PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development
The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induc...
Saved in:
| Published in: | Cell reports (Cambridge) Vol. 16; no. 9; pp. 2415 - 2427 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
30.08.2016
Cell Press Elsevier |
| Subjects: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation.
[Display omitted]
•PML regulates autophagic processes from ER/MAM domains in a Ca2+-dependent manner•Localization of PML away from the MAMs is dependent on p53•Activation of autophagy by PML depletion promotes survival under stress conditions•Block of autophagy restores the activity of chemotherapy in PML-downregulated tumors
Missiroli et al. demonstrate that the tumor suppressor promyelocytic leukemia protein (PML) works as a repressor of autophagy by controlling autophagosome formation at mitochondria-associated membranes (MAMs) in a p53-dependent manner. Together, their studies generate alternative anticancer strategies for tumors that present PML downregulation. |
|---|---|
| AbstractList | The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation.
[Display omitted]
•PML regulates autophagic processes from ER/MAM domains in a Ca2+-dependent manner•Localization of PML away from the MAMs is dependent on p53•Activation of autophagy by PML depletion promotes survival under stress conditions•Block of autophagy restores the activity of chemotherapy in PML-downregulated tumors
Missiroli et al. demonstrate that the tumor suppressor promyelocytic leukemia protein (PML) works as a repressor of autophagy by controlling autophagosome formation at mitochondria-associated membranes (MAMs) in a p53-dependent manner. Together, their studies generate alternative anticancer strategies for tumors that present PML downregulation. The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation. The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation.The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation. The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation. • PML regulates autophagic processes from ER/MAM domains in a Ca2+-dependent manner • Localization of PML away from the MAMs is dependent on p53 • Activation of autophagy by PML depletion promotes survival under stress conditions • Block of autophagy restores the activity of chemotherapy in PML-downregulated tumors Missiroli et al. demonstrate that the tumor suppressor promyelocytic leukemia protein (PML) works as a repressor of autophagy by controlling autophagosome formation at mitochondria-associated membranes (MAMs) in a p53-dependent manner. Together, their studies generate alternative anticancer strategies for tumors that present PML downregulation. The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML) controls autophagosome formation at mitochondria-associated membranes (MAMs) and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation. |
| Author | Giorgi, Carlotta Tacchetti, Carlo Patergnani, Simone Pinton, Paolo Lanza, Giovanni Raimondi, Andrea Perrone, Mariasole Bonora, Massimo Poletti, Federica Pandolfi, Pier Paolo Gafà, Roberta Missiroli, Sonia Magri, Eros Kroemer, Guido |
| AuthorAffiliation | 2 Department of Morphology, Surgery and Experimental Medicine, Section of Anatomic Pathology and Molecular Diagnostics, University of Ferrara, Ferrara 44121, Italy 8 Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France 12 Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA 13 Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA 1 Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy 10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France 3 Experimental Imaging Center, San Raffaele Scientific Institute, Milan 20132, Italy 6 Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif 94800, France 11 Karolinska Institute and Department of Women’s and Children’s Health, Karo |
| AuthorAffiliation_xml | – name: 4 Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy – name: 1 Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – name: 13 Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – name: 11 Karolinska Institute and Department of Women’s and Children’s Health, Karolinska University Hospital Q2:07, 17176 Stockholm, Sweden – name: 12 Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA – name: 2 Department of Morphology, Surgery and Experimental Medicine, Section of Anatomic Pathology and Molecular Diagnostics, University of Ferrara, Ferrara 44121, Italy – name: 6 Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif 94800, France – name: 5 Equipe 11 Labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris 75006, France – name: 3 Experimental Imaging Center, San Raffaele Scientific Institute, Milan 20132, Italy – name: 8 Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France – name: 10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France – name: 9 Université Pierre et Marie Curie, Paris VI, Paris 75006, France – name: 7 INSERM, U1138, Paris 75006, France |
| Author_xml | – sequence: 1 givenname: Sonia surname: Missiroli fullname: Missiroli, Sonia organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 2 givenname: Massimo surname: Bonora fullname: Bonora, Massimo organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 3 givenname: Simone surname: Patergnani fullname: Patergnani, Simone organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 4 givenname: Federica surname: Poletti fullname: Poletti, Federica organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 5 givenname: Mariasole surname: Perrone fullname: Perrone, Mariasole organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 6 givenname: Roberta surname: Gafà fullname: Gafà, Roberta organization: Department of Morphology, Surgery and Experimental Medicine, Section of Anatomic Pathology and Molecular Diagnostics, University of Ferrara, Ferrara 44121, Italy – sequence: 7 givenname: Eros surname: Magri fullname: Magri, Eros organization: Department of Morphology, Surgery and Experimental Medicine, Section of Anatomic Pathology and Molecular Diagnostics, University of Ferrara, Ferrara 44121, Italy – sequence: 8 givenname: Andrea surname: Raimondi fullname: Raimondi, Andrea organization: Experimental Imaging Center, San Raffaele Scientific Institute, Milan 20132, Italy – sequence: 9 givenname: Giovanni surname: Lanza fullname: Lanza, Giovanni organization: Department of Morphology, Surgery and Experimental Medicine, Section of Anatomic Pathology and Molecular Diagnostics, University of Ferrara, Ferrara 44121, Italy – sequence: 10 givenname: Carlo surname: Tacchetti fullname: Tacchetti, Carlo organization: Experimental Imaging Center, San Raffaele Scientific Institute, Milan 20132, Italy – sequence: 11 givenname: Guido surname: Kroemer fullname: Kroemer, Guido organization: Equipe 11 Labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris 75006, France – sequence: 12 givenname: Pier Paolo surname: Pandolfi fullname: Pandolfi, Pier Paolo organization: Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 13 givenname: Paolo surname: Pinton fullname: Pinton, Paolo organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy – sequence: 14 givenname: Carlotta surname: Giorgi fullname: Giorgi, Carlotta email: grgclt@unife.it organization: Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara 44121, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27545895$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-01375400$$DView record in HAL |
| BookMark | eNqFUl2PEyEUnZg17of7D4zhUR86AgPMjA8mTV3dJm00Rp8JA5eWOh1GoE3230tt3ezug_ICXO45l3vPuSzOBj9AUbwiuCSYiHebUkMfYCxpvpW4LnFDnxUXlBIyIZTVZw_O58V1jBucl8CEtOxFcU5rznjT8ovi59flAqmEli55vfaDCU5NpjF67VQCg5aw7YIaIKJ5RLPgktOqR9YHlNaAvsEYIEbnB-Qtmu6SH9dqdYfUYNBMDRoC-gh76P24hSG9LJ5b1Ue4Pu1XxY9PN99nt5PFl8_z2XQx0VxUaUIs1wwza1puOG5014m6IQZTAx1nxlIlBLYCG644w4ZyqKraKovbprJ1Y6qrYn7kNV5t5BjcVoU76ZWTfwI-rKQKuZEeJDUCbEc70zaUMUE6w0SLW6MMEKuAZK4PR65x123B6NxGUP0j0scvg1vLld9LnmfNqMgEb48E6yew2-lCHmKYVFkNjPeHYm9OxYL_tYOY5NbFLHSfBfC7KElDhKjq7ICc-vrhv-6Z_yqbE9gxQQcfYwB7n0KwPHhIbuTRQ_LgIYlrmT2UYe-fwLRLKmWFc3eu_x_4NCzI6u4dBBm1g2wD4wLolMfv_k3wG9IT5N8 |
| CitedBy_id | crossref_primary_10_1016_j_pharmthera_2019_04_011 crossref_primary_10_1016_j_devcel_2023_05_012 crossref_primary_10_1038_s41419_023_06026_1 crossref_primary_10_3390_jcm9030740 crossref_primary_10_1016_j_bbagen_2023_130430 crossref_primary_10_3892_or_2023_8514 crossref_primary_10_1038_s41420_023_01547_2 crossref_primary_10_1016_j_bbrc_2024_150990 crossref_primary_10_1002_smtd_201800365 crossref_primary_10_1016_j_mito_2023_07_003 crossref_primary_10_1016_j_ceca_2017_05_003 crossref_primary_10_1016_j_mito_2017_12_011 crossref_primary_10_1002_cam4_4440 crossref_primary_10_1016_j_bbadis_2020_165834 crossref_primary_10_3389_fcell_2022_946678 crossref_primary_10_3390_biology9120479 crossref_primary_10_1016_j_bbamcr_2016_12_024 crossref_primary_10_1038_s41598_025_01671_2 crossref_primary_10_3390_biom10070998 crossref_primary_10_1016_j_pharmthera_2021_107881 crossref_primary_10_1038_s41419_023_05723_1 crossref_primary_10_1016_j_jbc_2021_101368 crossref_primary_10_1038_s41419_017_0025_4 crossref_primary_10_1016_j_semcdb_2017_11_007 crossref_primary_10_1016_j_semcdb_2019_05_015 crossref_primary_10_1515_hsz_2020_0133 crossref_primary_10_1002_em_22565 crossref_primary_10_1016_j_tcb_2020_09_002 crossref_primary_10_3390_cells9071637 crossref_primary_10_1155_2022_7086807 crossref_primary_10_3389_fcell_2021_629522 crossref_primary_10_1038_s41419_024_07229_w crossref_primary_10_1038_s41401_020_0476_5 crossref_primary_10_3389_fonc_2017_00174 crossref_primary_10_3390_cancers13225622 crossref_primary_10_1111_febs_16241 crossref_primary_10_1073_pnas_2020078118 crossref_primary_10_3389_fcell_2020_00692 crossref_primary_10_1186_s13578_018_0204_8 crossref_primary_10_1016_j_bbamcr_2019_01_009 crossref_primary_10_15252_embj_2021109777 crossref_primary_10_3389_fcell_2025_1629568 crossref_primary_10_3390_ijms20123017 crossref_primary_10_1155_2019_3809308 crossref_primary_10_3390_nu17111855 crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_3390_ijms21218323 crossref_primary_10_3389_fonc_2017_00140 crossref_primary_10_1016_j_bbamcr_2021_119061 crossref_primary_10_3390_biom13121805 crossref_primary_10_3389_fcell_2022_988014 crossref_primary_10_3390_biomedicines9020149 crossref_primary_10_1016_j_freeradbiomed_2021_09_024 crossref_primary_10_1016_j_jncc_2025_02_007 crossref_primary_10_3390_ijms241311105 crossref_primary_10_1016_j_tcb_2016_09_001 crossref_primary_10_1016_j_isci_2024_111590 crossref_primary_10_3389_fonc_2018_00091 crossref_primary_10_4103_NRR_NRR_D_24_00630 crossref_primary_10_3390_biom12101441 crossref_primary_10_3390_cells8080893 crossref_primary_10_1016_j_arr_2023_101951 crossref_primary_10_3389_fcell_2020_00595 crossref_primary_10_1002_rcm_8578 crossref_primary_10_1016_j_fsi_2020_11_002 crossref_primary_10_1016_j_yexcr_2020_112190 crossref_primary_10_3389_fcell_2022_812728 crossref_primary_10_1038_s41418_020_0495_2 crossref_primary_10_1158_2159_8290_CD_21_0177 crossref_primary_10_1016_j_bbabio_2017_01_003 crossref_primary_10_1016_j_stemcr_2025_102598 crossref_primary_10_1186_s13578_019_0289_8 crossref_primary_10_1016_j_tcb_2018_01_002 crossref_primary_10_1111_boc_202200037 crossref_primary_10_1002_mco2_70259 crossref_primary_10_1038_s41580_019_0180_9 crossref_primary_10_1111_jcmm_17696 crossref_primary_10_1016_j_prostaglandins_2021_106582 crossref_primary_10_3389_fimmu_2018_01268 crossref_primary_10_3390_medicina57070729 crossref_primary_10_1080_15384101_2019_1612698 crossref_primary_10_1007_s12035_020_01937_y crossref_primary_10_1038_s41419_017_0027_2 crossref_primary_10_4103_1673_5374_391183 crossref_primary_10_1016_j_bbadis_2022_166570 crossref_primary_10_1038_s41418_020_0587_z crossref_primary_10_1080_15548627_2024_2341588 crossref_primary_10_1007_s12210_018_0714_7 crossref_primary_10_3389_fcell_2022_1062993 crossref_primary_10_1093_function_zqab005 crossref_primary_10_1016_j_ceca_2020_102343 crossref_primary_10_1016_j_jaut_2023_103159 crossref_primary_10_1016_j_neo_2018_03_005 crossref_primary_10_1038_s41419_017_0179_0 crossref_primary_10_3390_biomedicines9091077 crossref_primary_10_1016_j_bbamcr_2017_01_001 crossref_primary_10_1016_j_omton_2025_200995 crossref_primary_10_1155_2020_6569728 crossref_primary_10_3390_biomedicines10071596 crossref_primary_10_1080_07391102_2023_2201332 crossref_primary_10_2174_0929867326666190212121248 crossref_primary_10_3389_fonc_2017_00105 crossref_primary_10_1016_j_bbamcr_2025_119954 crossref_primary_10_3389_fonc_2017_00180 crossref_primary_10_1038_s41401_024_01359_9 crossref_primary_10_1016_j_ceb_2018_03_011 crossref_primary_10_1007_s00204_024_03719_0 crossref_primary_10_1084_jem_20221213 crossref_primary_10_1038_s41366_018_0167_1 crossref_primary_10_1016_j_freeradbiomed_2024_09_046 crossref_primary_10_1186_s13045_024_01564_3 crossref_primary_10_1016_j_mito_2024_101874 crossref_primary_10_3389_fonc_2017_00070 crossref_primary_10_1016_j_ebiom_2020_102943 crossref_primary_10_1177_25152564211001213 crossref_primary_10_1038_s41418_022_01095_9 |
| Cites_doi | 10.1038/sj.cdd.4402099 10.1038/nm.3441 10.4161/auto.21228 10.1038/onc.2008.309 10.1177/1947601912473604 10.1038/35036365 10.1016/j.cell.2014.11.006 10.1038/leu.2014.349 10.1158/1078-0432.CCR-10-2634 10.1016/j.cell.2010.06.007 10.1038/35018127 10.1038/ncb2329 10.1038/nrm3735 10.1038/sj.onc.1204856 10.1126/science.1196371 10.18632/oncotarget.2935 10.1186/s12943-015-0321-5 10.1073/pnas.1410723112 10.1038/sj.onc.1204855 10.1016/j.ymeth.2015.01.008 10.4161/cc.10.16.16868 10.1016/j.ccr.2006.06.001 10.1016/j.cell.2010.01.028 10.4161/auto.19496 10.1073/pnas.96.24.13807 10.1038/ncb2708 10.1080/15548627.2015.1100356 10.1016/j.cellsig.2013.11.028 10.1074/jbc.M113.487595 10.1158/1078-0432.CCR-12-1542 10.1038/cdd.2009.33 10.1158/1078-0432.CCR-13-2060 10.1016/j.cell.2011.02.013 10.1084/jem.193.12.1361 10.1016/j.ejca.2010.02.021 10.1007/s12032-010-9430-6 10.1038/nm.2882 10.1016/j.molmed.2013.04.005 10.1038/nprot.2013.127 10.1038/nrc3483 10.4161/auto.20186 10.1038/nature11910 10.1126/science.1189157 10.1093/jnci/djh043 10.1038/ncb2152 10.1158/2159-8290.CD-13-0397 10.1038/nature10234 10.3892/ol.2012.1015 10.1126/science.1193497 10.1038/ncb3124 10.1038/nprot.2009.151 10.1038/nature10230 10.1038/ncb1730 10.1016/S0021-9258(19)39106-9 10.1038/nrm2239 10.1128/MCB.25.3.1025-1040.2005 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved. Attribution 2016 The Author(s) 2016 |
| Copyright_xml | – notice: 2016 The Author(s) – notice: Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: Attribution – notice: 2016 The Author(s) 2016 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1016/j.celrep.2016.07.082 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 2427 |
| ExternalDocumentID | oai_doaj_org_article_2d6efb2bd9824461bd46909dade1fae1 PMC5011426 oai:HAL:hal-01375400v1 27545895 10_1016_j_celrep_2016_07_082 S2211124716310282 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Telethon grantid: GGP15219 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c563t-1f5c404fd95d508cbb6781d02deb54df2a660f60d5a540d25e337faf0983f78d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 139 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382311300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:52:12 EDT 2025 Tue Sep 30 16:05:06 EDT 2025 Tue Oct 14 20:04:58 EDT 2025 Thu Jul 10 18:25:25 EDT 2025 Mon Jul 21 06:01:32 EDT 2025 Tue Nov 18 20:46:02 EST 2025 Wed Nov 05 20:53:55 EST 2025 Wed May 17 01:06:24 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved. Attribution: http://creativecommons.org/licenses/by This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-1f5c404fd95d508cbb6781d02deb54df2a660f60d5a540d25e337faf0983f78d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Co-first author |
| ORCID | 0000-0001-7108-6508 0000-0002-9334-4405 |
| OpenAccessLink | https://doaj.org/article/2d6efb2bd9824461bd46909dade1fae1 |
| PMID | 27545895 |
| PQID | 1816637101 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2d6efb2bd9824461bd46909dade1fae1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5011426 hal_primary_oai_HAL_hal_01375400v1 proquest_miscellaneous_1816637101 pubmed_primary_27545895 crossref_primary_10_1016_j_celrep_2016_07_082 crossref_citationtrail_10_1016_j_celrep_2016_07_082 elsevier_sciencedirect_doi_10_1016_j_celrep_2016_07_082 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-30 |
| PublicationDateYYYYMMDD | 2016-08-30 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc Cell Press Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
| References | De Stefani, Raffaello, Teardo, Szabò, Rizzuto (bib13) 2011; 476 Morselli, Shen, Ruckenstuhl, Bauer, Mariño, Galluzzi, Criollo, Michaud, Maiuri, Chano (bib40) 2011; 10 Giorgi, Bonora, Sorrentino, Missiroli, Poletti, Suski, Galindo Ramirez, Rizzuto, Di Virgilio, Zito (bib21) 2015; 112 Maes, Rubio, Garg, Agostinis (bib35) 2013; 19 Sehgal, Konig, Johnson, Tang, Amaravadi, Boyiadzis, Lotze (bib49) 2015; 29 Klionsky, Abdelmohsen, Abe, Abedin, Abeliovich, Acevedo Arozena, Adachi, Adams, Adams, Adeli (bib31) 2016; 12 Papa, Cordon-Cardo, Bernardi, Pandolfi (bib42) 2012; 3 Esteban-Martínez, Boya (bib17) 2015; 75 Jouaville, Pinton, Bastianutto, Rutter, Rizzuto (bib28) 1999; 96 Bonora, Giorgi, Bononi, Marchi, Patergnani, Rimessi, Rizzuto, Pinton (bib4) 2013; 8 Giorgi, Ito, Lin, Santangelo, Wieckowski, Lebiedzinska, Bononi, Bonora, Duszynski, Bernardi (bib19) 2010; 330 Selvakumaran, Amaravadi, Vasilevskaya, O’Dwyer (bib50) 2013; 19 Rosenfeldt, Nixon, Liu, Mah, Ryan (bib48) 2012; 8 Heath-Engel, Chang, Shore (bib26) 2008; 27 Giorgi, Bonora, Missiroli, Poletti, Ramirez, Morciano, Morganti, Pandolfi, Mammano, Pinton (bib20) 2015; 6 Lin, Chen, Kensicki, Li, Kong, Li, Mohney, Shen, Stiles, Mizushima (bib34) 2012; 8 Galluzzi, Pietrocola, Levine, Kroemer (bib18) 2014; 159 Pearson, Carbone, Sebastiani, Cioce, Fagioli, Saito, Higashimoto, Appella, Minucci, Pandolfi, Pelicci (bib44) 2000; 406 Baughman, Perocchi, Girgis, Plovanich, Belcher-Timme, Sancak, Bao, Strittmatter, Goldberger, Bogorad (bib3) 2011; 476 Hanahan, Weinberg (bib25) 2011; 144 Tasdemir, Maiuri, Galluzzi, Vitale, Djavaheri-Mergny, D’Amelio, Criollo, Morselli, Zhu, Harper (bib53) 2008; 10 Pearson, Pelicci (bib43) 2001; 20 Boya, González-Polo, Casares, Perfettini, Dessen, Larochette, Métivier, Meley, Souquere, Yoshimori (bib7) 2005; 25 Degenhardt, Mathew, Beaudoin, Bray, Anderson, Chen, Mukherjee, Shi, Gélinas, Fan (bib14) 2006; 10 Mihaylova, Shaw (bib38) 2011; 13 Wieckowski, Giorgi, Lebiedzinska, Duszynski, Pinton (bib55) 2009; 4 Cheng, Guo, Liu, Chu, Hakimi, Berger, Hanson, Kao (bib10) 2013; 288 Boroughs, DeBerardinis (bib6) 2015; 17 Rabinowitz, White (bib46) 2010; 330 Ren, Xie, Chai, Wang, Cheng (bib47) 2011; 28 Vance (bib54) 1990; 265 Ito, Carracedo, Weiss, Arai, Ala, Avigan, Schafer, Evans, Suda, Lee, Pandolfi (bib27) 2012; 18 Cárdenas, Miller, Smith, Bui, Molgó, Müller, Vais, Cheung, Yang, Parker (bib8) 2010; 142 Nazio, Strappazzon, Antonioli, Bielli, Cianfanelli, Bordi, Gretzmeier, Dengjel, Piacentini, Fimia, Cecconi (bib41) 2013; 15 Su, Yang, Xu, Chen, Yu (bib52) 2015; 14 Hamasaki, Furuta, Matsuda, Nezu, Yamamoto, Fujita, Oomori, Noda, Haraguchi, Hiraoka (bib24) 2013; 495 Kim, Kundu, Viollet, Guan (bib29) 2011; 13 Strohecker, Guo, Karsli-Uzunbas, Price, Chen, Mathew, McMahon, White (bib51) 2013; 3 Mariño, Niso-Santano, Baehrecke, Kroemer (bib37) 2014; 15 Lallemand-Breitenbach, Zhu, Puvion, Koken, Honoré, Doubeikovsky, Duprez, Pandolfi, Puvion, Freemont, de Thé (bib32) 2001; 193 Ablain, Rice, Soilihi, de Reynies, Minucci, de Thé (bib1) 2014; 20 Egan, Shackelford, Mihaylova, Gelino, Kohnz, Mair, Vasquez, Joshi, Gwinn, Taylor (bib15) 2011; 331 Gurrieri, Capodieci, Bernardi, Scaglioni, Nafa, Rush, Verbel, Cordon-Cardo, Pandolfi (bib23) 2004; 96 Mizushima, Yoshimori, Levine (bib39) 2010; 140 Carracedo, Cantley, Pandolfi (bib9) 2013; 13 Amaravadi, Lippincott-Schwartz, Yin, Weiss, Takebe, Timmer, DiPaola, Lotze, White (bib2) 2011; 17 Xu, Xia, Pan (bib56) 2013; 5 Chittaranjan, Bortnik, Dragowska, Xu, Abeysundara, Leung, Go, DeVorkin, Weppler, Gelmon (bib11) 2014; 20 Piazza, Gurrieri, Pandolfi (bib45) 2001; 20 Booth, Tavallai, Hamed, Cruickshanks, Dent (bib5) 2014; 26 Li, Hou, Faried, Tsutsumi, Kuwano (bib33) 2010; 46 Criollo, Maiuri, Tasdemir, Vitale, Fiebig, Andrews, Molgó, Díaz, Lavandero, Harper (bib12) 2007; 14 Klionsky, Abdalla, Abeliovich, Abraham, Acevedo-Arozena, Adeli, Agholme, Agnello, Agostinis, Aguirre-Ghiso (bib30) 2012; 8 Maiuri, Zalckvar, Kimchi, Kroemer (bib36) 2007; 8 Eisenberg-Lerner, Bialik, Simon, Kimchi (bib16) 2009; 16 Guo, Salomoni, Luo, Shih, Zhong, Gu, Pandolfi (bib22) 2000; 2 Boya (10.1016/j.celrep.2016.07.082_bib7) 2005; 25 Chittaranjan (10.1016/j.celrep.2016.07.082_bib11) 2014; 20 Lallemand-Breitenbach (10.1016/j.celrep.2016.07.082_bib32) 2001; 193 Hamasaki (10.1016/j.celrep.2016.07.082_bib24) 2013; 495 Maiuri (10.1016/j.celrep.2016.07.082_bib36) 2007; 8 Pearson (10.1016/j.celrep.2016.07.082_bib44) 2000; 406 Giorgi (10.1016/j.celrep.2016.07.082_bib19) 2010; 330 Amaravadi (10.1016/j.celrep.2016.07.082_bib2) 2011; 17 Piazza (10.1016/j.celrep.2016.07.082_bib45) 2001; 20 Papa (10.1016/j.celrep.2016.07.082_bib42) 2012; 3 Su (10.1016/j.celrep.2016.07.082_bib52) 2015; 14 Maes (10.1016/j.celrep.2016.07.082_bib35) 2013; 19 Degenhardt (10.1016/j.celrep.2016.07.082_bib14) 2006; 10 Ito (10.1016/j.celrep.2016.07.082_bib27) 2012; 18 Selvakumaran (10.1016/j.celrep.2016.07.082_bib50) 2013; 19 Strohecker (10.1016/j.celrep.2016.07.082_bib51) 2013; 3 Cheng (10.1016/j.celrep.2016.07.082_bib10) 2013; 288 Ablain (10.1016/j.celrep.2016.07.082_bib1) 2014; 20 Boroughs (10.1016/j.celrep.2016.07.082_bib6) 2015; 17 Galluzzi (10.1016/j.celrep.2016.07.082_bib18) 2014; 159 Kim (10.1016/j.celrep.2016.07.082_bib29) 2011; 13 Baughman (10.1016/j.celrep.2016.07.082_bib3) 2011; 476 Bonora (10.1016/j.celrep.2016.07.082_bib4) 2013; 8 Rosenfeldt (10.1016/j.celrep.2016.07.082_bib48) 2012; 8 Wieckowski (10.1016/j.celrep.2016.07.082_bib55) 2009; 4 Egan (10.1016/j.celrep.2016.07.082_bib15) 2011; 331 Gurrieri (10.1016/j.celrep.2016.07.082_bib23) 2004; 96 Mihaylova (10.1016/j.celrep.2016.07.082_bib38) 2011; 13 Giorgi (10.1016/j.celrep.2016.07.082_bib20) 2015; 6 De Stefani (10.1016/j.celrep.2016.07.082_bib13) 2011; 476 Sehgal (10.1016/j.celrep.2016.07.082_bib49) 2015; 29 Pearson (10.1016/j.celrep.2016.07.082_bib43) 2001; 20 Rabinowitz (10.1016/j.celrep.2016.07.082_bib46) 2010; 330 Booth (10.1016/j.celrep.2016.07.082_bib5) 2014; 26 Tasdemir (10.1016/j.celrep.2016.07.082_bib53) 2008; 10 Vance (10.1016/j.celrep.2016.07.082_bib54) 1990; 265 Lin (10.1016/j.celrep.2016.07.082_bib34) 2012; 8 Guo (10.1016/j.celrep.2016.07.082_bib22) 2000; 2 Xu (10.1016/j.celrep.2016.07.082_bib56) 2013; 5 Mariño (10.1016/j.celrep.2016.07.082_bib37) 2014; 15 Klionsky (10.1016/j.celrep.2016.07.082_bib30) 2012; 8 Li (10.1016/j.celrep.2016.07.082_bib33) 2010; 46 Morselli (10.1016/j.celrep.2016.07.082_bib40) 2011; 10 Criollo (10.1016/j.celrep.2016.07.082_bib12) 2007; 14 Ren (10.1016/j.celrep.2016.07.082_bib47) 2011; 28 Nazio (10.1016/j.celrep.2016.07.082_bib41) 2013; 15 Heath-Engel (10.1016/j.celrep.2016.07.082_bib26) 2008; 27 Jouaville (10.1016/j.celrep.2016.07.082_bib28) 1999; 96 Hanahan (10.1016/j.celrep.2016.07.082_bib25) 2011; 144 Mizushima (10.1016/j.celrep.2016.07.082_bib39) 2010; 140 Cárdenas (10.1016/j.celrep.2016.07.082_bib8) 2010; 142 Carracedo (10.1016/j.celrep.2016.07.082_bib9) 2013; 13 Giorgi (10.1016/j.celrep.2016.07.082_bib21) 2015; 112 Esteban-Martínez (10.1016/j.celrep.2016.07.082_bib17) 2015; 75 Klionsky (10.1016/j.celrep.2016.07.082_bib31) 2016; 12 Eisenberg-Lerner (10.1016/j.celrep.2016.07.082_bib16) 2009; 16 27663133 - Trends Cell Biol. 2016 Dec;26(12):889-890. doi: 10.1016/j.tcb.2016.09.001. |
| References_xml | – volume: 476 start-page: 336 year: 2011 end-page: 340 ident: bib13 article-title: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter publication-title: Nature – volume: 20 start-page: 7250 year: 2001 end-page: 7256 ident: bib43 article-title: PML interaction with p53 and its role in apoptosis and replicative senescence publication-title: Oncogene – volume: 13 start-page: 132 year: 2011 end-page: 141 ident: bib29 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. – volume: 28 start-page: 231 year: 2011 end-page: 236 ident: bib47 article-title: Autophagy modification augmented the treatment effects initiated by arsenic trioxide in NB4 cells publication-title: Med. Oncol. – volume: 14 start-page: 48 year: 2015 ident: bib52 article-title: Apoptosis, autophagy, necroptosis, and cancer metastasis publication-title: Mol. Cancer – volume: 112 start-page: 1779 year: 2015 end-page: 1784 ident: bib21 article-title: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner publication-title: Proc. Natl. Acad. Sci. USA – volume: 495 start-page: 389 year: 2013 end-page: 393 ident: bib24 article-title: Autophagosomes form at ER-mitochondria contact sites publication-title: Nature – volume: 14 start-page: 1029 year: 2007 end-page: 1039 ident: bib12 article-title: Regulation of autophagy by the inositol trisphosphate receptor publication-title: Cell Death Differ. – volume: 159 start-page: 1263 year: 2014 end-page: 1276 ident: bib18 article-title: Metabolic control of autophagy publication-title: Cell – volume: 16 start-page: 966 year: 2009 end-page: 975 ident: bib16 article-title: Life and death partners: Apoptosis, autophagy and the cross-talk between them publication-title: Cell Death Differ. – volume: 75 start-page: 79 year: 2015 end-page: 86 ident: bib17 article-title: Autophagic flux determination in vivo and ex vivo publication-title: Methods – volume: 46 start-page: 1900 year: 2010 end-page: 1909 ident: bib33 article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model publication-title: Eur. J. Cancer – volume: 406 start-page: 207 year: 2000 end-page: 210 ident: bib44 article-title: PML regulates p53 acetylation and premature senescence induced by oncogenic Ras publication-title: Nature – volume: 288 start-page: 29746 year: 2013 end-page: 29759 ident: bib10 article-title: Ablation of promyelocytic leukemia protein (PML) re-patterns energy balance and protects mice from obesity induced by a Western diet publication-title: J. Biol. Chem. – volume: 27 start-page: 6419 year: 2008 end-page: 6433 ident: bib26 article-title: The endoplasmic reticulum in apoptosis and autophagy: Role of the BCL-2 protein family publication-title: Oncogene – volume: 330 start-page: 1344 year: 2010 end-page: 1348 ident: bib46 article-title: Autophagy and metabolism publication-title: Science – volume: 8 start-page: 741 year: 2007 end-page: 752 ident: bib36 article-title: Self-eating and self-killing: Crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 331 start-page: 456 year: 2011 end-page: 461 ident: bib15 article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy publication-title: Science – volume: 8 start-page: 1477 year: 2012 end-page: 1493 ident: bib34 article-title: Autophagy: Resetting glutamine-dependent metabolism and oxygen consumption publication-title: Autophagy – volume: 8 start-page: 2105 year: 2013 end-page: 2118 ident: bib4 article-title: Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes publication-title: Nat. Protoc. – volume: 10 start-page: 51 year: 2006 end-page: 64 ident: bib14 article-title: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis publication-title: Cancer Cell – volume: 20 start-page: 3159 year: 2014 end-page: 3173 ident: bib11 article-title: Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer publication-title: Clin. Cancer Res. – volume: 96 start-page: 269 year: 2004 end-page: 279 ident: bib23 article-title: Loss of the tumor suppressor PML in human cancers of multiple histologic origins publication-title: J. Natl. Cancer Inst. – volume: 96 start-page: 13807 year: 1999 end-page: 13812 ident: bib28 article-title: Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 963 year: 2012 end-page: 969 ident: bib48 article-title: Analysis of macroautophagy by immunohistochemistry publication-title: Autophagy – volume: 26 start-page: 549 year: 2014 end-page: 555 ident: bib5 article-title: The role of cell signalling in the crosstalk between autophagy and apoptosis publication-title: Cell. Signal. – volume: 5 start-page: 411 year: 2013 end-page: 416 ident: bib56 article-title: Active autophagy in the tumor microenvironment: A novel mechanism for cancer metastasis publication-title: Oncol. Lett. – volume: 2 start-page: 730 year: 2000 end-page: 736 ident: bib22 article-title: The function of PML in p53-dependent apoptosis publication-title: Nat. Cell Biol. – volume: 17 start-page: 351 year: 2015 end-page: 359 ident: bib6 article-title: Metabolic pathways promoting cancer cell survival and growth publication-title: Nat. Cell Biol. – volume: 330 start-page: 1247 year: 2010 end-page: 1251 ident: bib19 article-title: PML regulates apoptosis at endoplasmic reticulum by modulating calcium release publication-title: Science – volume: 18 start-page: 1350 year: 2012 end-page: 1358 ident: bib27 article-title: A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance publication-title: Nat. Med. – volume: 10 start-page: 2763 year: 2011 end-page: 2769 ident: bib40 article-title: p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200 publication-title: Cell Cycle – volume: 10 start-page: 676 year: 2008 end-page: 687 ident: bib53 article-title: Regulation of autophagy by cytoplasmic p53 publication-title: Nat. Cell Biol. – volume: 142 start-page: 270 year: 2010 end-page: 283 ident: bib8 article-title: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria publication-title: Cell – volume: 25 start-page: 1025 year: 2005 end-page: 1040 ident: bib7 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol. Cell. Biol. – volume: 193 start-page: 1361 year: 2001 end-page: 1371 ident: bib32 article-title: Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation publication-title: J. Exp. Med. – volume: 19 start-page: 428 year: 2013 end-page: 446 ident: bib35 article-title: Autophagy: Shaping the tumor microenvironment and therapeutic response publication-title: Trends Mol. Med. – volume: 13 start-page: 227 year: 2013 end-page: 232 ident: bib9 article-title: Cancer metabolism: Fatty acid oxidation in the limelight publication-title: Nat. Rev. Cancer – volume: 265 start-page: 7248 year: 1990 end-page: 7256 ident: bib54 article-title: Phospholipid synthesis in a membrane fraction associated with mitochondria publication-title: J. Biol. Chem. – volume: 476 start-page: 341 year: 2011 end-page: 345 ident: bib3 article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter publication-title: Nature – volume: 4 start-page: 1582 year: 2009 end-page: 1590 ident: bib55 article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells publication-title: Nat. Protoc. – volume: 12 start-page: 1 year: 2016 end-page: 222 ident: bib31 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy – volume: 20 start-page: 167 year: 2014 end-page: 174 ident: bib1 article-title: Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure publication-title: Nat. Med. – volume: 15 start-page: 406 year: 2013 end-page: 416 ident: bib41 article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 publication-title: Nat. Cell Biol. – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib25 article-title: Hallmarks of cancer: The next generation publication-title: Cell – volume: 3 start-page: 599 year: 2012 end-page: 603 ident: bib42 article-title: Compound in vivo inactivation of Pml and p53 uncovers a functional interaction in angiosarcoma suppression publication-title: Genes Cancer – volume: 20 start-page: 7216 year: 2001 end-page: 7222 ident: bib45 article-title: The theory of APL publication-title: Oncogene – volume: 29 start-page: 517 year: 2015 end-page: 525 ident: bib49 article-title: You eat what you are: Autophagy inhibition as a therapeutic strategy in leukemia publication-title: Leukemia – volume: 19 start-page: 2995 year: 2013 end-page: 3007 ident: bib50 article-title: Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy publication-title: Clin. Cancer Res. – volume: 6 start-page: 1435 year: 2015 end-page: 1445 ident: bib20 article-title: Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling publication-title: Oncotarget – volume: 15 start-page: 81 year: 2014 end-page: 94 ident: bib37 article-title: Self-consumption: The interplay of autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 17 start-page: 654 year: 2011 end-page: 666 ident: bib2 article-title: Principles and current strategies for targeting autophagy for cancer treatment publication-title: Clin. Cancer Res. – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bib39 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 3 start-page: 1272 year: 2013 end-page: 1285 ident: bib51 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors publication-title: Cancer Discov. – volume: 8 start-page: 445 year: 2012 end-page: 544 ident: bib30 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy – volume: 13 start-page: 1016 year: 2011 end-page: 1023 ident: bib38 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. – volume: 14 start-page: 1029 year: 2007 ident: 10.1016/j.celrep.2016.07.082_bib12 article-title: Regulation of autophagy by the inositol trisphosphate receptor publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402099 – volume: 20 start-page: 167 year: 2014 ident: 10.1016/j.celrep.2016.07.082_bib1 article-title: Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure publication-title: Nat. Med. doi: 10.1038/nm.3441 – volume: 8 start-page: 1477 year: 2012 ident: 10.1016/j.celrep.2016.07.082_bib34 article-title: Autophagy: Resetting glutamine-dependent metabolism and oxygen consumption publication-title: Autophagy doi: 10.4161/auto.21228 – volume: 27 start-page: 6419 year: 2008 ident: 10.1016/j.celrep.2016.07.082_bib26 article-title: The endoplasmic reticulum in apoptosis and autophagy: Role of the BCL-2 protein family publication-title: Oncogene doi: 10.1038/onc.2008.309 – volume: 3 start-page: 599 year: 2012 ident: 10.1016/j.celrep.2016.07.082_bib42 article-title: Compound in vivo inactivation of Pml and p53 uncovers a functional interaction in angiosarcoma suppression publication-title: Genes Cancer doi: 10.1177/1947601912473604 – volume: 2 start-page: 730 year: 2000 ident: 10.1016/j.celrep.2016.07.082_bib22 article-title: The function of PML in p53-dependent apoptosis publication-title: Nat. Cell Biol. doi: 10.1038/35036365 – volume: 159 start-page: 1263 year: 2014 ident: 10.1016/j.celrep.2016.07.082_bib18 article-title: Metabolic control of autophagy publication-title: Cell doi: 10.1016/j.cell.2014.11.006 – volume: 29 start-page: 517 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib49 article-title: You eat what you are: Autophagy inhibition as a therapeutic strategy in leukemia publication-title: Leukemia doi: 10.1038/leu.2014.349 – volume: 17 start-page: 654 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib2 article-title: Principles and current strategies for targeting autophagy for cancer treatment publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2634 – volume: 142 start-page: 270 year: 2010 ident: 10.1016/j.celrep.2016.07.082_bib8 article-title: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria publication-title: Cell doi: 10.1016/j.cell.2010.06.007 – volume: 406 start-page: 207 year: 2000 ident: 10.1016/j.celrep.2016.07.082_bib44 article-title: PML regulates p53 acetylation and premature senescence induced by oncogenic Ras publication-title: Nature doi: 10.1038/35018127 – volume: 13 start-page: 1016 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib38 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb2329 – volume: 15 start-page: 81 year: 2014 ident: 10.1016/j.celrep.2016.07.082_bib37 article-title: Self-consumption: The interplay of autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3735 – volume: 20 start-page: 7250 year: 2001 ident: 10.1016/j.celrep.2016.07.082_bib43 article-title: PML interaction with p53 and its role in apoptosis and replicative senescence publication-title: Oncogene doi: 10.1038/sj.onc.1204856 – volume: 331 start-page: 456 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib15 article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy publication-title: Science doi: 10.1126/science.1196371 – volume: 6 start-page: 1435 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib20 article-title: Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling publication-title: Oncotarget doi: 10.18632/oncotarget.2935 – volume: 14 start-page: 48 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib52 article-title: Apoptosis, autophagy, necroptosis, and cancer metastasis publication-title: Mol. Cancer doi: 10.1186/s12943-015-0321-5 – volume: 112 start-page: 1779 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib21 article-title: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1410723112 – volume: 20 start-page: 7216 year: 2001 ident: 10.1016/j.celrep.2016.07.082_bib45 article-title: The theory of APL publication-title: Oncogene doi: 10.1038/sj.onc.1204855 – volume: 75 start-page: 79 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib17 article-title: Autophagic flux determination in vivo and ex vivo publication-title: Methods doi: 10.1016/j.ymeth.2015.01.008 – volume: 10 start-page: 2763 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib40 article-title: p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200 publication-title: Cell Cycle doi: 10.4161/cc.10.16.16868 – volume: 10 start-page: 51 year: 2006 ident: 10.1016/j.celrep.2016.07.082_bib14 article-title: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.06.001 – volume: 140 start-page: 313 year: 2010 ident: 10.1016/j.celrep.2016.07.082_bib39 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 8 start-page: 445 year: 2012 ident: 10.1016/j.celrep.2016.07.082_bib30 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy doi: 10.4161/auto.19496 – volume: 96 start-page: 13807 year: 1999 ident: 10.1016/j.celrep.2016.07.082_bib28 article-title: Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.24.13807 – volume: 15 start-page: 406 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib41 article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2708 – volume: 12 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2016.07.082_bib31 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 26 start-page: 549 year: 2014 ident: 10.1016/j.celrep.2016.07.082_bib5 article-title: The role of cell signalling in the crosstalk between autophagy and apoptosis publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.11.028 – volume: 288 start-page: 29746 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib10 article-title: Ablation of promyelocytic leukemia protein (PML) re-patterns energy balance and protects mice from obesity induced by a Western diet publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.487595 – volume: 19 start-page: 2995 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib50 article-title: Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-1542 – volume: 16 start-page: 966 year: 2009 ident: 10.1016/j.celrep.2016.07.082_bib16 article-title: Life and death partners: Apoptosis, autophagy and the cross-talk between them publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.33 – volume: 20 start-page: 3159 year: 2014 ident: 10.1016/j.celrep.2016.07.082_bib11 article-title: Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-2060 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib25 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 193 start-page: 1361 year: 2001 ident: 10.1016/j.celrep.2016.07.082_bib32 article-title: Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation publication-title: J. Exp. Med. doi: 10.1084/jem.193.12.1361 – volume: 46 start-page: 1900 year: 2010 ident: 10.1016/j.celrep.2016.07.082_bib33 article-title: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2010.02.021 – volume: 28 start-page: 231 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib47 article-title: Autophagy modification augmented the treatment effects initiated by arsenic trioxide in NB4 cells publication-title: Med. Oncol. doi: 10.1007/s12032-010-9430-6 – volume: 18 start-page: 1350 year: 2012 ident: 10.1016/j.celrep.2016.07.082_bib27 article-title: A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance publication-title: Nat. Med. doi: 10.1038/nm.2882 – volume: 19 start-page: 428 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib35 article-title: Autophagy: Shaping the tumor microenvironment and therapeutic response publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2013.04.005 – volume: 8 start-page: 2105 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib4 article-title: Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.127 – volume: 13 start-page: 227 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib9 article-title: Cancer metabolism: Fatty acid oxidation in the limelight publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3483 – volume: 8 start-page: 963 year: 2012 ident: 10.1016/j.celrep.2016.07.082_bib48 article-title: Analysis of macroautophagy by immunohistochemistry publication-title: Autophagy doi: 10.4161/auto.20186 – volume: 495 start-page: 389 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib24 article-title: Autophagosomes form at ER-mitochondria contact sites publication-title: Nature doi: 10.1038/nature11910 – volume: 330 start-page: 1247 year: 2010 ident: 10.1016/j.celrep.2016.07.082_bib19 article-title: PML regulates apoptosis at endoplasmic reticulum by modulating calcium release publication-title: Science doi: 10.1126/science.1189157 – volume: 96 start-page: 269 year: 2004 ident: 10.1016/j.celrep.2016.07.082_bib23 article-title: Loss of the tumor suppressor PML in human cancers of multiple histologic origins publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djh043 – volume: 13 start-page: 132 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib29 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2152 – volume: 3 start-page: 1272 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib51 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0397 – volume: 476 start-page: 341 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib3 article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10234 – volume: 5 start-page: 411 year: 2013 ident: 10.1016/j.celrep.2016.07.082_bib56 article-title: Active autophagy in the tumor microenvironment: A novel mechanism for cancer metastasis publication-title: Oncol. Lett. doi: 10.3892/ol.2012.1015 – volume: 330 start-page: 1344 year: 2010 ident: 10.1016/j.celrep.2016.07.082_bib46 article-title: Autophagy and metabolism publication-title: Science doi: 10.1126/science.1193497 – volume: 17 start-page: 351 year: 2015 ident: 10.1016/j.celrep.2016.07.082_bib6 article-title: Metabolic pathways promoting cancer cell survival and growth publication-title: Nat. Cell Biol. doi: 10.1038/ncb3124 – volume: 4 start-page: 1582 year: 2009 ident: 10.1016/j.celrep.2016.07.082_bib55 article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.151 – volume: 476 start-page: 336 year: 2011 ident: 10.1016/j.celrep.2016.07.082_bib13 article-title: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10230 – volume: 10 start-page: 676 year: 2008 ident: 10.1016/j.celrep.2016.07.082_bib53 article-title: Regulation of autophagy by cytoplasmic p53 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1730 – volume: 265 start-page: 7248 year: 1990 ident: 10.1016/j.celrep.2016.07.082_bib54 article-title: Phospholipid synthesis in a membrane fraction associated with mitochondria publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39106-9 – volume: 8 start-page: 741 year: 2007 ident: 10.1016/j.celrep.2016.07.082_bib36 article-title: Self-eating and self-killing: Crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2239 – volume: 25 start-page: 1025 year: 2005 ident: 10.1016/j.celrep.2016.07.082_bib7 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.3.1025-1040.2005 – reference: 27663133 - Trends Cell Biol. 2016 Dec;26(12):889-890. doi: 10.1016/j.tcb.2016.09.001. |
| SSID | ssj0000601194 |
| Score | 2.5168629 |
| Snippet | The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2415 |
| SubjectTerms | Adenine - analogs & derivatives Adenine - pharmacology Animals Antineoplastic Agents - pharmacology Arsenic Trioxide Arsenicals - pharmacology Autophagy - drug effects Autophagy - genetics Calcium - metabolism Cancer Cell Line, Tumor Disease Progression Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism Gene Expression Regulation, Neoplastic Humans Leukemia, Promyelocytic, Acute - genetics Leukemia, Promyelocytic, Acute - metabolism Leukemia, Promyelocytic, Acute - pathology Life Sciences Membrane Potential, Mitochondrial - drug effects Mice Mice, Knockout Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Membranes - drug effects Mitochondrial Membranes - metabolism Oncogene Proteins, Fusion - genetics Oncogene Proteins, Fusion - metabolism Oxides - pharmacology Promyelocytic Leukemia Protein - deficiency Promyelocytic Leukemia Protein - genetics Promyelocytic Leukemia Protein - metabolism Signal Transduction Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Xenograft Model Antitumor Assays |
| Title | PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development |
| URI | https://dx.doi.org/10.1016/j.celrep.2016.07.082 https://www.ncbi.nlm.nih.gov/pubmed/27545895 https://www.proquest.com/docview/1816637101 https://hal.sorbonne-universite.fr/hal-01375400 https://pubmed.ncbi.nlm.nih.gov/PMC5011426 https://doaj.org/article/2d6efb2bd9824461bd46909dade1fae1 |
| Volume | 16 |
| WOSCitedRecordID | wos000382311300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoBRIXRMtrC60M4hrh2EnsHJeKqpW6VYVA2ptlZ2y6ULJoH5X67zu2k9UGDnvh6ji2MjOe-RyPvyHko7UGGgFFZhW6QIxQLDN55MZjhQQJRcNtLDYhr67UdFpfb5X6CjlhiR44Ce4Th8p5yy3UCiNRlVsIG7oaDLjcGxc3PkzWW5up5IMDl1k4UuY85GzxQvb35mJyV-NuFy7QVeaJu1PxQVyK9P2D8LR3E_Ik_wWhf-dSbgWns-fkWYcq6Th9zQF55NpD8iTVmbx_QX5dTy6pWdEJLl90dy2g1WW9YhzQifuNm2Z0evRiSfviBxThLEV4SL_2ybItnXs6XgcqAvPjnpoW6GkwmgXdSj16Sb6fffl2ep51VRaypqzEKst92RSs8FCXgGitsRbjVw6Mg7NlAZ6bqmK-YlAaRHfASyeE9MazWgkvFYhXZL-dt-4NoWCVKCx45SqLvoAbhXjSuQqU5KWAckREL2PddBTkoRLGre5zzX7qpBkdNKOZ1KiZEck2b_1JFBw7-n8O6tv0DQTasQHNSndmpXeZ1YjIXvm6wyIJY-BQsx3Tf0BbGcx-Pr7UoS3QO6IM2R0O_743JY3rORzSoJbn66XOw0GuQNyHfV4n09qMxWU45qxRjnJgdIPJhk_a2U3kDC_jpenq6H_I5i15Gr43_lln78j-arF2x-Rxc7eaLRcnZE9O1Ulcjg9yrDko |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PML+at+Mitochondria-Associated+Membranes+Is+Critical+for+the+Repression+of+Autophagy+and+Cancer+Development&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Missiroli%2C+Sonia&rft.au=Bonora%2C+Massimo&rft.au=Patergnani%2C+Simone&rft.au=Poletti%2C+Federica&rft.date=2016-08-30&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=16&rft.issue=9&rft.spage=2415&rft.epage=2427&rft_id=info:doi/10.1016%2Fj.celrep.2016.07.082&rft.externalDocID=S2211124716310282 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |