GraphKM: machine and deep learning for KM prediction of wildtype and mutant enzymes
Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K M are difficult and time-consuming, prediction of the K M values from machine and deep learnin...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 25; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
28.03.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Michaelis constant (K
M
) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K
M
are difficult and time-consuming, prediction of the K
M
values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K
M
prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K
M
prediction models, we collected an independent K
M
dataset (HXKm) from literatures. |
|---|---|
| AbstractList | Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K.sub.M are difficult and time-consuming, prediction of the K.sub.M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K.sub.M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K.sub.M prediction models, we collected an independent K.sub.M dataset (HXKm) from literatures. Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K M are difficult and time-consuming, prediction of the K M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K M prediction models, we collected an independent K M dataset (HXKm) from literatures. Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures. Abstract Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures. Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures. Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K.sub.M are difficult and time-consuming, prediction of the K.sub.M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K.sub.M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K.sub.M prediction models, we collected an independent K.sub.M dataset (HXKm) from literatures. Keywords: Neural networks, Tree boosting, Michaelis constant, Deep learning, Graph neural network |
| ArticleNumber | 135 |
| Audience | Academic |
| Author | Yan, Ming He, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: He fullname: He, Xiao organization: College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University – sequence: 2 givenname: Ming surname: Yan fullname: Yan, Ming email: yanming@njtech.edu.cn organization: College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University |
| BookMark | eNp9ksFu1DAQhiNUJNrCC3CKxAUOKXZixw63qipl1VZIFM7WxBlvvUrsYHsF5enxNqCyFap8sDX-_n_smTkqDpx3WBSvKTmhVLbvI60l7ypSs4pwwdqKPisOKRO0qinhB_-cXxRHMW4IoUISfljcXASYby-vP5QT6FvrsAQ3lAPiXI4IwVm3Lo0P5eV1OQccrE7Wu9Kb8ocdh3Q3L_y0TeBSie7X3YTxZfHcwBjx1Z_9uPj28fzr2afq6vPF6uz0qtK8bVJFIT9ZmBoYsA566LDpkBCoW9a2Tas5J0TKXhDKGDO9NEL3Td9yEJKh5kNzXKwW38HDRs3BThDulAer7gM-rBWEZPWISvemZdoMRDfIOtbLDjtW94z3Q77oSPZ6u3jNwX_fYkxqslHjOIJDv42qIXXNW8GYyOibR-jGb4PLP81UIyRvpCQP1BpyfuuMTwH0zlSdigxkju68Tv5D5TXgZHXusbE5vid4tyfITMKfaQ3bGNXq5ss-KxdWBx9jQKO0TbBrYE5iR0WJ2g2PWoZH5eFR98OjaJbWj6R_y_ukqFlEMcNujeGhME-ofgO2ItTb |
| CitedBy_id | crossref_primary_10_1021_acs_iecr_5c01597 crossref_primary_10_1002_cctc_202401542 crossref_primary_10_1093_bib_bbaf283 |
| Cites_doi | 10.1186/s12859-022-05009-x 10.1093/bioinformatics/btaa921 10.1101/gr.1262503 10.1109/TNN.2008.2005605 10.1093/nar/28.1.27 10.3389/fnins.2023.1197824 10.1093/nar/gkaa971 10.1016/j.febslet.2013.06.043 10.1002/prot.340180402 10.1109/IJCNN.2005.1555942 10.1093/nar/gkx1065 10.1016/j.asoc.2013.01.019 10.1126/science.ade2574 10.1093/nar/gkaa1025 10.1007/s12539-012-0115-z 10.1093/protein/2.3.193 10.1145/2939672.2939785 10.1126/science.146.3651.1593 10.1016/j.engappai.2017.04.004 10.1371/journal.pbio.3001402 10.1016/j.chemolab.2021.104351 10.1109/TCBB.2007.70225 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 DOA |
| DOI | 10.1186/s12859-024-05746-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Proquest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Proquest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Proquest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_cbf64cfd0c3e494b89e942b45bdf6490 A788078517 10_1186_s12859_024_05746_1 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 |
| ID | FETCH-LOGICAL-c563t-1a8597f2a4a49aba9e39e00a2646636c550088b701444fb8f7cb3b65a784ec5d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:39:09 EDT 2025 Sun Nov 09 09:04:46 EST 2025 Sun Nov 23 03:42:07 EST 2025 Sat Nov 29 14:11:47 EST 2025 Sat Nov 29 10:42:52 EST 2025 Wed Nov 26 11:19:25 EST 2025 Sat Nov 29 05:40:16 EST 2025 Tue Nov 18 21:45:37 EST 2025 Sat Sep 06 07:27:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Neural networks Michaelis constant Tree boosting Graph neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-1a8597f2a4a49aba9e39e00a2646636c550088b701444fb8f7cb3b65a784ec5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/cbf64cfd0c3e494b89e942b45bdf6490 |
| PQID | 3037853880 |
| PQPubID | 44065 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbf64cfd0c3e494b89e942b45bdf6490 proquest_miscellaneous_3022567447 proquest_journals_3037853880 gale_infotracmisc_A788078517 gale_infotracacademiconefile_A788078517 gale_incontextgauss_ISR_A788078517 crossref_citationtrail_10_1186_s12859_024_05746_1 crossref_primary_10_1186_s12859_024_05746_1 springer_journals_10_1186_s12859_024_05746_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-28 |
| PublicationDateYYYYMMDD | 2024-03-28 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2024 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 5746_CR16 5746_CR15 5746_CR14 5746_CR13 S-M Yan (5746_CR9) 2012; 4 MA Remli (5746_CR5) 2017; 62 5746_CR11 D Altschuh (5746_CR19) 1988; 2 S Kim (5746_CR27) 2021; 49 U Wittig (5746_CR26) 2018; 46 5746_CR30 S Borger (5746_CR8) 2006; 17 W Bao (5746_CR2) 2021; 215 A Kroll (5746_CR7) 2021 K Maeda (5746_CR10) 2022; 23 M Kanehisa (5746_CR31) 2000; 28 Z Lin (5746_CR22) 2023; 379 5746_CR17 J Thomas (5746_CR21) 2008; 5 JH Friedman (5746_CR24) 2001; 29 5746_CR23 A Chang (5746_CR25) 2021; 49 C Yanofsky (5746_CR18) 1964; 146 CG Moles (5746_CR3) 2003; 13 T Nguyen (5746_CR29) 2021; 37 5746_CR1 F Scarselli (5746_CR12) 2009; 20 S Da Ros (5746_CR6) 2013; 13 K Smallbone (5746_CR4) 2013; 587 U Göbel (5746_CR20) 1994; 18 5746_CR28 |
| References_xml | – volume: 23 start-page: 455 year: 2022 ident: 5746_CR10 publication-title: BMC Bioinform doi: 10.1186/s12859-022-05009-x – volume: 37 start-page: 1140 year: 2021 ident: 5746_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa921 – volume: 13 start-page: 2467 year: 2003 ident: 5746_CR3 publication-title: Genome Res doi: 10.1101/gr.1262503 – volume: 17 start-page: 80 year: 2006 ident: 5746_CR8 publication-title: Genome Inform – volume: 20 start-page: 61 year: 2009 ident: 5746_CR12 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005605 – volume: 28 start-page: 27 year: 2000 ident: 5746_CR31 publication-title: Nucl Acids Res doi: 10.1093/nar/28.1.27 – ident: 5746_CR1 doi: 10.3389/fnins.2023.1197824 – volume: 49 start-page: D1388 year: 2021 ident: 5746_CR27 publication-title: Nucl Acids Res doi: 10.1093/nar/gkaa971 – volume: 587 start-page: 2832 year: 2013 ident: 5746_CR4 publication-title: FEBS Lett doi: 10.1016/j.febslet.2013.06.043 – volume: 18 start-page: 309 year: 1994 ident: 5746_CR20 publication-title: Proteins doi: 10.1002/prot.340180402 – ident: 5746_CR11 doi: 10.1109/IJCNN.2005.1555942 – ident: 5746_CR16 – volume: 46 start-page: D656 year: 2018 ident: 5746_CR26 publication-title: Nucl Acids Res doi: 10.1093/nar/gkx1065 – volume: 13 start-page: 2205 year: 2013 ident: 5746_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.01.019 – ident: 5746_CR14 – volume: 379 start-page: 1123 year: 2023 ident: 5746_CR22 publication-title: Science doi: 10.1126/science.ade2574 – volume: 49 start-page: D498 year: 2021 ident: 5746_CR25 publication-title: Nucl Acids Res doi: 10.1093/nar/gkaa1025 – volume: 4 start-page: 46 year: 2012 ident: 5746_CR9 publication-title: Interdiscipl Sci Comput Life Sci doi: 10.1007/s12539-012-0115-z – ident: 5746_CR30 – volume: 2 start-page: 193 year: 1988 ident: 5746_CR19 publication-title: Protein Eng doi: 10.1093/protein/2.3.193 – ident: 5746_CR23 doi: 10.1145/2939672.2939785 – ident: 5746_CR28 – volume: 146 start-page: 1593 year: 1964 ident: 5746_CR18 publication-title: Science doi: 10.1126/science.146.3651.1593 – volume: 29 start-page: 1144 issue: 1189–1232 year: 2001 ident: 5746_CR24 publication-title: Science – volume: 62 start-page: 164 year: 2017 ident: 5746_CR5 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.04.004 – ident: 5746_CR15 – year: 2021 ident: 5746_CR7 publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001402 – ident: 5746_CR17 – volume: 215 year: 2021 ident: 5746_CR2 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2021.104351 – ident: 5746_CR13 – volume: 5 start-page: 183 year: 2008 ident: 5746_CR21 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2007.70225 |
| SSID | ssj0017805 |
| Score | 2.4819415 |
| Snippet | Michaelis constant (K
M
) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology.... Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic... Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As... Abstract Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Amino acids Application programming interface Artificial intelligence Bioinformatics Biology Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Datasets Deep learning Enzyme kinetics Enzymes Genetic aspects Graph neural network Graph neural networks Graphical representations Identification and classification Kinetics Learning algorithms Life Sciences Machine learning Michaelis constant Microarrays Mutants Mutation (Biology) Neural networks Prediction models Protein engineering Protein research Proteins Substrates Tree boosting |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMQL34jCQAYh8QDW4sRxbF7QQAzQ2DQxQHuz_JUKiSalaZHGX8-d63aqJvbCa3x2krvz-c4-_46Q51zJIIPljDtXMCFFYNoXkXkRauVtG33C6f7-uTk8VCcn-ihvuA05rXJlE5OhDr3HPfIdMLUNLC2gbm-mvxhWjcLT1VxC4zK5gigJZUrdO1qfIiBe_-qijJI7A0e0NgarEgMvRUjGNxajhNl_3jKfOyJNK8_ezf_95lvkRvY56e5SSW6TS7G7Q64tq1Ce3iXHHxC0ev_gNZ2kzMpIbRdoiHFKc02JMQXXlu4f0OkMz3VQlrRvKbjZAbdwE_1kgfWIaez-nE7icI9823v_9d1HlmstMF_Las64BdY0bWmFFdo6q2OlY1FY8JfAJ5EeAhmwR67BAEy0TrWNd5WTtW2UiL4O1X2y1fVdfEAouGSaK11bBbGdhXjEVlV0jQycRxCJGBG-YrrxGYgc62H8NCkgUdIsBWVAUCYJyvARebnuM13CcFxI_RZluaZECO30oJ-NTZ6RxrtWCt-GwldRaOGUjlqUTtQuQIMuRuQZaoJBkIwOs3DGdjEM5tPxF7PbKITpr3kzIi8yUdvDP3ibLzUAJxBXa4Nye4MSZrHfbF6pkMlWZDBn-jMiT9fN2BMz47rYL5AGLLJshIAhXq0U9WyIfzPp4cVvfESul2mmVKxU22RrPlvEx-Sq_z3_McyepHn2F1DlK3I priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9SFXzR-kVXq0QRfNDg5jabTXxrxarUFulp6VvI1x6F3u5xeyfUv96Z3O7JURX0dfNL2J1JJjObyW8IecGVDDJYzrhzORNSBKZ9HpkXoVTe1tEnnu7Tz9XxsTo701_6S2HdkO0-HEkmS52WtZJvOo5cawz2FAY-hpAMYp7rsN0pLNhwMj5dnx0gS_9wPea3_Ta2oMTUf9UeXzkYTfvNwZ3_e9Ntcrv3L-neakLcJddic4_cXFWcvLxPxh-QoPrw6C2dpizKSG0TaIhxRvv6ERMKbiw9PKKzOZ7hoN5oW1NwqQP-rk346RJrD9PY_Licxu4B-Xbw_uu7j6yvq8B8KYsF4xZer6pHVlihrbM6FjrmuQXfCPwP6SFoAdvjKgy2RO1UXXlXOFnaSonoy1A8JFtN28QdQsH90lzp0iqI4yzEHrYooqtk4DyCIkRG-CBq43vScax9cWFS8KGkWQnLgLBMEpbhGXm17jNbUW78Fb2PGlwjkS47PWjnE9OvPuNdLYWvQ-6LKLRwSkctRk6ULkCDzjPyHPVvkBCjwYybiV12nfk0PjF7lUJK_pJXGXnZg-oWvsHb_gIDSAI5tDaQuxtIWLF-s3mYZqa3GJ0BVwIakZonI8_WzdgTs-Ca2C4RA9ZXVkLAEK-HqfdriD8L6dG_wR-TW6M0ews2UrtkazFfxifkhv--OO_mT9Nq-wmbJyGa priority: 102 providerName: Springer Nature |
| Title | GraphKM: machine and deep learning for KM prediction of wildtype and mutant enzymes |
| URI | https://link.springer.com/article/10.1186/s12859-024-05746-1 https://www.proquest.com/docview/3037853880 https://www.proquest.com/docview/3022567447 https://doaj.org/article/cbf64cfd0c3e494b89e942b45bdf6490 |
| Volume | 25 |
| WOSCitedRecordID | wos001195495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4lMLjMogJB7AWtw4_uBtQxtMpVXUwlR4sWzHmZBoWjUt0vjrOTtpoZqAF14sJXeJkp_P9l18-R1CL6jkJS8NJdTalDDOSqJc6oljZS6dqbyLPN3nH8RoJKdTVfxW6ivkhLX0wC1wh85WnLmqTF3mmWJWKq9Y37LcliBQMVpPhdoEU93-QWDq3_wiI_lhQwNPG4H1iIB_wjihO8tQZOu_Oidf2RyNa87pXXSncxbxUfuQ99A1X99Ht9rykZcP0ORdYJseDN_gWUyJ9NjUJS69X-CuGMQFBp8UD4Z4sQwbMqET8LzC4B-X4dtr1J-tQyFh7OsflzPfPESfTk8-vn1PuiIJxOU8WxFq4M1E1TfMMGWsUT5TPk0NODrgTHAHEQhMJFaEyIlVVlbC2czy3AjJvMvL7BHaq-e130cYfClFpcqNhKDMQCBhssxbwUtKPSDKEkQ3mGnXMYiHQhbfdIwkJNctzhpw1hFnTRP0anvNouXP-Kv2ceiKrWbgvo4nwCJ0ZxH6XxaRoOehI3Vgt6hD-syFWTeNPpuM9REE_OAT5VQk6GWnVM3hHZzp_kYAJAIh1o7mwY4mDD-3K97Yi-6Gf6PBLwBh4NlJ0LOtOFwZUtpqP18HHZhKuWAMbvF6Y2e_bvFnkB7_D5CeoNv9OBwy0pcHaG-1XPun6Kb7vvraLHvoupiK2MoeunF8MirGvTjAoB0I0gsZsgW0Rf4F5MXZsPgMR-PJ-U91qidH |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELd0RhgEEgHsBanDiOg4TQuIxVbSfEBtqb8S0VEk1L04LKj-I3ck6adKom9rYHXuNjR3a-c4vt8xHyhCvppTeccWsjJqTwLHdRYE74VDlTBFfX6f7Sz_b31dFR_nGD_GnvwuCxytYm1obajx3-I98GU5uBawG4vZ78YMgahburLYXGEha9sPgFKVv1qvsOvu_TON59f_h2jzWsAsylMpkxbhQE0UVshBG5sSYPSR6iyEBkAN5XOgjZQfNshqmGKKwqMmcTK1OTKRFc6hMY9xw5LxKVoV71MrbatUB-gPZijpLbFcfqcAy8IIOoSEjG15xfzRFw0hOc2JKtPd3u1f9tja6RK01MTXeWSnCdbITyBrm4ZNlc3CQHH7Aod2_wko7qk6OBmtJTH8KENpwZQwqhO-0N6GSK-1aIVTouKKQRHn9R1_KjOfIt01D-XoxCdYt8PpMZ3Sab5bgMdwiFkDPnKk-NgtzVQL5lkiTYTHrOA0BAdAhvP7J2TaF15Pv4ruuES0m9BIYGYOgaGJp3yPNVn8myzMip0m8QOytJLBFePxhPh7qxONrZQgpX-MglQeTCqjzkIrYitR4a8qhDHiPyNBYBKfGU0dDMq0p3Dz7pnUwhDUHKsw551ggVY5iDM82lDVgJrBu2Jrm1JglWyq03t5DVjZWs9DFeO-TRqhl74sm_MoznKAMeR2ZCwBAvWsU4HuLfi3T39Dc-JJf2Dgd93e_u9-6Ry3GtpQmL1RbZnE3n4T654H7OvlXTB7WOU_L1rBXmL2ClhsE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQ-BAvfCMKAwxC4gGsxY3j2LyNj8LUrZooTHuz_JUKiaZV0yKNv547Jy1UAyTEa3y2kvP5fJe7-x0hz7iSQQbLGXcuY0KKwLTPIvMiFMrbKvqE031yWI5G6vRUH_9SxZ-y3dchybamAVGa6uXePFTtEVdyr-GIu8bgfmFgbwjJwP-5KDCRHv318ckmjoCI_etSmd_O27qOEmr_ed18Lkia7p7B9f9_6xvkWmd30v1WUG6SC7G-RS63nSjPbpPxewSuHh69otOUXRmprQMNMc5p11diQsG8pcMjOl9gbAf3k84qCqZ2wN-4iX66wp7ENNbfz6axuUM-D959evOBdf0WmC9kvmTcwuuVVd8KK7R1VsdcxyyzYDOBXSI9ODOgk1yJTpionKpK73InC1sqEX0R8rtkp57V8R6hYJZprnRhFfh3FnwSm-fRlTJwHmFTRI_wNduN78DIsSfGV5OcEiVNyywDzDKJWYb3yIvNnHkLxfFX6te4mxtKhNFOD2aLielOpfGuksJXIfN5FFo4paMWfScKF2BAZz3yFGXBIFBGjZk4E7tqGnMw_mj2S4VQ_QUve-R5R1TN4Bu87QobgBOIrbVFubtFCSfZbw-vRc50mqQxYGLAIEL29MiTzTDOxOy4Os5WSANaWZZCwBIv12L4c4k_M-n-v5E_JleO3w7M4cFo-IBc7SdBzllf7ZKd5WIVH5JL_tvyS7N4lA7hDw5tLWI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphKM%3A+machine+and+deep+learning+for+KM+prediction+of+wildtype+and+mutant+enzymes&rft.jtitle=BMC+bioinformatics&rft.au=He%2C+Xiao&rft.au=Yan%2C+Ming&rft.date=2024-03-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05746-1&rft.externalDBID=ISR&rft.externalDocID=A788078517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |