Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores
Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of...
Uložené v:
| Vydané v: | Genetics in medicine Ročník 19; číslo 3; s. 322 - 329 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Inc
01.03.2017
Nature Publishing Group US Elsevier Limited Nature Publishing Group |
| Predmet: | |
| ISSN: | 1098-3600, 1530-0366, 1530-0366 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.
By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).
The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.
The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.
Genet Med19 3, 322–329. |
|---|---|
| AbstractList | Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.PURPOSEUsing effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).METHODSBy varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.RESULTSThe best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329.CONCLUSIONThe proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329. Purpose: Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. Methods: By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). Results: The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444) . In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. Conclusion: The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors. Genet Med 19 3, 322–329. Purpose:Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment.Methods:By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases).Results:The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed.Conclusion:The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329. Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31–5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211–0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors. Genet Med19 3, 322–329. Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2 diabetes (T2D) status in a population-based cohort and investigated its potential for prospective T2D risk assessment. By varying the number of single-nucleotide polymorphisms (SNPs) and their respective weights, alternative versions of GRS can be computed. They were tested in 1,181 T2D cases and 9,092 controls of the Estonian Biobank cohort. The best-fitting GRS was chosen for the subsequent analysis of incident T2D (386 cases). The best fit was provided by a novel doubly weighted GRS that captures the effect of 1,000 SNPs. The hazard for incident T2D was 3.45 times (95% CI: 2.31-5.17) higher in the highest GRS quintile compared with the lowest quintile, after adjusting for body mass index and other known predictors. Adding GRS to the prediction model for 5-year T2D risk resulted in continuous net reclassification improvement of 0.324 (95% CI: 0.211-0.444). In addition, a significant effect of the GRS on all-cause and cardiovascular mortality was observed. The proposed GRS would improve the accuracy of T2D risk prediction when added to the currently used set of predictors.Genet Med 19 3, 322-329. |
| Author | Mägi, Reedik Fischer, Krista Morris, Andrew Läll, Kristi Metspalu, Andres |
| Author_xml | – sequence: 1 givenname: Kristi surname: Läll fullname: Läll, Kristi organization: Estonian Genome Center, University of Tartu, Tartu, Estonia – sequence: 2 givenname: Reedik surname: Mägi fullname: Mägi, Reedik organization: Estonian Genome Center, University of Tartu, Tartu, Estonia – sequence: 3 givenname: Andrew surname: Morris fullname: Morris, Andrew organization: Estonian Genome Center, University of Tartu, Tartu, Estonia – sequence: 4 givenname: Andres surname: Metspalu fullname: Metspalu, Andres organization: Estonian Genome Center, University of Tartu, Tartu, Estonia – sequence: 5 givenname: Krista surname: Fischer fullname: Fischer, Krista email: krista.fischer@ut.ee organization: Estonian Genome Center, University of Tartu, Tartu, Estonia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27513194$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kstrFTEUxoNU7EN3riXgxoXTnkwec8dFQYovKNSFug1pcuY2dW4yJrmF9q9vhqmllrpKDvl9h--cL_tkJ8SAhLxmcMiAr47WfnPYAlNz9YzsMcmhAa7UTr1Dv2q4Atgl-zlfArCOt_CC7LadZJz1Yo_8-o4px2BGf4OOJp9_0ymh87b4GOgQEy3XE9KWOm_OsWD-QMsF0ikWDMWbkcaBrjFg8XZRZxsT5pfk-WDGjK_uzgPy8_OnHydfm9OzL99OPp42VipeGmagc8qY3nYKHfSik4NRqDj0ZgV9j600zkIdT4BBaa2QDofBtQLEwJzkB-R46TttzzfobDWVzKin5DcmXetovP73JfgLvY5XWkpQQora4N1dgxT_bDEXvfHZ4jiagHGbNVvJvmOya1lF3z5CL-M21dXNVCdEyzmfqTcPHd1b-bvyCrxfAJtizgmHe4SBnhPVNVE9JzpXFW8f4dYXM6dT5_Hj_0TNIsq1d1hjemD1aV4tPNasrnzls_UYbP0ICW3RLvqnhbcrbsX6 |
| CitedBy_id | crossref_primary_10_1038_s41591_022_01869_1 crossref_primary_10_1007_s40889_020_00098_9 crossref_primary_10_1038_s41467_020_17374_3 crossref_primary_10_1016_j_metabol_2022_155215 crossref_primary_10_1080_17446651_2017_1323631 crossref_primary_10_3389_fgene_2022_1000667 crossref_primary_10_1097_PSY_0000000000000562 crossref_primary_10_1038_s41467_020_15464_w crossref_primary_10_1155_genr_8818420 crossref_primary_10_1210_jendso_bvaf019 crossref_primary_10_1146_annurev_biodatasci_111721_074830 crossref_primary_10_1161_CIRCGEN_121_003341 crossref_primary_10_1016_j_cmet_2024_02_002 crossref_primary_10_1038_s41588_021_00961_5 crossref_primary_10_3390_nu9040376 crossref_primary_10_1093_nar_gkab1245 crossref_primary_10_1093_bib_bbac459 crossref_primary_10_3389_fgene_2021_632385 crossref_primary_10_3390_ijms21051703 crossref_primary_10_1007_s00125_022_05801_7 crossref_primary_10_1111_dom_16579 crossref_primary_10_3390_ijms25021151 crossref_primary_10_1186_s12937_019_0450_6 crossref_primary_10_1016_j_tig_2019_02_005 crossref_primary_10_2337_dc24_0022 crossref_primary_10_3390_jpm12020166 crossref_primary_10_1016_j_csbj_2025_06_038 crossref_primary_10_1002_gepi_22327 crossref_primary_10_1287_mnsc_2020_3729 crossref_primary_10_4093_dmj_2019_0163 crossref_primary_10_1186_s12885_021_08937_8 crossref_primary_10_1038_s41598_018_21939_0 crossref_primary_10_1080_23789689_2025_2525697 crossref_primary_10_3390_jpm11020135 crossref_primary_10_1186_s12967_025_06720_y crossref_primary_10_1007_s11033_023_09128_3 crossref_primary_10_3389_fendo_2021_681649 crossref_primary_10_1038_s41598_018_29634_w crossref_primary_10_1155_2020_9108216 crossref_primary_10_3390_ijms22084182 crossref_primary_10_1093_ehjopen_oeac079 crossref_primary_10_1186_s13195_021_00884_7 crossref_primary_10_1016_j_gde_2018_02_003 crossref_primary_10_1038_s41431_021_00813_0 crossref_primary_10_3389_fgene_2022_899523 crossref_primary_10_1007_s11357_024_01107_1 crossref_primary_10_1016_j_ebiom_2022_104383 crossref_primary_10_1097_BRS_0000000000004735 crossref_primary_10_3390_nu12123840 crossref_primary_10_1093_bib_bby086 crossref_primary_10_1038_s41467_021_22538_w crossref_primary_10_3390_genes14040814 crossref_primary_10_1038_s41598_024_55313_0 crossref_primary_10_1016_j_artmed_2019_101706 crossref_primary_10_1097_JCMA_0000000000000666 crossref_primary_10_1038_s41467_021_25014_7 crossref_primary_10_1038_s41588_020_00757_z crossref_primary_10_1186_s13073_022_01074_2 crossref_primary_10_1016_j_diabres_2025_112226 crossref_primary_10_1088_1755_1315_255_1_012008 crossref_primary_10_1007_s00125_021_05491_7 crossref_primary_10_3389_fendo_2021_647864 crossref_primary_10_1007_s00125_025_06503_6 crossref_primary_10_1111_jdi_12830 crossref_primary_10_3390_ijms232416081 crossref_primary_10_1038_s41431_022_01196_6 crossref_primary_10_3390_ijms23063222 crossref_primary_10_1161_CIRCGEN_122_003834 crossref_primary_10_1097_MD_0000000000019980 crossref_primary_10_1017_S0033291723001186 crossref_primary_10_3389_fgene_2021_763159 crossref_primary_10_3390_ijms23010295 crossref_primary_10_1016_j_jmb_2019_08_016 crossref_primary_10_1007_s12687_023_00645_z crossref_primary_10_1186_s40246_021_00339_y crossref_primary_10_1016_j_cll_2022_09_007 crossref_primary_10_1002_edm2_108 crossref_primary_10_1155_2020_8899556 crossref_primary_10_3390_genes16050578 crossref_primary_10_1111_cts_13574 crossref_primary_10_1186_s12920_025_02152_1 crossref_primary_10_1038_s41598_023_27637_w crossref_primary_10_1093_hmg_ddz187 crossref_primary_10_3390_genes15010049 crossref_primary_10_1111_cge_13772 crossref_primary_10_3389_fpubh_2021_606711 crossref_primary_10_1186_s40246_022_00406_y crossref_primary_10_1038_s41467_023_43878_9 crossref_primary_10_2196_48210 crossref_primary_10_3389_fgene_2023_1098439 crossref_primary_10_4239_wjd_v14_i6_656 crossref_primary_10_2139_ssrn_3808292 crossref_primary_10_1186_s12885_019_5783_1 crossref_primary_10_2147_DMSO_S304994 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s) The Author(s) 2017 Copyright Nature Publishing Group Mar 2017 Copyright © 2016 The Author(s) 2016 The Author(s) |
| Copyright_xml | – notice: 2017 The Author(s) – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Mar 2017 – notice: Copyright © 2016 The Author(s) 2016 The Author(s) |
| DBID | 6I. AAFTH C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1038/gim.2016.103 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1530-0366 |
| EndPage | 329 |
| ExternalDocumentID | PMC5506454 4318813891 27513194 10_1038_gim_2016_103 S1098360021024084 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .-D ..I .GJ 08G 0SF 39C 3V. 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6I. 70F 7X7 88E 8FI 8FJ AAFTH AAKAS AAWBL AAXUO AAYEP AAYJO AAZLF ABAWZ ABGIJ ABJNI ABLJU ABUWG ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACKTT ACRQY ACTTH ACVWB ACZOJ ADBBV ADBIZ ADHDB ADMDM ADQMX ADZCM AE3 AEDAW AEFTE AEJRE AENEX AEXYK AFKRA AFSHS AFTRI AGAYW AGEZK AGGBP AHGBK AHMBA AHSBF AHVBC AILAN AIZYK AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRAJ AWKKM AXYYD BENPR BKKNO BPHCQ BS7 BVXVI CCPQU CS3 DNIVK DU5 EBLON EBS EE. EIOEI EJD EX3 F5P FDB FDQFY FERAY FIZPM FSGXE FYUFA H0~ HMCUK JF9 JG8 JK3 JSO JZLTJ K-O KD2 M1P M41 N9A NAO NQJWS N~M OAG OAH ODA OK1 OLG OVD OWU OWV OWW OWX OWY OWZ P-K P2P PQQKQ PROAC PSQYO R58 RNT RNTTT ROL S4R SNX SNYQT SOHCF SOJ SRMVM SWTZT T8P TAOOD TBHMF TDRGL TEORI TSG UKHRP VVN W3M WOQ WOW XXN XYM YFH ZFV AAFWJ AALRI AAYWO ACVFH ADCNI ADVLN AEUPX AFETI AFJKZ AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP ALIPV APXCP C6C EFKBS PHGZM PHGZT PJZUB PPXIY AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c563t-1a07d6aa9c76ed09475fa6e6309a8099e25adc020140ae5cc45deffd2404f1d53 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395799700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-3600 1530-0366 |
| IngestDate | Tue Nov 04 01:57:22 EST 2025 Sun Nov 09 11:41:32 EST 2025 Sat Nov 15 15:41:56 EST 2025 Wed Feb 19 02:27:00 EST 2025 Wed Oct 29 21:33:12 EDT 2025 Tue Nov 18 21:56:00 EST 2025 Mon Jul 21 06:06:53 EDT 2025 Fri Feb 23 02:40:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | genetic risk score precision medicine type 2 diabetes risk prediction genetic risk |
| Language | English |
| License | This is an open access article under the CC BY-NC-SA license. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-1a07d6aa9c76ed09475fa6e6309a8099e25adc020140ae5cc45deffd2404f1d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3718-796X 0000-0002-3521-0599 0000-0002-9161-4694 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5506454 |
| PMID | 27513194 |
| PQID | 1874423331 |
| PQPubID | 2043492 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5506454 proquest_miscellaneous_1859715721 proquest_journals_1874423331 pubmed_primary_27513194 crossref_primary_10_1038_gim_2016_103 crossref_citationtrail_10_1038_gim_2016_103 springer_journals_10_1038_gim_2016_103 elsevier_sciencedirect_doi_10_1038_gim_2016_103 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Bethesda |
| PublicationSubtitle | Official journal of the American College of Medical Genetics and Genomics |
| PublicationTitle | Genetics in medicine |
| PublicationTitleAbbrev | Genet Med |
| PublicationTitleAlternate | Genet Med |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Nature Publishing Group US Elsevier Limited Nature Publishing Group |
| Publisher_xml | – name: Elsevier Inc – name: Nature Publishing Group US – name: Elsevier Limited – name: Nature Publishing Group |
| References | Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. Cox DR. (bb0075) 1961; 1 Do, Hinds, Francke, Eriksson (bb0100) 2012; 8 Lyssenko, Laakso (bb0040) 2013; 36 Suppl 2 Golan, Lander, Rosset (bb0050) 2014; 111 Pencina, D’Agostino, Steyerberg (bb0080) 2011; 30 Finnish Diabetes Prevention Study Group (bb0020) 2001; 344 Lindström, Tuomilehto (bb0095) 2003; 26 Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (bb0060) 2012; 44 Yang, Benyamin, McEvoy (bb0055) 2010; 42 Accessed 1 January 2015. Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. UCLEB Consortium (bb0085) 2015; 64 Botnia Study Group (bb0025) 2011; 54 Purcell, Neale, Todd-Brown (bb0065) 2007; 81 Poulsen, Kyvik, Vaag, Beck-Nielsen (bb0030) 1999; 42 Accessed 9 December, 2015. Accessed 10 January 2015. Wray, Yang, Hayes, Price, Goddard, Visscher (bb0035) 2013; 14 Mahajan, Go, Zhang (bb0090) 2014; 46 R Development Core Team. R: A language and environment for statistical computing, 2008. Zeng, Zhao, Qian (bb0045) 2015; 29 Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. http://www.changingdiabetesbarometer.com/about-diabetes.aspx. Accessed 1 January 2015. R Development Core Team. R: A language and environment for statistical computing, 2008 . http://www.r-project.org.Accessed 9 December, 2015. DoCBHindsDAFranckeUErikssonNComparison of family history and SNPs for predicting risk of complex diseasePLoS Genet20128e10029731:CAS:528:DC%2BC38XhsFOrsLbI10.1371/journal.pgen.1002973 ZengPZhaoYQianCStatistical analysis for genome-wide association studyJ Biomed Res20152928529726243515 LindströmJTuomilehtoJThe diabetes risk score: a practical tool to predict type 2 diabetes riskDiabetes Care20032672573110.2337/diacare.26.3.725 MorrisAPVoightBFTeslovichTMWellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetesNat Genet2012449819901:CAS:528:DC%2BC38XhtFOgsLfP10.1038/ng.2383 PoulsenPKyvikKOVaagABeck-NielsenHHeritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin studyDiabetologia1999421391451:CAS:528:DyaK1MXhtFajsbk%3D10.1007/s001250051131 TalmudPJCooperJAMorrisRWUCLEB ConsortiumSixty-five common genetic variants and prediction of type 2 diabetesDiabetes201564183018401:CAS:528:DC%2BC2MXotVajtL4%3D10.2337/db14-1504 GolanDLanderESRossetSMeasuring missing heritability: inferring the contribution of common variantsProc Natl Acad Sci USA2014111E5272E52811:CAS:528:DC%2BC2cXhvFKmu77F10.1073/pnas.1419064111 LyssenkoVLaaksoMGenetic screening for the risk of type 2 diabetes: worthless or valuable?Diabetes Care201336 Suppl 2S120S12610.2337/dcS13-2009 YangJBenyaminBMcEvoyBPCommon SNPs explain a large proportion of the heritability for human heightNat Genet2010425655691:CAS:528:DC%2BC3cXns1GisL8%3D10.1038/ng.608 Cox DR.Tests of Separate Families of HypothesesProc Fourth Berkeley Symp Math Stat Probab19611105123 PencinaMJD’AgostinoRBSrSteyerbergEWExtensions of net reclassification improvement calculations to measure usefulness of new biomarkersStat Med201130112110.1002/sim.4085 TuomilehtoJLindströmJErikssonJGFinnish Diabetes Prevention Study GroupPrevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose toleranceN Engl J Med2001344134313501:STN:280:DC%2BD3M3kvFejsA%3D%3D10.1056/NEJM200105033441801 MahajanAGoMJZhangWGenome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibilityNat Genet2014462342441:CAS:528:DC%2BC2cXitFanuro%3D10.1038/ng.2897 WrayNRYangJHayesBJPriceALGoddardMEVisscherPMPitfalls of predicting complex traits from SNPsNat Rev Genet2013145075151:CAS:528:DC%2BC3sXpsV2mu70%3D10.1038/nrg3457 PurcellSNealeBTodd-BrownKPLINK: a tool set for whole-genome association and population-based linkage analysesAm J Hum Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795 Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. http://www.euro.who.int/en/home. Accessed 10 January 2015. AlmgrenPLehtovirtaMIsomaaBBotnia Study GroupHeritability and familiality of type 2 diabetes and related quantitative traits in the Botnia StudyDiabetologia201154281128191:CAS:528:DC%2BC3MXht12js7rM10.1007/s00125-011-2267-5 Zeng (10.1038/gim.2016.103_bb0045) UCLEB Consortium (10.1038/gim.2016.103_bb0085) Yang (10.1038/gim.2016.103_bb0055) Purcell (10.1038/gim.2016.103_bb0065) Lindström (10.1038/gim.2016.103_bb0095) Finnish Diabetes Prevention Study Group (10.1038/gim.2016.103_bb0020) Botnia Study Group (10.1038/gim.2016.103_bb0025) 10.1038/gim.2016.103_bb0070 Mahajan (10.1038/gim.2016.103_bb0090) 10.1038/gim.2016.103_bb0010 Golan (10.1038/gim.2016.103_bb0050) Do (10.1038/gim.2016.103_bb0100) Wray (10.1038/gim.2016.103_bb0035) Cox DR. (10.1038/gim.2016.103_bb0075) 1961; 1 10.1038/gim.2016.103_bb0015 Poulsen (10.1038/gim.2016.103_bb0030) Lyssenko (10.1038/gim.2016.103_bb0040) Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (10.1038/gim.2016.103_bb0060) Pencina (10.1038/gim.2016.103_bb0080) |
| References_xml | – reference: . Accessed 10 January 2015. – volume: 42 start-page: 139 year: 1999 end-page: 145 ident: bb0030 article-title: Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study publication-title: Diabetologia – volume: 344 start-page: 1343 year: 2001 end-page: 1350 ident: bb0020 article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance publication-title: N Engl J Med – volume: 36 Suppl 2 start-page: S120 year: 2013 end-page: S126 ident: bb0040 article-title: Genetic screening for the risk of type 2 diabetes: worthless or valuable? publication-title: Diabetes Care – volume: 29 start-page: 285 year: 2015 end-page: 297 ident: bb0045 article-title: Statistical analysis for genome-wide association study publication-title: J Biomed Res – reference: Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. – volume: 1 start-page: 105 year: 1961 end-page: 123 ident: bb0075 article-title: Tests of Separate Families of Hypotheses publication-title: Proc Fourth Berkeley Symp Math Stat Probab – volume: 30 start-page: 11 year: 2011 end-page: 21 ident: bb0080 article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers publication-title: Stat Med – reference: R Development Core Team. R: A language and environment for statistical computing, 2008. – volume: 14 start-page: 507 year: 2013 end-page: 515 ident: bb0035 article-title: Pitfalls of predicting complex traits from SNPs publication-title: Nat Rev Genet – volume: 26 start-page: 725 year: 2003 end-page: 731 ident: bb0095 article-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk publication-title: Diabetes Care – volume: 81 start-page: 559 year: 2007 end-page: 575 ident: bb0065 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet – reference: .Accessed 9 December, 2015. – reference: . Accessed 1 January 2015. – volume: 111 start-page: E5272 year: 2014 end-page: E5281 ident: bb0050 article-title: Measuring missing heritability: inferring the contribution of common variants publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 234 year: 2014 end-page: 244 ident: bb0090 article-title: Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility publication-title: Nat Genet – reference: Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. – volume: 44 start-page: 981 year: 2012 end-page: 990 ident: bb0060 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nat Genet – volume: 54 start-page: 2811 year: 2011 end-page: 2819 ident: bb0025 article-title: Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study publication-title: Diabetologia – volume: 64 start-page: 1830 year: 2015 end-page: 1840 ident: bb0085 article-title: Sixty-five common genetic variants and prediction of type 2 diabetes publication-title: Diabetes – volume: 42 start-page: 565 year: 2010 end-page: 569 ident: bb0055 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat Genet – volume: 8 start-page: e1002973 year: 2012 ident: bb0100 article-title: Comparison of family history and SNPs for predicting risk of complex disease publication-title: PLoS Genet – reference: MahajanAGoMJZhangWGenome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibilityNat Genet2014462342441:CAS:528:DC%2BC2cXitFanuro%3D10.1038/ng.2897 – reference: Mladovsky P, Allin S, Masseria C, et al. Health in the European Union: Trends and Analysis, 2009. http://www.euro.who.int/en/home. Accessed 10 January 2015. – reference: PoulsenPKyvikKOVaagABeck-NielsenHHeritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin studyDiabetologia1999421391451:CAS:528:DyaK1MXhtFajsbk%3D10.1007/s001250051131 – reference: ZengPZhaoYQianCStatistical analysis for genome-wide association studyJ Biomed Res20152928529726243515 – reference: PencinaMJD’AgostinoRBSrSteyerbergEWExtensions of net reclassification improvement calculations to measure usefulness of new biomarkersStat Med201130112110.1002/sim.4085 – reference: TalmudPJCooperJAMorrisRWUCLEB ConsortiumSixty-five common genetic variants and prediction of type 2 diabetesDiabetes201564183018401:CAS:528:DC%2BC2MXotVajtL4%3D10.2337/db14-1504 – reference: WrayNRYangJHayesBJPriceALGoddardMEVisscherPMPitfalls of predicting complex traits from SNPsNat Rev Genet2013145075151:CAS:528:DC%2BC3sXpsV2mu70%3D10.1038/nrg3457 – reference: PurcellSNealeBTodd-BrownKPLINK: a tool set for whole-genome association and population-based linkage analysesAm J Hum Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL10.1086/519795 – reference: Cox DR.Tests of Separate Families of HypothesesProc Fourth Berkeley Symp Math Stat Probab19611105123 – reference: LyssenkoVLaaksoMGenetic screening for the risk of type 2 diabetes: worthless or valuable?Diabetes Care201336 Suppl 2S120S12610.2337/dcS13-2009 – reference: TuomilehtoJLindströmJErikssonJGFinnish Diabetes Prevention Study GroupPrevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose toleranceN Engl J Med2001344134313501:STN:280:DC%2BD3M3kvFejsA%3D%3D10.1056/NEJM200105033441801 – reference: R Development Core Team. R: A language and environment for statistical computing, 2008 . http://www.r-project.org.Accessed 9 December, 2015. – reference: DoCBHindsDAFranckeUErikssonNComparison of family history and SNPs for predicting risk of complex diseasePLoS Genet20128e10029731:CAS:528:DC%2BC38XhsFOrsLbI10.1371/journal.pgen.1002973 – reference: AlmgrenPLehtovirtaMIsomaaBBotnia Study GroupHeritability and familiality of type 2 diabetes and related quantitative traits in the Botnia StudyDiabetologia201154281128191:CAS:528:DC%2BC3MXht12js7rM10.1007/s00125-011-2267-5 – reference: LindströmJTuomilehtoJThe diabetes risk score: a practical tool to predict type 2 diabetes riskDiabetes Care20032672573110.2337/diacare.26.3.725 – reference: GolanDLanderESRossetSMeasuring missing heritability: inferring the contribution of common variantsProc Natl Acad Sci USA2014111E5272E52811:CAS:528:DC%2BC2cXhvFKmu77F10.1073/pnas.1419064111 – reference: YangJBenyaminBMcEvoyBPCommon SNPs explain a large proportion of the heritability for human heightNat Genet2010425655691:CAS:528:DC%2BC3cXns1GisL8%3D10.1038/ng.608 – reference: MorrisAPVoightBFTeslovichTMWellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetesNat Genet2012449819901:CAS:528:DC%2BC38XhtFOgsLfP10.1038/ng.2383 – reference: Novo Nordisk A/S. Changing diabetes barometer: diabetes—a chronic disease. http://www.changingdiabetesbarometer.com/about-diabetes.aspx. Accessed 1 January 2015. – ident: 10.1038/gim.2016.103_bb0030 – ident: 10.1038/gim.2016.103_bb0080 – ident: 10.1038/gim.2016.103_bb0060 – ident: 10.1038/gim.2016.103_bb0040 – volume: 1 start-page: 105 year: 1961 ident: 10.1038/gim.2016.103_bb0075 article-title: Tests of Separate Families of Hypotheses publication-title: Proc Fourth Berkeley Symp Math Stat Probab – ident: 10.1038/gim.2016.103_bb0085 – ident: 10.1038/gim.2016.103_bb0025 – ident: 10.1038/gim.2016.103_bb0035 – ident: 10.1038/gim.2016.103_bb0020 – ident: 10.1038/gim.2016.103_bb0090 – ident: 10.1038/gim.2016.103_bb0065 – ident: 10.1038/gim.2016.103_bb0050 – ident: 10.1038/gim.2016.103_bb0055 – ident: 10.1038/gim.2016.103_bb0100 – ident: 10.1038/gim.2016.103_bb0010 – ident: 10.1038/gim.2016.103_bb0015 – ident: 10.1038/gim.2016.103_bb0045 – ident: 10.1038/gim.2016.103_bb0070 – ident: 10.1038/gim.2016.103_bb0095 |
| SSID | ssj0017320 |
| Score | 2.523458 |
| Snippet | Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with type 2... Purpose: Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with... Purpose:Using effect estimates from genome-wide association studies (GWAS), we identified a genetic risk score (GRS) that has the strongest association with... |
| SourceID | pubmedcentral proquest pubmed crossref springer elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 322 |
| SubjectTerms | 631/208/205/2138 631/208/2489/144 631/208/727/2000 692/699/2743/137/773 Alleles Biomedical and Life Sciences Biomedicine Body Mass Index Cohort Studies Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - prevention & control Diabetes Mellitus, Type 2 - therapy Female Genetic Predisposition to Disease genetic risk genetic risk score Genetic Testing - methods Genome-Wide Association Study Genotype Human Genetics Humans Laboratory Medicine Male Middle Aged Original original-research-article Polymorphism, Single Nucleotide precision medicine Precision Medicine - methods Prospective Studies Risk Factors risk prediction type 2 diabetes |
| Title | Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores |
| URI | https://dx.doi.org/10.1038/gim.2016.103 https://link.springer.com/article/10.1038/gim.2016.103 https://www.ncbi.nlm.nih.gov/pubmed/27513194 https://www.proquest.com/docview/1874423331 https://www.proquest.com/docview/1859715721 https://pubmed.ncbi.nlm.nih.gov/PMC5506454 |
| Volume | 19 |
| WOSCitedRecordID | wos000395799700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1530-0366 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0017320 issn: 1098-3600 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1530-0366 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0017320 issn: 1098-3600 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLfGMRAvG5_jNkBBAl5QRds0TbuXaZtAPGyn0zTQvVW5JhEnofa4HpO2v352m3Zj7HjhpVKVpHVkJ_45dmyAI5v6Qtg08RRiDy8SJvXGIgq9QI25UVybqE72fP1FDgbJaJQO3YFb5cIq2z2x3qh1mdMZ-RnVjkPVz3nwYXrnUdUo8q66EhpLsEyZyqIeLH86Hwy_dX4EycMmHwFSw1G3u9B3n6PZN6GL6EFMb4uU0mPQ-Th28h8Haq2XLl4_d0br8MohUvaxEaENeGGKTVhpalT-3ITVr877vgXXwxa5_zKaUVA6m86olZjLEP0yOtBlIWsPdN8zhJdsWs4pJAn_UVqG8krXJpvRFeXQrLbh6uL8--dLz9Vl8HIR8zny0Zc6VirNZWw02odSWBWbmPupShBxmlAonSMOReNNGZHnkdDGWo3gIbKBFnwHekVZmF1gqBvN2A9t6KcWLc0kienDuPEh8EJhifpw2jImy13ScqqdcZvVznOeZMjGjNhIb3047npPm2QdC_qdtTzOHNBoAESGemTBiL2Wh5lb5FX2h4F9OOyacXmSz0UVprynPmixBQLt7D68aSSnIy2UIsAdECcpH8hU14FSfz9sKSY3dQpwUecZxJEnrfT9RdZ_6H_7NP3vYC0kuFLH1u1Bbz67N_vwMv8xn1SzA1iSI1k_kwO3wH4DkVwsgQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5XnhUV4LBYxEuaCoiR3HCRJCCKhadbvqoVR7c72xo65UJctmCyo_it_ITBIHSlluPXCMPE7s3c8z39jjGYCXRRZKWWRpYJB7BLF0WTCRMQ8iMxHOCOviJtnz4VCNRul4nO2vwA9_F4bCKr1ObBS1rXLaI9-k2nFo-oWI3s2-BFQ1ik5XfQmNFha77uwbumz1252P-P9ucL716eDDdtBVFQhymYgFjiJUNjEmy1XiLHo3ShYmcYkIM5MiX3JcGpsji0LXwziZ57G0rigsmr64iCxViUCVfwX1uKIQMjXuHbxICd5mP8C5C2QSXaB9KNDJnNK19yihp2Um8CLFvRip-cdxbWMFt27_b7_fHbjV8W32vl0gd2HFlWtwra3AebYG1_e62IJ7cLjv_ZLvzjIKuWezObUSdBlye0bb1Ywzv139hiF5ZrNqQQFX-I2qYLga6VJo27umDKH1ffh8KfN7AKtlVbpHwNDyu0nICx5mBfrRaZrQi1GtI63EpRAP4LUHgs67lOxUGeREN6EBItUIG02woacBbPTSszYVyRK5TY8p3dGolh5ptJJLeqx7zOhOhdX6F2AG8KJvRuVDJ0qmdNUpyaA_GknFUeZhi9R-aFzJCPU7TlKdw3AvQInNz7eU0-Mmwblssihiz1ce7b8N6y_jf_zv8T-HG9sHe0M93BntPoGbnIhZE0W4DquL-al7Clfzr4tpPX_WLGcGR5eN_59R1Ibu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW6i4UCivpQWMRLmgaBM7zgMJIaBdUbWsVgiq3lxvbIuVULJstqDy0_rrOpMXlLLceuAYeZw4yTfjb-zxDMAzl_pSujTxNHIPL5Q29SYy5F6gJ8JqYWxYJXs-PIhHo-ToKB2vwFl7FobCKlubWBlqU2S0Rj6g2nE49QsRDFwTFjHeGb6effOoghTttLblNGqI7NvTH-i-la_2dvBfb3M-3P307r3XVBjwMhmJBY7Ij02kdZrFkTXo6cTS6chGwk91gtzJcqlNhowK3RBtZZaF0ljnDE6DoQsMVYxA878aI8mQPVh9uzsaf-z2MGLB61wI-CUE8oom7N4X6HJO6RB8ENHVsgnxMuG9HLf5x-ZtNScO1__nr3kLbjZMnL2pVec2rNh8A67XtTlPN2DtQxN1cAcOx63H8tMaRsH4bDanVgI1Q9bPaCGbcdYuZL9kSKvZrFhQKBY-o3AM9ZSOi9a9S8odWt6Fz1fyfveglxe5fQAMOYGd-NxxP3XoYSdJRDdGg4-EE5Uk7MOLFhQqa5K1U82Qr6oKGhCJQggpghBd9WG7k57VSUqWyA1afKmGYNXESeH8uaTHVosf1Ri3Uv0CTx-eds1olmivSee2OCEZ9FQDGXOUuV-jthsaj2WAlh9fMr6A506AUp5fbMmnX6rU57LKr4g9n7fI_21Yfxn_w3-P_wmsIezVwd5ofxNucGJsVXjhFvQW8xP7CK5l3xfTcv640W0Gx1etAOdCWJEO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+risk+prediction+for+type+2+diabetes%3A+the+potential+of+genetic+risk+scores&rft.jtitle=Genetics+in+medicine&rft.au=L%C3%A4ll%2C+Kristi&rft.au=M%C3%A4gi%2C+Reedik&rft.au=Morris%2C+Andrew&rft.au=Metspalu%2C+Andres&rft.date=2017-03-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1098-3600&rft.eissn=1530-0366&rft.volume=19&rft.issue=3&rft.spage=322&rft.epage=329&rft_id=info:doi/10.1038%2Fgim.2016.103&rft.externalDocID=10_1038_gim_2016_103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-3600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-3600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-3600&client=summon |