journal of Computing Sciences in Colleges doi: 10.5555/3447051.3447055 – ident: 10954_CR39 |
| SSID | ssj0009742 |
| Score | 2.3082645 |
| Snippet | Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an... |
| SourceID | pubmedcentral proquest gale pubmed eric crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9231 |
| SubjectTerms | Analysis Artificial Intelligence Automation Clustering Computer Appl. in Social and Behavioral Sciences Computer Science Computer Security Computers and Education Cybersecurity Cyberterrorism Data Analysis Data Collection Data mining Data science Data security Education Educational Environment Educational Researchers Educational Technology Information Retrieval Information Security Information Systems Applications (incl.Internet) Interactive learning Internet Learning Processes Machine learning Pattern Recognition Safety and security measures Student Behavior Student Evaluation Training User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOPAoFQ0GLhMQBLGzvy3tCBaVCHKKKh-jN8j4sIhUnNAlS_z0zztqpI9ELR2tn493MY0frme8DeFVYW3oCH-QWnVwIZ1OjsybNVOHqwktZe9GRTejptDw7M6fxwm0Zyyr7mNgFaj93dEf-rtDkD3SH-X7xOyXWKPq6Gik0bsI-IZWhne9_mExPv2xhd3VHn5NzlaUE7BLbZmLzHJ7OKVWz55hniFSMjqZY_bwbp68cVLtFlDtfUrsD6uTe_27tPtyNqSk73tjSA7gR2gNidY4VIAdw5wp44UP48XUDi8nqAdyTzVrmLi1mlJEVj_UMFKxer-aYHAfP7CVbdKCeLfsVx1rP3PmaIBvw8RF8P5l8-_gpjTQNqZOKr1Luc-GCaAojbOaFsoELGTCvRI0UynKpTFCmyZxVee5N7Y2ry8Y0qq5tpr3kh7DXztvwBJjKgmkw5xFBN4KHkiJxE3zZSJyjvUkg7zVUuYhhThs5r7boy6TVCrVadVqtRAJvhjmLDYLHtdKHpPhBcvKZem1zIRN4TaZQkd_jK10d2xdw4YSgVR1rTAwLLkqUPBpJor-68XBvBVWMF8tqawIJvByGaSbVwLVhvkYZJajrWHP8iccb2xuWySXXRB6egB5Z5SBAKOLjkXb2s0MTL40SptAJvO3td7usf_9PT6_fxTO4XZBndZWSR7C3uliH53DL_VnNlhcvopf-BWdHQbQ priority: 102 providerName: ProQuest |
| Title | Student assessment in cybersecurity training automated by pattern mining and clustering |
| URI | https://link.springer.com/article/10.1007/s10639-022-10954-4 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1347145 https://www.ncbi.nlm.nih.gov/pubmed/35370440 https://www.proquest.com/docview/2708875230 https://www.proquest.com/docview/2646941735 https://pubmed.ncbi.nlm.nih.gov/PMC8964927 |
| Volume | 27 |
| WOSCitedRecordID | wos000775723900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 1573-7608 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQd42KAwCIzKSEg8QKQk_oofB-qEkCgV46NvUfwRrdJIp7WdtP8eX-qkTQVI8BLJ8jmxL3fnS3z3O4BXmda5RfBBqr2SM2Z0rGRSxYnITJlZzkvLmmITcjzOp1M1CUlhizbavT2SbCz1VrKb301jjD5PvV_AYrYHBxzRZvAb_fz7BmpXNiVzUiqSGMFcQqrM7-_R245CxPOubd7anHYDJ3dOT5tN6ezo_5bzAA6DE0pO11LzEO64egBHbYEHEvR9gCWdQ_jHAO5vIRc-gh_na0xMUnbInmRWE3OrvTsZSuKRtvwEKVfLufeMnSX6llw1iJ41-Rn6akvM5QrxGnzzMXw7G319_yEONRpiwwVdxtSmzDhWZYrpxDKhHWXceacy9a6j0JQL5YSqEqNFmlpVWmXKvFKVKEudSMvpMezX89o9BSISpyrv8DAnK0Zdjma4cjavuB8jrYogbV9VYQKAOS7ksthALyNPC8_TouFpwSJ40425WsN3_JX6GCWgoxx9xETblPEIXqNMFKj0_pGmDLkLfuIIn1WcSu8VZpTlnvKkR-mV1fS7W6kqgrFYFJlEU4-_5yN42XXjSAyAq9185WkEw5RjSf0tnqyFsJsm5VRi5fAIZE88OwKEEO_31LOLBko8V4KpTEbwthXSzbT-zKdn_0b-HO5lKOdN2OQJ7C-vV-4F3DU3y9niegh7cpoP4eDdaDz54lufkgles8_DRq1_AXObQRM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKRJw4KNQMBRYJBAHsLC9613vAaECqVpaogpa0ZvxflhEKk5oElD-FL-RHXvtNJHorQeO0c4mu86b2bE98x7As0SpzCD5IFXOyRnTKpQiKsOIJ7pITJoWhtViE2IwyE5O5OEa_Gl7YbCsso2JdaA2I43PyF8nAv0Bn2G-Hf8MUTUK3662EhoNLPbt_Le7ZZu82fvg_t_nSbLTP3q_G3pVgVCnnE5DamKmLSsTyVRkGFeWstS6NCh2yQ5XNOXScllGWvE4NrIwUhdZKUteFCoSBlUiXMhfZ5TxtAfr7_qDw88Lml9Ry_XElEchEsn4Nh3frOeygRCr52OX17CQLR2Fvtp69Vw4dzCuFm2uvLmtD8Sdm__bpbwFN3zqTbYbX7kNa7baQNVqX-GyAdfPkTPega9fGtpPUnTkpWRYET1XLmP2qn-kVdggxWw6csm_NUTNybgmLa3IDz9WGaJPZ0hJ4T7eheNL2eUm9KpRZe8D4ZGVpcvpmBUlozbDk6a0JitTN0cYGUDcIiLXnqMdN3KaL9ilEUW5Q1FeoyhnAbzs5owbhpILrTcRaJ1l_yP2EscsDeAFQi_HuOZ-Uhe-PcMtHBnC8m3hEt-EssxZbi1Zunikl4db1OU-Hk7yBeQCeNoN40ys8avsaOZsOMOuakHdV9xrsN4tk6ZUoDh6AGLJCzoDZElfHqmG32u29ExyJhMRwKvWXxbL-vd1enDxLp7A1d2jTwf5wd5g_yFcS9Cr66rQLehNz2b2EVzRv6bDydljHyEIfLtsT_oLpdmfGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamgRA88GMwFhhgJBAPEC2xHTt-QGhiqxiDMgkQewvxj4hKW1rWFtR_jb-Ou9RJ10rsbQ88Vj63dvrd-ZLcfR8hz5gxuUPyQW7AyYWwJtYqqeJEMlsyl2WlE43YhOr38-NjfbRG_rS9MFhW2cbEJlC7ocVn5DtMoT_gM8ydKpRFHO313ox-xqgghW9aWzmNOUQO_ew33L6NXx_swX_9nLHe_pe37-KgMBDbTPJJzF0qrBcV08IkTkjjucg8pEQpJD7S8ExqL3WVWCPT1OnSaVvmla5kWZpEOVSMgPB_RYlMoHd9ZJ8WhL-qEe5JuUxipJQJDTuhbQ_yghjr6FPIcEQslg7FUHe9ekKcOyJXyzdX3uE2R2Pv1v98UW-TmyEhp7tzD7pD1ny9gVrWoe5lg9w4R9l4l3z7PCcDpWVHaUoHNbUzA3l00AKkre4GLaeTIdwSeEfNjI4aKtOanoax2lF7MkWiCvh4j3y9lF1ukvV6WPstQmXidQWZnvCqEtzneP5U3uVVBnOU0xFJW3QUNjC340ZOigXnNCKqAEQVDaIKEZGX3ZzRnLfkQutNBF1nuf8eO4xTkUXkBcKwwGgHP2nL0LQBC0fesGJXQTrMuMjBcnvJEqKUXR5uEViEKDkuFvCLyNNuGGdi5V_th1OwkQJ7rRWHr7g_x323TJ5xhZLpEVFLHtEZIHf68kg9-NFwqOdaCs1URF61vrNY1r-v04OLd_GEXAP3KT4c9A8fkusMHbwpFd0m65OzqX9Ertpfk8H47HETKij5ftlu9BfM0KaF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+assessment+in+cybersecurity+training+automated+by+pattern+mining+and+clustering&rft.jtitle=Education+and+information+technologies&rft.au=%C5%A0v%C3%A1bensk%C3%BD%2C+Valdemar&rft.au=Vykopal%2C+Jan&rft.au=%C4%8Celeda%2C+Pavel&rft.au=Tk%C3%A1%C4%8Dik%2C+Kristi%C3%A1n&rft.date=2022-08-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=27&rft.issue=7&rft.spage=9231&rft.epage=9262&rft_id=info:doi/10.1007%2Fs10639-022-10954-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_022_10954_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon |