GraphKM: machine and deep learning for KM prediction of wildtype and mutant enzymes

Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K M are difficult and time-consuming, prediction of the K M values from machine and deep learnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 25; číslo 1; s. 1 - 12
Hlavní autoři: He, Xiao, Yan, Ming
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 28.03.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K M are difficult and time-consuming, prediction of the K M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K M prediction models, we collected an independent K M dataset (HXKm) from literatures.
AbstractList Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K.sub.M are difficult and time-consuming, prediction of the K.sub.M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K.sub.M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K.sub.M prediction models, we collected an independent K.sub.M dataset (HXKm) from literatures.
Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K M are difficult and time-consuming, prediction of the K M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K M prediction models, we collected an independent K M dataset (HXKm) from literatures.
Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.
Abstract Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.
Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of KM are difficult and time-consuming, prediction of the KM values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for KM prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported KM prediction models, we collected an independent KM dataset (HXKm) from literatures.
Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As overwhelming experimental measurements of K.sub.M are difficult and time-consuming, prediction of the K.sub.M values from machine and deep learning models would increase the pace of the enzymes kinetics studies. Existing machine and deep learning models are limited to the specific enzymes, i.e., a minority of enzymes or wildtype enzymes. Here, we used a deep learning framework PaddlePaddle to implement a machine and deep learning approach (GraphKM) for K.sub.M prediction of wildtype and mutant enzymes. GraphKM is composed by graph neural networks (GNN), fully connected layers and gradient boosting framework. We represented the substrates through molecular graph and the enzymes through a pretrained transformer-based language model to construct the model inputs. We compared the difference of the model results made by the different GNN (GIN, GAT, GCN, and GAT-GCN). The GAT-GCN-based model generally outperformed. To evaluate the prediction performance of the GraphKM and other reported K.sub.M prediction models, we collected an independent K.sub.M dataset (HXKm) from literatures. Keywords: Neural networks, Tree boosting, Michaelis constant, Deep learning, Graph neural network
ArticleNumber 135
Audience Academic
Author Yan, Ming
He, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: He
  fullname: He, Xiao
  organization: College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
– sequence: 2
  givenname: Ming
  surname: Yan
  fullname: Yan, Ming
  email: yanming@njtech.edu.cn
  organization: College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
BookMark eNp9ksFu1DAQhiNUJNrCC3CKxAUOKXZixw63qipl1VZIFM7WxBlvvUrsYHsF5enxNqCyFap8sDX-_n_smTkqDpx3WBSvKTmhVLbvI60l7ypSs4pwwdqKPisOKRO0qinhB_-cXxRHMW4IoUISfljcXASYby-vP5QT6FvrsAQ3lAPiXI4IwVm3Lo0P5eV1OQccrE7Wu9Kb8ocdh3Q3L_y0TeBSie7X3YTxZfHcwBjx1Z_9uPj28fzr2afq6vPF6uz0qtK8bVJFIT9ZmBoYsA566LDpkBCoW9a2Tas5J0TKXhDKGDO9NEL3Td9yEJKh5kNzXKwW38HDRs3BThDulAer7gM-rBWEZPWISvemZdoMRDfIOtbLDjtW94z3Q77oSPZ6u3jNwX_fYkxqslHjOIJDv42qIXXNW8GYyOibR-jGb4PLP81UIyRvpCQP1BpyfuuMTwH0zlSdigxkju68Tv5D5TXgZHXusbE5vid4tyfITMKfaQ3bGNXq5ss-KxdWBx9jQKO0TbBrYE5iR0WJ2g2PWoZH5eFR98OjaJbWj6R_y_ukqFlEMcNujeGhME-ofgO2ItTb
CitedBy_id crossref_primary_10_1021_acs_iecr_5c01597
crossref_primary_10_1002_cctc_202401542
crossref_primary_10_1093_bib_bbaf283
Cites_doi 10.1186/s12859-022-05009-x
10.1093/bioinformatics/btaa921
10.1101/gr.1262503
10.1109/TNN.2008.2005605
10.1093/nar/28.1.27
10.3389/fnins.2023.1197824
10.1093/nar/gkaa971
10.1016/j.febslet.2013.06.043
10.1002/prot.340180402
10.1109/IJCNN.2005.1555942
10.1093/nar/gkx1065
10.1016/j.asoc.2013.01.019
10.1126/science.ade2574
10.1093/nar/gkaa1025
10.1007/s12539-012-0115-z
10.1093/protein/2.3.193
10.1145/2939672.2939785
10.1126/science.146.3651.1593
10.1016/j.engappai.2017.04.004
10.1371/journal.pbio.3001402
10.1016/j.chemolab.2021.104351
10.1109/TCBB.2007.70225
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1186/s12859-024-05746-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Proquest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Proquest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 12
ExternalDocumentID oai_doaj_org_article_cbf64cfd0c3e494b89e942b45bdf6490
A788078517
10_1186_s12859_024_05746_1
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c563t-1a8597f2a4a49aba9e39e00a2646636c550088b701444fb8f7cb3b65a784ec5d3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:39:09 EDT 2025
Sun Nov 09 09:04:46 EST 2025
Sun Nov 23 03:42:07 EST 2025
Sat Nov 29 14:11:47 EST 2025
Sat Nov 29 10:42:52 EST 2025
Wed Nov 26 11:19:25 EST 2025
Sat Nov 29 05:40:16 EST 2025
Tue Nov 18 21:45:37 EST 2025
Sat Sep 06 07:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Neural networks
Michaelis constant
Tree boosting
Graph neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-1a8597f2a4a49aba9e39e00a2646636c550088b701444fb8f7cb3b65a784ec5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/cbf64cfd0c3e494b89e942b45bdf6490
PQID 3037853880
PQPubID 44065
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_cbf64cfd0c3e494b89e942b45bdf6490
proquest_miscellaneous_3022567447
proquest_journals_3037853880
gale_infotracmisc_A788078517
gale_infotracacademiconefile_A788078517
gale_incontextgauss_ISR_A788078517
crossref_citationtrail_10_1186_s12859_024_05746_1
crossref_primary_10_1186_s12859_024_05746_1
springer_journals_10_1186_s12859_024_05746_1
PublicationCentury 2000
PublicationDate 2024-03-28
PublicationDateYYYYMMDD 2024-03-28
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 5746_CR16
5746_CR15
5746_CR14
5746_CR13
S-M Yan (5746_CR9) 2012; 4
MA Remli (5746_CR5) 2017; 62
5746_CR11
D Altschuh (5746_CR19) 1988; 2
S Kim (5746_CR27) 2021; 49
U Wittig (5746_CR26) 2018; 46
5746_CR30
S Borger (5746_CR8) 2006; 17
W Bao (5746_CR2) 2021; 215
A Kroll (5746_CR7) 2021
K Maeda (5746_CR10) 2022; 23
M Kanehisa (5746_CR31) 2000; 28
Z Lin (5746_CR22) 2023; 379
5746_CR17
J Thomas (5746_CR21) 2008; 5
JH Friedman (5746_CR24) 2001; 29
5746_CR23
A Chang (5746_CR25) 2021; 49
C Yanofsky (5746_CR18) 1964; 146
CG Moles (5746_CR3) 2003; 13
T Nguyen (5746_CR29) 2021; 37
5746_CR1
F Scarselli (5746_CR12) 2009; 20
S Da Ros (5746_CR6) 2013; 13
K Smallbone (5746_CR4) 2013; 587
U Göbel (5746_CR20) 1994; 18
5746_CR28
References_xml – volume: 23
  start-page: 455
  year: 2022
  ident: 5746_CR10
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-022-05009-x
– volume: 37
  start-page: 1140
  year: 2021
  ident: 5746_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa921
– volume: 13
  start-page: 2467
  year: 2003
  ident: 5746_CR3
  publication-title: Genome Res
  doi: 10.1101/gr.1262503
– volume: 17
  start-page: 80
  year: 2006
  ident: 5746_CR8
  publication-title: Genome Inform
– volume: 20
  start-page: 61
  year: 2009
  ident: 5746_CR12
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– volume: 28
  start-page: 27
  year: 2000
  ident: 5746_CR31
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/28.1.27
– ident: 5746_CR1
  doi: 10.3389/fnins.2023.1197824
– volume: 49
  start-page: D1388
  year: 2021
  ident: 5746_CR27
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkaa971
– volume: 587
  start-page: 2832
  year: 2013
  ident: 5746_CR4
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.06.043
– volume: 18
  start-page: 309
  year: 1994
  ident: 5746_CR20
  publication-title: Proteins
  doi: 10.1002/prot.340180402
– ident: 5746_CR11
  doi: 10.1109/IJCNN.2005.1555942
– ident: 5746_CR16
– volume: 46
  start-page: D656
  year: 2018
  ident: 5746_CR26
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkx1065
– volume: 13
  start-page: 2205
  year: 2013
  ident: 5746_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.01.019
– ident: 5746_CR14
– volume: 379
  start-page: 1123
  year: 2023
  ident: 5746_CR22
  publication-title: Science
  doi: 10.1126/science.ade2574
– volume: 49
  start-page: D498
  year: 2021
  ident: 5746_CR25
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkaa1025
– volume: 4
  start-page: 46
  year: 2012
  ident: 5746_CR9
  publication-title: Interdiscipl Sci Comput Life Sci
  doi: 10.1007/s12539-012-0115-z
– ident: 5746_CR30
– volume: 2
  start-page: 193
  year: 1988
  ident: 5746_CR19
  publication-title: Protein Eng
  doi: 10.1093/protein/2.3.193
– ident: 5746_CR23
  doi: 10.1145/2939672.2939785
– ident: 5746_CR28
– volume: 146
  start-page: 1593
  year: 1964
  ident: 5746_CR18
  publication-title: Science
  doi: 10.1126/science.146.3651.1593
– volume: 29
  start-page: 1144
  issue: 1189–1232
  year: 2001
  ident: 5746_CR24
  publication-title: Science
– volume: 62
  start-page: 164
  year: 2017
  ident: 5746_CR5
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.04.004
– ident: 5746_CR15
– year: 2021
  ident: 5746_CR7
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3001402
– ident: 5746_CR17
– volume: 215
  year: 2021
  ident: 5746_CR2
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2021.104351
– ident: 5746_CR13
– volume: 5
  start-page: 183
  year: 2008
  ident: 5746_CR21
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2007.70225
SSID ssj0017805
Score 2.4819415
Snippet Michaelis constant (K M ) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology....
Michaelis constant (K.sub.M) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic...
Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic biology. As...
Abstract Michaelis constant (KM) is one of essential parameters for enzymes kinetics in the fields of protein engineering, enzyme engineering, and synthetic...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Amino acids
Application programming interface
Artificial intelligence
Bioinformatics
Biology
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Deep learning
Enzyme kinetics
Enzymes
Genetic aspects
Graph neural network
Graph neural networks
Graphical representations
Identification and classification
Kinetics
Learning algorithms
Life Sciences
Machine learning
Michaelis constant
Microarrays
Mutants
Mutation (Biology)
Neural networks
Prediction models
Protein engineering
Protein research
Proteins
Substrates
Tree boosting
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMQL34jCQAYh8QDW4sRxbF7QQAzQ2DQxQHuz_JUKiSalaZHGX8-d63aqJvbCa3x2krvz-c4-_46Q51zJIIPljDtXMCFFYNoXkXkRauVtG33C6f7-uTk8VCcn-ihvuA05rXJlE5OhDr3HPfIdMLUNLC2gbm-mvxhWjcLT1VxC4zK5gigJZUrdO1qfIiBe_-qijJI7A0e0NgarEgMvRUjGNxajhNl_3jKfOyJNK8_ezf_95lvkRvY56e5SSW6TS7G7Q64tq1Ce3iXHHxC0ev_gNZ2kzMpIbRdoiHFKc02JMQXXlu4f0OkMz3VQlrRvKbjZAbdwE_1kgfWIaez-nE7icI9823v_9d1HlmstMF_Las64BdY0bWmFFdo6q2OlY1FY8JfAJ5EeAhmwR67BAEy0TrWNd5WTtW2UiL4O1X2y1fVdfEAouGSaK11bBbGdhXjEVlV0jQycRxCJGBG-YrrxGYgc62H8NCkgUdIsBWVAUCYJyvARebnuM13CcFxI_RZluaZECO30oJ-NTZ6RxrtWCt-GwldRaOGUjlqUTtQuQIMuRuQZaoJBkIwOs3DGdjEM5tPxF7PbKITpr3kzIi8yUdvDP3ibLzUAJxBXa4Nye4MSZrHfbF6pkMlWZDBn-jMiT9fN2BMz47rYL5AGLLJshIAhXq0U9WyIfzPp4cVvfESul2mmVKxU22RrPlvEx-Sq_z3_McyepHn2F1DlK3I
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9SFXzR-kVXq0QRfNDg5jabTXxrxarUFulp6VvI1x6F3u5xeyfUv96Z3O7JURX0dfNL2J1JJjObyW8IecGVDDJYzrhzORNSBKZ9HpkXoVTe1tEnnu7Tz9XxsTo701_6S2HdkO0-HEkmS52WtZJvOo5cawz2FAY-hpAMYp7rsN0pLNhwMj5dnx0gS_9wPea3_Ta2oMTUf9UeXzkYTfvNwZ3_e9Ntcrv3L-neakLcJddic4_cXFWcvLxPxh-QoPrw6C2dpizKSG0TaIhxRvv6ERMKbiw9PKKzOZ7hoN5oW1NwqQP-rk346RJrD9PY_Licxu4B-Xbw_uu7j6yvq8B8KYsF4xZer6pHVlihrbM6FjrmuQXfCPwP6SFoAdvjKgy2RO1UXXlXOFnaSonoy1A8JFtN28QdQsH90lzp0iqI4yzEHrYooqtk4DyCIkRG-CBq43vScax9cWFS8KGkWQnLgLBMEpbhGXm17jNbUW78Fb2PGlwjkS47PWjnE9OvPuNdLYWvQ-6LKLRwSkctRk6ULkCDzjPyHPVvkBCjwYybiV12nfk0PjF7lUJK_pJXGXnZg-oWvsHb_gIDSAI5tDaQuxtIWLF-s3mYZqa3GJ0BVwIakZonI8_WzdgTs-Ca2C4RA9ZXVkLAEK-HqfdriD8L6dG_wR-TW6M0ews2UrtkazFfxifkhv--OO_mT9Nq-wmbJyGa
  priority: 102
  providerName: Springer Nature
Title GraphKM: machine and deep learning for KM prediction of wildtype and mutant enzymes
URI https://link.springer.com/article/10.1186/s12859-024-05746-1
https://www.proquest.com/docview/3037853880
https://www.proquest.com/docview/3022567447
https://doaj.org/article/cbf64cfd0c3e494b89e942b45bdf6490
Volume 25
WOSCitedRecordID wos001195495600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4lMLjMogJB7AWtw4_uBtQxtMpVXUwlR4sWzHmZBoWjUt0vjrOTtpoZqAF14sJXeJkp_P9l18-R1CL6jkJS8NJdTalDDOSqJc6oljZS6dqbyLPN3nH8RoJKdTVfxW6ivkhLX0wC1wh85WnLmqTF3mmWJWKq9Y37LcliBQMVpPhdoEU93-QWDq3_wiI_lhQwNPG4H1iIB_wjihO8tQZOu_Oidf2RyNa87pXXSncxbxUfuQ99A1X99Ht9rykZcP0ORdYJseDN_gWUyJ9NjUJS69X-CuGMQFBp8UD4Z4sQwbMqET8LzC4B-X4dtr1J-tQyFh7OsflzPfPESfTk8-vn1PuiIJxOU8WxFq4M1E1TfMMGWsUT5TPk0NODrgTHAHEQhMJFaEyIlVVlbC2czy3AjJvMvL7BHaq-e130cYfClFpcqNhKDMQCBhssxbwUtKPSDKEkQ3mGnXMYiHQhbfdIwkJNctzhpw1hFnTRP0anvNouXP-Kv2ceiKrWbgvo4nwCJ0ZxH6XxaRoOehI3Vgt6hD-syFWTeNPpuM9REE_OAT5VQk6GWnVM3hHZzp_kYAJAIh1o7mwY4mDD-3K97Yi-6Gf6PBLwBh4NlJ0LOtOFwZUtpqP18HHZhKuWAMbvF6Y2e_bvFnkB7_D5CeoNv9OBwy0pcHaG-1XPun6Kb7vvraLHvoupiK2MoeunF8MirGvTjAoB0I0gsZsgW0Rf4F5MXZsPgMR-PJ-U91qidH
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELd0RhgEEgHsBanDiOg4TQuIxVbSfEBtqb8S0VEk1L04LKj-I3ck6adKom9rYHXuNjR3a-c4vt8xHyhCvppTeccWsjJqTwLHdRYE74VDlTBFfX6f7Sz_b31dFR_nGD_GnvwuCxytYm1obajx3-I98GU5uBawG4vZ78YMgahburLYXGEha9sPgFKVv1qvsOvu_TON59f_h2jzWsAsylMpkxbhQE0UVshBG5sSYPSR6iyEBkAN5XOgjZQfNshqmGKKwqMmcTK1OTKRFc6hMY9xw5LxKVoV71MrbatUB-gPZijpLbFcfqcAy8IIOoSEjG15xfzRFw0hOc2JKtPd3u1f9tja6RK01MTXeWSnCdbITyBrm4ZNlc3CQHH7Aod2_wko7qk6OBmtJTH8KENpwZQwqhO-0N6GSK-1aIVTouKKQRHn9R1_KjOfIt01D-XoxCdYt8PpMZ3Sab5bgMdwiFkDPnKk-NgtzVQL5lkiTYTHrOA0BAdAhvP7J2TaF15Pv4ruuES0m9BIYGYOgaGJp3yPNVn8myzMip0m8QOytJLBFePxhPh7qxONrZQgpX-MglQeTCqjzkIrYitR4a8qhDHiPyNBYBKfGU0dDMq0p3Dz7pnUwhDUHKsw551ggVY5iDM82lDVgJrBu2Jrm1JglWyq03t5DVjZWs9DFeO-TRqhl74sm_MoznKAMeR2ZCwBAvWsU4HuLfi3T39Dc-JJf2Dgd93e_u9-6Ry3GtpQmL1RbZnE3n4T654H7OvlXTB7WOU_L1rBXmL2ClhsE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQ-BAvfCMKAwxC4gGsxY3j2LyNj8LUrZooTHuz_JUKiaZV0yKNv547Jy1UAyTEa3y2kvP5fJe7-x0hz7iSQQbLGXcuY0KKwLTPIvMiFMrbKvqE031yWI5G6vRUH_9SxZ-y3dchybamAVGa6uXePFTtEVdyr-GIu8bgfmFgbwjJwP-5KDCRHv318ckmjoCI_etSmd_O27qOEmr_ed18Lkia7p7B9f9_6xvkWmd30v1WUG6SC7G-RS63nSjPbpPxewSuHh69otOUXRmprQMNMc5p11diQsG8pcMjOl9gbAf3k84qCqZ2wN-4iX66wp7ENNbfz6axuUM-D959evOBdf0WmC9kvmTcwuuVVd8KK7R1VsdcxyyzYDOBXSI9ODOgk1yJTpionKpK73InC1sqEX0R8rtkp57V8R6hYJZprnRhFfh3FnwSm-fRlTJwHmFTRI_wNduN78DIsSfGV5OcEiVNyywDzDKJWYb3yIvNnHkLxfFX6te4mxtKhNFOD2aLielOpfGuksJXIfN5FFo4paMWfScKF2BAZz3yFGXBIFBGjZk4E7tqGnMw_mj2S4VQ_QUve-R5R1TN4Bu87QobgBOIrbVFubtFCSfZbw-vRc50mqQxYGLAIEL29MiTzTDOxOy4Os5WSANaWZZCwBIv12L4c4k_M-n-v5E_JleO3w7M4cFo-IBc7SdBzllf7ZKd5WIVH5JL_tvyS7N4lA7hDw5tLWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphKM%3A+machine+and+deep+learning+for+KM+prediction+of+wildtype+and+mutant+enzymes&rft.jtitle=BMC+bioinformatics&rft.au=He%2C+Xiao&rft.au=Yan%2C+Ming&rft.date=2024-03-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05746-1&rft.externalDBID=ISR&rft.externalDocID=A788078517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon