Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores

Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of...

Full description

Saved in:
Bibliographic Details
Published in:Genetics in medicine Vol. 19; no. 3; pp. 322 - 329
Main Authors: Läll, Kristi, Mägi, Reedik, Morris, Andrew, Metspalu, Andres, Fischer, Krista
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01.03.2017
Nature Publishing Group US
Elsevier Limited
Nature Publishing Group
Subjects:
ISSN:1098-3600, 1530-0366, 1530-0366
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors. Genet Med19 3, 322–329.
AbstractList Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.PURPOSEUsing effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).METHODSBy varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.RESULTSThe best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329.CONCLUSIONThe proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329.
Purpose: Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. Methods: By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). Results: The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444) . In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. Conclusion: The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors. Genet Med 19 3, 322–329.
Purpose:Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.Methods:By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).Results:The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.Conclusion:The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329.
Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors. Genet Med19 3, 322–329.
Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329.
Author Mägi, Reedik
Fischer, Krista
Morris, Andrew
Läll, Kristi
Metspalu, Andres
Author_xml – sequence: 1
  givenname: Kristi
  surname: Läll
  fullname: Läll, Kristi
  organization: Estonian Genome Center, University of Tartu, Tartu, Estonia
– sequence: 2
  givenname: Reedik
  surname: Mägi
  fullname: Mägi, Reedik
  organization: Estonian Genome Center, University of Tartu, Tartu, Estonia
– sequence: 3
  givenname: Andrew
  surname: Morris
  fullname: Morris, Andrew
  organization: Estonian Genome Center, University of Tartu, Tartu, Estonia
– sequence: 4
  givenname: Andres
  surname: Metspalu
  fullname: Metspalu, Andres
  organization: Estonian Genome Center, University of Tartu, Tartu, Estonia
– sequence: 5
  givenname: Krista
  surname: Fischer
  fullname: Fischer, Krista
  email: krista.fischer@ut.ee
  organization: Estonian Genome Center, University of Tartu, Tartu, Estonia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27513194$$D View this record in MEDLINE/PubMed
BookMark eNp1kstrFTEUxoNU7EN3riXgxoXTnkwec8dFQYovKNSFug1pcuY2dW4yJrmF9q9vhqmllrpKDvl9h--cL_tkJ8SAhLxmcMiAr47WfnPYAlNz9YzsMcmhAa7UTr1Dv2q4Atgl-zlfArCOt_CC7LadZJz1Yo_8-o4px2BGf4OOJp9_0ymh87b4GOgQEy3XE9KWOm_OsWD-QMsF0ikWDMWbkcaBrjFg8XZRZxsT5pfk-WDGjK_uzgPy8_OnHydfm9OzL99OPp42VipeGmagc8qY3nYKHfSik4NRqDj0ZgV9j600zkIdT4BBaa2QDofBtQLEwJzkB-R46TttzzfobDWVzKin5DcmXetovP73JfgLvY5XWkpQQora4N1dgxT_bDEXvfHZ4jiagHGbNVvJvmOya1lF3z5CL-M21dXNVCdEyzmfqTcPHd1b-bvyCrxfAJtizgmHe4SBnhPVNVE9JzpXFW8f4dYXM6dT5_Hj_0TNIsq1d1hjemD1aV4tPNasrnzls_UYbP0ICW3RLvqnhbcrbsX6
CitedBy_id crossref_primary_10_1038_s41591_022_01869_1
crossref_primary_10_1007_s40889_020_00098_9
crossref_primary_10_1038_s41467_020_17374_3
crossref_primary_10_1016_j_metabol_2022_155215
crossref_primary_10_1080_17446651_2017_1323631
crossref_primary_10_3389_fgene_2022_1000667
crossref_primary_10_1097_PSY_0000000000000562
crossref_primary_10_1038_s41467_020_15464_w
crossref_primary_10_1155_genr_8818420
crossref_primary_10_1210_jendso_bvaf019
crossref_primary_10_1146_annurev_biodatasci_111721_074830
crossref_primary_10_1161_CIRCGEN_121_003341
crossref_primary_10_1016_j_cmet_2024_02_002
crossref_primary_10_1038_s41588_021_00961_5
crossref_primary_10_3390_nu9040376
crossref_primary_10_1093_nar_gkab1245
crossref_primary_10_1093_bib_bbac459
crossref_primary_10_3389_fgene_2021_632385
crossref_primary_10_3390_ijms21051703
crossref_primary_10_1007_s00125_022_05801_7
crossref_primary_10_1111_dom_16579
crossref_primary_10_3390_ijms25021151
crossref_primary_10_1186_s12937_019_0450_6
crossref_primary_10_1016_j_tig_2019_02_005
crossref_primary_10_2337_dc24_0022
crossref_primary_10_3390_jpm12020166
crossref_primary_10_1016_j_csbj_2025_06_038
crossref_primary_10_1002_gepi_22327
crossref_primary_10_1287_mnsc_2020_3729
crossref_primary_10_4093_dmj_2019_0163
crossref_primary_10_1186_s12885_021_08937_8
crossref_primary_10_1038_s41598_018_21939_0
crossref_primary_10_1080_23789689_2025_2525697
crossref_primary_10_3390_jpm11020135
crossref_primary_10_1186_s12967_025_06720_y
crossref_primary_10_1007_s11033_023_09128_3
crossref_primary_10_3389_fendo_2021_681649
crossref_primary_10_1038_s41598_018_29634_w
crossref_primary_10_1155_2020_9108216
crossref_primary_10_3390_ijms22084182
crossref_primary_10_1093_ehjopen_oeac079
crossref_primary_10_1186_s13195_021_00884_7
crossref_primary_10_1016_j_gde_2018_02_003
crossref_primary_10_1038_s41431_021_00813_0
crossref_primary_10_3389_fgene_2022_899523
crossref_primary_10_1007_s11357_024_01107_1
crossref_primary_10_1016_j_ebiom_2022_104383
crossref_primary_10_1097_BRS_0000000000004735
crossref_primary_10_3390_nu12123840
crossref_primary_10_1093_bib_bby086
crossref_primary_10_1038_s41467_021_22538_w
crossref_primary_10_3390_genes14040814
crossref_primary_10_1038_s41598_024_55313_0
crossref_primary_10_1016_j_artmed_2019_101706
crossref_primary_10_1097_JCMA_0000000000000666
crossref_primary_10_1038_s41467_021_25014_7
crossref_primary_10_1038_s41588_020_00757_z
crossref_primary_10_1186_s13073_022_01074_2
crossref_primary_10_1016_j_diabres_2025_112226
crossref_primary_10_1088_1755_1315_255_1_012008
crossref_primary_10_1007_s00125_021_05491_7
crossref_primary_10_3389_fendo_2021_647864
crossref_primary_10_1007_s00125_025_06503_6
crossref_primary_10_1111_jdi_12830
crossref_primary_10_3390_ijms232416081
crossref_primary_10_1038_s41431_022_01196_6
crossref_primary_10_3390_ijms23063222
crossref_primary_10_1161_CIRCGEN_122_003834
crossref_primary_10_1097_MD_0000000000019980
crossref_primary_10_1017_S0033291723001186
crossref_primary_10_3389_fgene_2021_763159
crossref_primary_10_3390_ijms23010295
crossref_primary_10_1016_j_jmb_2019_08_016
crossref_primary_10_1007_s12687_023_00645_z
crossref_primary_10_1186_s40246_021_00339_y
crossref_primary_10_1016_j_cll_2022_09_007
crossref_primary_10_1002_edm2_108
crossref_primary_10_1155_2020_8899556
crossref_primary_10_3390_genes16050578
crossref_primary_10_1111_cts_13574
crossref_primary_10_1186_s12920_025_02152_1
crossref_primary_10_1038_s41598_023_27637_w
crossref_primary_10_1093_hmg_ddz187
crossref_primary_10_3390_genes15010049
crossref_primary_10_1111_cge_13772
crossref_primary_10_3389_fpubh_2021_606711
crossref_primary_10_1186_s40246_022_00406_y
crossref_primary_10_1038_s41467_023_43878_9
crossref_primary_10_2196_48210
crossref_primary_10_3389_fgene_2023_1098439
crossref_primary_10_4239_wjd_v14_i6_656
crossref_primary_10_2139_ssrn_3808292
crossref_primary_10_1186_s12885_019_5783_1
crossref_primary_10_2147_DMSO_S304994
ContentType Journal Article
Copyright 2017 The Author(s)
The Author(s) 2017
Copyright Nature Publishing Group Mar 2017
Copyright © 2016 The Author(s) 2016 The Author(s)
Copyright_xml – notice: 2017 The Author(s)
– notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Mar 2017
– notice: Copyright © 2016 The Author(s) 2016 The Author(s)
DBID 6I.
AAFTH
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/gim.2016.103
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Academic Middle East (New)

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0366
EndPage 329
ExternalDocumentID PMC5506454
4318813891
27513194
10_1038_gim_2016_103
S1098360021024084
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-D
..I
.GJ
08G
0SF
39C
3V.
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6I.
70F
7X7
88E
8FI
8FJ
AAFTH
AAKAS
AAWBL
AAXUO
AAYEP
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABLJU
ABUWG
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACKTT
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADBIZ
ADHDB
ADMDM
ADQMX
ADZCM
AE3
AEDAW
AEFTE
AEJRE
AENEX
AEXYK
AFKRA
AFSHS
AFTRI
AGAYW
AGEZK
AGGBP
AHGBK
AHMBA
AHSBF
AHVBC
AILAN
AIZYK
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWKKM
AXYYD
BENPR
BKKNO
BPHCQ
BS7
BVXVI
CCPQU
CS3
DNIVK
DU5
EBLON
EBS
EE.
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
H0~
HMCUK
JF9
JG8
JK3
JSO
JZLTJ
K-O
KD2
M1P
M41
N9A
NAO
NQJWS
N~M
OAG
OAH
ODA
OK1
OLG
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
PQQKQ
PROAC
PSQYO
R58
RNT
RNTTT
ROL
S4R
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
T8P
TAOOD
TBHMF
TDRGL
TEORI
TSG
UKHRP
VVN
W3M
WOQ
WOW
XXN
XYM
YFH
ZFV
AAFWJ
AALRI
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFETI
AFJKZ
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
C6C
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c563t-1a07d6aa9c76ed09475fa6e6309a8099e25adc020140ae5cc45deffd2404f1d53
IEDL.DBID BENPR
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395799700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-3600
1530-0366
IngestDate Tue Nov 04 01:57:22 EST 2025
Sun Nov 09 11:41:32 EST 2025
Sat Nov 15 15:41:56 EST 2025
Wed Feb 19 02:27:00 EST 2025
Wed Oct 29 21:33:12 EDT 2025
Tue Nov 18 21:56:00 EST 2025
Mon Jul 21 06:06:53 EDT 2025
Fri Feb 23 02:40:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords genetic risk score
precision medicine
type 2 diabetes
risk prediction
genetic risk
Language English
License This is an open access article under the CC BY-NC-SA license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-1a07d6aa9c76ed09475fa6e6309a8099e25adc020140ae5cc45deffd2404f1d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3718-796X
0000-0002-3521-0599
0000-0002-9161-4694
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5506454
PMID 27513194
PQID 1874423331
PQPubID 2043492
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5506454
proquest_miscellaneous_1859715721
proquest_journals_1874423331
pubmed_primary_27513194
crossref_primary_10_1038_gim_2016_103
crossref_citationtrail_10_1038_gim_2016_103
springer_journals_10_1038_gim_2016_103
elsevier_sciencedirect_doi_10_1038_gim_2016_103
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Bethesda
PublicationSubtitle Official journal of the American College of Medical Genetics and Genomics
PublicationTitle Genetics in medicine
PublicationTitleAbbrev Genet Med
PublicationTitleAlternate Genet Med
PublicationYear 2017
Publisher Elsevier Inc
Nature Publishing Group US
Elsevier Limited
Nature Publishing Group
Publisher_xml – name: Elsevier Inc
– name: Nature Publishing Group US
– name: Elsevier Limited
– name: Nature Publishing Group
References Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009.
Cox DR. (bb0075) 1961; 1
Do, Hinds, Francke, Eriksson (bb0100) 2012; 8
Lyssenko, Laakso (bb0040) 2013; 36 Suppl 2
Golan, Lander, Rosset (bb0050) 2014; 111
Pencina, D’Agostino, Steyerberg (bb0080) 2011; 30
Finnish Diabetes Prevention Study Group (bb0020) 2001; 344
Lindström, Tuomilehto (bb0095) 2003; 26
Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (bb0060) 2012; 44
Yang, Benyamin, McEvoy (bb0055) 2010; 42
Accessed 1 January 2015.
Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease.
UCLEB Consortium (bb0085) 2015; 64
Botnia Study Group (bb0025) 2011; 54
Purcell, Neale, Todd-Brown (bb0065) 2007; 81
Poulsen, Kyvik, Vaag, Beck-Nielsen (bb0030) 1999; 42
Accessed 9 December, 2015.
Accessed 10 January 2015.
Wray, Yang, Hayes, Price, Goddard, Visscher (bb0035) 2013; 14
Mahajan, Go, Zhang (bb0090) 2014; 46
R Development Core Team. R: A language and environment for statistical computing, 2008.
Zeng, Zhao, Qian (bb0045) 2015; 29
Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. http://www.changingdiabetesbarometer.com/about-diabetes.aspx. Accessed 1 January 2015.
R Development Core Team. R: A language and environment for statistical computing, 2008 . http://www.r-project.org.Accessed 9 December, 2015.
DoCBHindsDAFranckeUErikssonNComparison of family history and SNPs for predicting risk of complex diseasePLoS Genet20128e10029731:CAS:528:DC%2BC38XhsFOrsLbI10.1371/journal.pgen.1002973
ZengPZhaoYQianCStatistical analysis for genome-wide association studyJ Biomed Res20152928529726243515
LindströmJTuomilehtoJThe diabetes risk score: a practical tool to predict type 2 diabetes riskDiabetes Care20032672573110.2337/diacare.26.3.725
MorrisAPVoightBFTeslovichTMWellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetesNat Genet2012449819901:CAS:528:DC%2BC38XhtFOgsLfP10.1038/ng.2383
PoulsenPKyvikKOVaagABeck-NielsenHHeritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin studyDiabetologia1999421391451:CAS:528:DyaK1MXhtFajsbk%3D10.1007/s001250051131
TalmudPJCooperJAMorrisRWUCLEB ConsortiumSixty-five common genetic variants and prediction of type 2 diabetesDiabetes201564183018401:CAS:528:DC%2BC2MXotVajtL4%3D10.2337/db14-1504
GolanDLanderESRossetSMeasuring missing heritability: inferring the contribution of common variantsProc Natl Acad Sci USA2014111E5272E52811:CAS:528:DC%2BC2cXhvFKmu77F10.1073/pnas.1419064111
LyssenkoVLaaksoMGenetic screening for the risk of type 2 diabetes: worthless or valuable?Diabetes Care201336 Suppl 2S120S12610.2337/dcS13-2009
YangJBenyaminBMcEvoyBPCommon SNPs explain a large proportion of the heritability for human heightNat Genet2010425655691:CAS:528:DC%2BC3cXns1GisL8%3D10.1038/ng.608
Cox DR.Tests of Separate Families of HypothesesProc Fourth Berkeley Symp Math Stat Probab19611105123
PencinaMJD’AgostinoRBSrSteyerbergEWExtensions of net reclassification improvement calculations to measure usefulness of new biomarkersStat Med201130112110.1002/sim.4085
TuomilehtoJLindströmJErikssonJGFinnish Diabetes Prevention Study GroupPrevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose toleranceN Engl J Med2001344134313501:STN:280:DC%2BD3M3kvFejsA%3D%3D10.1056/NEJM200105033441801
MahajanAGoMJZhangWGenome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibilityNat Genet2014462342441:CAS:528:DC%2BC2cXitFanuro%3D10.1038/ng.2897
WrayNRYangJHayesBJPriceALGoddardMEVisscherPMPitfalls of predicting complex traits from SNPsNat Rev Genet2013145075151:CAS:528:DC%2BC3sXpsV2mu70%3D10.1038/nrg3457
PurcellSNealeBTodd-BrownKPLINK: a tool set for whole-genome association and population-based linkage analysesAm J Hum Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795
Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. http://www.euro.who.int/en/home. Accessed 10 January 2015.
AlmgrenPLehtovirtaMIsomaaBBotnia Study GroupHeritability and familiality of type 2 diabetes and related quantitative traits in the Botnia StudyDiabetologia201154281128191:CAS:528:DC%2BC3MXht12js7rM10.1007/s00125-011-2267-5
Zeng (10.1038/gim.2016.103_bb0045)
UCLEB Consortium (10.1038/gim.2016.103_bb0085)
Yang (10.1038/gim.2016.103_bb0055)
Purcell (10.1038/gim.2016.103_bb0065)
Lindström (10.1038/gim.2016.103_bb0095)
Finnish Diabetes Prevention Study Group (10.1038/gim.2016.103_bb0020)
Botnia Study Group (10.1038/gim.2016.103_bb0025)
10.1038/gim.2016.103_bb0070
Mahajan (10.1038/gim.2016.103_bb0090)
10.1038/gim.2016.103_bb0010
Golan (10.1038/gim.2016.103_bb0050)
Do (10.1038/gim.2016.103_bb0100)
Wray (10.1038/gim.2016.103_bb0035)
Cox DR. (10.1038/gim.2016.103_bb0075) 1961; 1
10.1038/gim.2016.103_bb0015
Poulsen (10.1038/gim.2016.103_bb0030)
Lyssenko (10.1038/gim.2016.103_bb0040)
Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (10.1038/gim.2016.103_bb0060)
Pencina (10.1038/gim.2016.103_bb0080)
References_xml – reference: . Accessed 10 January 2015.
– volume: 42
  start-page: 139
  year: 1999
  end-page: 145
  ident: bb0030
  article-title: Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study
  publication-title: Diabetologia
– volume: 344
  start-page: 1343
  year: 2001
  end-page: 1350
  ident: bb0020
  article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
  publication-title: N Engl J Med
– volume: 36 Suppl 2
  start-page: S120
  year: 2013
  end-page: S126
  ident: bb0040
  article-title: Genetic screening for the risk of type 2 diabetes: worthless or valuable?
  publication-title: Diabetes Care
– volume: 29
  start-page: 285
  year: 2015
  end-page: 297
  ident: bb0045
  article-title: Statistical analysis for genome-wide association study
  publication-title: J Biomed Res
– reference: Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009.
– volume: 1
  start-page: 105
  year: 1961
  end-page: 123
  ident: bb0075
  article-title: Tests of Separate Families of Hypotheses
  publication-title: Proc Fourth Berkeley Symp Math Stat Probab
– volume: 30
  start-page: 11
  year: 2011
  end-page: 21
  ident: bb0080
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat Med
– reference: R Development Core Team. R: A language and environment for statistical computing, 2008.
– volume: 14
  start-page: 507
  year: 2013
  end-page: 515
  ident: bb0035
  article-title: Pitfalls of predicting complex traits from SNPs
  publication-title: Nat Rev Genet
– volume: 26
  start-page: 725
  year: 2003
  end-page: 731
  ident: bb0095
  article-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk
  publication-title: Diabetes Care
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  ident: bb0065
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
– reference: .Accessed 9 December, 2015.
– reference: . Accessed 1 January 2015.
– volume: 111
  start-page: E5272
  year: 2014
  end-page: E5281
  ident: bb0050
  article-title: Measuring missing heritability: inferring the contribution of common variants
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 234
  year: 2014
  end-page: 244
  ident: bb0090
  article-title: Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
  publication-title: Nat Genet
– reference: Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease.
– volume: 44
  start-page: 981
  year: 2012
  end-page: 990
  ident: bb0060
  article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  publication-title: Nat Genet
– volume: 54
  start-page: 2811
  year: 2011
  end-page: 2819
  ident: bb0025
  article-title: Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study
  publication-title: Diabetologia
– volume: 64
  start-page: 1830
  year: 2015
  end-page: 1840
  ident: bb0085
  article-title: Sixty-five common genetic variants and prediction of type 2 diabetes
  publication-title: Diabetes
– volume: 42
  start-page: 565
  year: 2010
  end-page: 569
  ident: bb0055
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat Genet
– volume: 8
  start-page: e1002973
  year: 2012
  ident: bb0100
  article-title: Comparison of family history and SNPs for predicting risk of complex disease
  publication-title: PLoS Genet
– reference: MahajanAGoMJZhangWGenome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibilityNat Genet2014462342441:CAS:528:DC%2BC2cXitFanuro%3D10.1038/ng.2897
– reference: Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. http://www.euro.who.int/en/home. Accessed 10 January 2015.
– reference: PoulsenPKyvikKOVaagABeck-NielsenHHeritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin studyDiabetologia1999421391451:CAS:528:DyaK1MXhtFajsbk%3D10.1007/s001250051131
– reference: ZengPZhaoYQianCStatistical analysis for genome-wide association studyJ Biomed Res20152928529726243515
– reference: PencinaMJD’AgostinoRBSrSteyerbergEWExtensions of net reclassification improvement calculations to measure usefulness of new biomarkersStat Med201130112110.1002/sim.4085
– reference: TalmudPJCooperJAMorrisRWUCLEB ConsortiumSixty-five common genetic variants and prediction of type 2 diabetesDiabetes201564183018401:CAS:528:DC%2BC2MXotVajtL4%3D10.2337/db14-1504
– reference: WrayNRYangJHayesBJPriceALGoddardMEVisscherPMPitfalls of predicting complex traits from SNPsNat Rev Genet2013145075151:CAS:528:DC%2BC3sXpsV2mu70%3D10.1038/nrg3457
– reference: PurcellSNealeBTodd-BrownKPLINK: a tool set for whole-genome association and population-based linkage analysesAm J Hum Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795
– reference: Cox DR.Tests of Separate Families of HypothesesProc Fourth Berkeley Symp Math Stat Probab19611105123
– reference: LyssenkoVLaaksoMGenetic screening for the risk of type 2 diabetes: worthless or valuable?Diabetes Care201336 Suppl 2S120S12610.2337/dcS13-2009
– reference: TuomilehtoJLindströmJErikssonJGFinnish Diabetes Prevention Study GroupPrevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose toleranceN Engl J Med2001344134313501:STN:280:DC%2BD3M3kvFejsA%3D%3D10.1056/NEJM200105033441801
– reference: R Development Core Team. R: A language and environment for statistical computing, 2008 . http://www.r-project.org.Accessed 9 December, 2015.
– reference: DoCBHindsDAFranckeUErikssonNComparison of family history and SNPs for predicting risk of complex diseasePLoS Genet20128e10029731:CAS:528:DC%2BC38XhsFOrsLbI10.1371/journal.pgen.1002973
– reference: AlmgrenPLehtovirtaMIsomaaBBotnia Study GroupHeritability and familiality of type 2 diabetes and related quantitative traits in the Botnia StudyDiabetologia201154281128191:CAS:528:DC%2BC3MXht12js7rM10.1007/s00125-011-2267-5
– reference: LindströmJTuomilehtoJThe diabetes risk score: a practical tool to predict type 2 diabetes riskDiabetes Care20032672573110.2337/diacare.26.3.725
– reference: GolanDLanderESRossetSMeasuring missing heritability: inferring the contribution of common variantsProc Natl Acad Sci USA2014111E5272E52811:CAS:528:DC%2BC2cXhvFKmu77F10.1073/pnas.1419064111
– reference: YangJBenyaminBMcEvoyBPCommon SNPs explain a large proportion of the heritability for human heightNat Genet2010425655691:CAS:528:DC%2BC3cXns1GisL8%3D10.1038/ng.608
– reference: MorrisAPVoightBFTeslovichTMWellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetesNat Genet2012449819901:CAS:528:DC%2BC38XhtFOgsLfP10.1038/ng.2383
– reference: Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. http://www.changingdiabetesbarometer.com/about-diabetes.aspx. Accessed 1 January 2015.
– ident: 10.1038/gim.2016.103_bb0030
– ident: 10.1038/gim.2016.103_bb0080
– ident: 10.1038/gim.2016.103_bb0060
– ident: 10.1038/gim.2016.103_bb0040
– volume: 1
  start-page: 105
  year: 1961
  ident: 10.1038/gim.2016.103_bb0075
  article-title: Tests of Separate Families of Hypotheses
  publication-title: Proc Fourth Berkeley Symp Math Stat Probab
– ident: 10.1038/gim.2016.103_bb0085
– ident: 10.1038/gim.2016.103_bb0025
– ident: 10.1038/gim.2016.103_bb0035
– ident: 10.1038/gim.2016.103_bb0020
– ident: 10.1038/gim.2016.103_bb0090
– ident: 10.1038/gim.2016.103_bb0065
– ident: 10.1038/gim.2016.103_bb0050
– ident: 10.1038/gim.2016.103_bb0055
– ident: 10.1038/gim.2016.103_bb0100
– ident: 10.1038/gim.2016.103_bb0010
– ident: 10.1038/gim.2016.103_bb0015
– ident: 10.1038/gim.2016.103_bb0045
– ident: 10.1038/gim.2016.103_bb0070
– ident: 10.1038/gim.2016.103_bb0095
SSID ssj0017320
Score 2.523458
Snippet Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2...
Purpose: Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with...
Purpose:Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 322
SubjectTerms 631/208/205/2138
631/208/2489/144
631/208/727/2000
692/699/2743/137/773
Alleles
Biomedical and Life Sciences
Biomedicine
Body Mass Index
Cohort Studies
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - prevention & control
Diabetes Mellitus, Type 2 - therapy
Female
Genetic Predisposition to Disease
genetic risk
genetic risk score
Genetic Testing - methods
Genome-Wide Association Study
Genotype
Human Genetics
Humans
Laboratory Medicine
Male
Middle Aged
Original
original-research-article
Polymorphism, Single Nucleotide
precision medicine
Precision Medicine - methods
Prospective Studies
Risk Factors
risk prediction
type 2 diabetes
Title Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores
URI https://dx.doi.org/10.1038/gim.2016.103
https://link.springer.com/article/10.1038/gim.2016.103
https://www.ncbi.nlm.nih.gov/pubmed/27513194
https://www.proquest.com/docview/1874423331
https://www.proquest.com/docview/1859715721
https://pubmed.ncbi.nlm.nih.gov/PMC5506454
Volume 19
WOSCitedRecordID wos000395799700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1530-0366
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0017320
  issn: 1098-3600
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-0366
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0017320
  issn: 1098-3600
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC7cWRUvPtZXdF1aUC8SdpJ-JV5EZRcvDoOozC309AMHJBkns4L-equSTnRdx4uXhqa7SYeq7vrq0VUAT4TLnEExkuqltKlwlqemDCFVeJRMIZWbmmVXbELPZsViUc6jwa2NYZXDndhd1K6xZCM_ptpxKPo5z16uv6ZUNYq8q7GExh7sU6YyMYH91yez-fvRj6B53ucjKIuUo2yPoe9Tjmrfih6iZ4p6u4TSRdB5MXbyDwdqJ5dOb_zvH92E6xGRslc9C92CS74-gCt9jcrvB3D1XfS-34ZP8wG5__COUVA6W29olIjLEP0yMuiynA0G3RcM4SVbN1sKScJvNIEhv9KzyX51Szk02zvw8fTkw5u3aazLkFqp-DbNzFQ7ZUxptfIO9UMtg1Fe8WlpCkScPpfGWcShqLwZL60V0vkQHIIHETIn-V2Y1E3t7wMzznMVtOPYCmuXSy-ywnsjQq5KWfAEng-EqWxMWk61M75UnfOcFxWSsSIyUi-Bp-PsdZ-sY8e844HGVQQaPYCoUI7sWHE40LCKh7ytfhEwgcfjMB5P8rmY2jdnNAc1tkyinp3AvZ5zxq3lWmZ4A4oE9DmeGidQ6u_zI_Xqc5cCXHZ5BnHls4H7ftvWX_b_4N_7fwjXcoIrXWzdIUy2mzP_CC7bb9tVuzmCPb3QXVscxQP2E3zXLq0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5XnhUaAsFDAS5YKibuLYTpAQQkDVqu2qh4L2Frx-iJWqZNlsQeVH8RuZSeJAKcutBy6RIo8VJ_k88409ngF4ltrYajQjkZoIE6XW8Ejn3kcSp5LOhLRDPWmKTajRKBuP88MV-BHOwlBYZdCJjaK2laE18i2qHYemn_P49exLRFWjaHc1lNBoYbHnTr-hy1a_2n2H_3czSbbfH73dibqqApERki-iWA-VlVrnRkln0btRwmvpJB_mOkO-5BKhrUEWha6HdsKYVFjnvUXTl_rYUpUIVPmXUI8rCiFT497BixVP2uwHeRZxZBJdoP2Qo5M5pWPvsaS7ZSbwPMU9H6n5x3ZtYwW3b_5v3-8W3Oj4NnvTTpDbsOLKNbjSVuA8XYOrB11swR34eBj8ku_OMgq5Z7M5tRJ0GXJ7RsvVLGFhufolQ_LMZtWCAq7wGZVnOBvpUGjbu6YMofVd-HAh73cPVsuqdPeBaeu49MpyvKbGTCYujTPndOoTmYuMD-BFAEJhupTsVBnkuGhCA3hWIGwKgg3dDWCzl561qUiWyG0FTBUdjWrpUYFWckmPjYCZolNhdfELMAN42jej8qEdJV266oRk0B-NhUpQZr1Faj-0RIkY9Xs6AHUGw70AJTY_21JOPzcJzkWTRRF7Pg9o_21Yfxn_g3-P_wlc2zk62C_2d0d7D-F6QsSsiSLcgNXF_MQ9gsvm62Jazx8305nBp4vG_0_76oka
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVRceJRHAwUWiXJBVmKvd9dGQghoI6pCFCFAvbmbfYhIlR3iFFR-Gr-OGb-glHDrgUska2eVdfLNzDe7szMAj2MbWo1uJFBTYYLYGh7o1PtAoirpREg71NOq2YQaj5PDw3SyBj_auzCUVtnaxMpQ28LQHvmAeseh6-c8HPgmLWKyO3ox_xJQByk6aW3badQQOXCn3zB8K5_v7-J_vRNFo70Pr98ETYeBwAjJl0Goh8pKrVOjpLMY6SjhtXSSD1OdIHdykdDWIKPCMEQ7YUwsrPPeohuMfWipYwSa_3WFJEP0YP3V3njyvjvDUDyqayGkScCRVzRp90OOIeeMLsGHkp5WOcTzhPd83uYfh7eVTxxd-59_zetwtWHi7GWtOjdgzeWbcLnuzXm6CRvvmqyDm_Bp0kYs351llIzP5gsaJVAzZP2MNrJZxNqN7GcMaTWbF0tKxcLvKDxDPaXrovXskmqHlrfg44W8323o5UXutoBp67j0ynL8jI2ZTl0cJs7p2EcyFQnvw9MWFJlpirVTz5DjrEoa4EmGEMoIQvTUh51Oel4XKVkhN2jxlTUEqyZOGfrPFTO2W_xkjXErs1_g6cOjbhjNEp016dwVJySDkWooVIQyd2rUdkuLlAjR8sd9UGfw3AlQyfOzI_nsc1X6XFT1FXHmkxb5vy3rL-u_--_1P4QNhH32dn98cA-uRMTYqvTCbegtFyfuPlwyX5ezcvGg0W0GRxetAD8BCkmTOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+risk+prediction+for+type+2+diabetes%3A+the+potential+of+genetic+risk+scores&rft.jtitle=Genetics+in+medicine&rft.au=L%C3%A4ll%2C+Kristi&rft.au=M%C3%A4gi%2C+Reedik&rft.au=Morris%2C+Andrew&rft.au=Metspalu%2C+Andres&rft.date=2017-03-01&rft.pub=Elsevier+Limited&rft.issn=1098-3600&rft.eissn=1530-0366&rft.volume=19&rft.issue=3&rft.spage=322&rft_id=info:doi/10.1038%2Fgim.2016.103&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4318813891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-3600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-3600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-3600&client=summon