An Improved Chimp-Inspired Optimization Algorithm for Large-Scale Spherical Vehicle Routing Problem with Time Windows
The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In orde...
Uloženo v:
| Vydáno v: | Biomimetics (Basel, Switzerland) Ročník 7; číslo 4; s. 241 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.12.2022
MDPI |
| Témata: | |
| ISSN: | 2313-7673, 2313-7673 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms. |
|---|---|
| AbstractList | The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms. The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms. |
| Audience | Academic |
| Author | Xiang, Yifei Luo, Qifang Zhou, Yongquan Huang, Huajuan |
| AuthorAffiliation | 2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China 1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China |
| AuthorAffiliation_xml | – name: 1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China – name: 2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China |
| Author_xml | – sequence: 1 givenname: Yifei surname: Xiang fullname: Xiang, Yifei – sequence: 2 givenname: Yongquan surname: Zhou fullname: Zhou, Yongquan – sequence: 3 givenname: Huajuan surname: Huang fullname: Huang, Huajuan – sequence: 4 givenname: Qifang surname: Luo fullname: Luo, Qifang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36546941$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhSNUREvpC7BAltiwSfFf7GSDNBoVGGmkIlpgaTnOdcZVYgcnaQVPj6fTQqcgFCm5OTnni52c59mBDx6y7CXBp4xV-G3tQu96mJwZJeaYcvIkO6KMsFwKyQ4ezIfZyTheYYxJJQrO8bPskKVBVJwcZfPCo1U_xHANDVpuXD_kKz8OLqbb82FyvfupJxc8WnRtiG7a9MiGiNY6tpBfGN0Buhg2EF0a0VfYOJOUz2GenG_RpxjqDnp0k3LoMq0WfXO-CTfji-yp1d0IJ3fX4-zL-7PL5cd8ff5htVysc1MINuWkAlEZKi0XQMq6tJYBMEoq0ljbcGKNJaY0SWmAllrXmBVlTQpOC0Et5uw4W-24TdBXaoiu1_GHCtqpWyHEVuk4bdesGrB1JXitcQ3pLKuKcGJozQsCjeE6sd7tWMNc90kCP0Xd7UH3n3i3UW24VpWUAtMiAd7cAWL4PsM4qd6NBrpOewjzqKgsJC4KXJFkff3IehXm6NOn2rqEEKXA8o-rTb9BOW9Deq_ZQtVCcs4KTOSWdfoPVzoa6J1JpbIu6XuBVw83-nuH96VJhnJnMDGMYwSrjJtuW5LIrlMEq21F1d8VTVH6KHpP_0_oF0Qw7Zs |
| CitedBy_id | crossref_primary_10_1007_s42235_023_00414_1 crossref_primary_10_1016_j_asej_2025_103637 crossref_primary_10_3390_app14125090 crossref_primary_10_3390_biomimetics8030322 crossref_primary_10_1016_j_eswa_2025_127945 crossref_primary_10_1007_s10489_024_06076_8 crossref_primary_10_1007_s12530_023_09524_x crossref_primary_10_1109_ACCESS_2024_3401487 crossref_primary_10_1016_j_heliyon_2023_e21596 crossref_primary_10_1016_j_swevo_2025_102004 |
| Cites_doi | 10.1016/j.patcog.2017.10.013 10.3390/e24020283 10.1287/mnsc.6.1.80 10.1007/978-3-662-45049-9_17 10.1007/s11042-022-12882-4 10.1016/j.advengsoft.2005.04.005 10.1016/j.future.2019.02.028 10.1016/j.jclepro.2019.118428 10.1016/j.trb.2019.03.009 10.1016/j.bspc.2022.103688 10.1016/j.swevo.2019.100558 10.1016/j.eswa.2020.113338 10.1016/j.asoc.2015.03.038 10.1016/j.eswa.2022.117481 10.1016/j.swevo.2011.02.002 10.1016/j.trd.2017.04.016 10.1007/978-3-319-45991-2_1 10.1016/j.dt.2021.07.008 10.1007/s10898-020-00990-0 10.1016/j.ins.2012.08.023 10.1016/j.advengsoft.2016.01.008 10.1007/978-3-642-58069-7_38 10.1016/j.eswa.2020.113377 10.1007/s00453-014-9906-4 10.1016/j.asoc.2015.03.058 10.1007/s10489-021-02415-1 10.1016/j.aei.2019.101027 10.1016/j.cie.2020.106559 10.1016/j.proeng.2014.02.165 10.1785/BSSA0850030951 10.1016/j.asoc.2022.108742 10.1109/TEVC.2008.919004 10.1007/978-1-4419-1665-5_8 10.1016/j.jclepro.2019.05.344 10.1287/opre.35.2.254 10.1016/j.swevo.2018.02.013 10.1016/j.ijpe.2015.09.031 10.1016/j.trd.2016.10.002 10.1007/s10107-020-01523-z 10.1016/j.advengsoft.2013.12.007 10.1145/3319619.3321894 10.1007/978-3-540-68830-3_1 10.1016/j.ins.2009.03.004 10.1016/j.neucom.2018.08.067 10.1016/j.tre.2017.08.011 10.1007/s11063-022-10832-7 10.1016/j.knosys.2019.105190 10.1016/j.asoc.2008.09.001 10.1016/j.swevo.2018.08.012 10.1016/j.tre.2016.01.011 10.1007/978-3-642-04944-6_14 10.1016/j.matcom.2022.01.018 10.7551/mitpress/1090.001.0001 10.1080/00220973.1993.9943832 10.1016/j.future.2020.03.055 10.1061/(ASCE)WR.1943-5452.0000053 10.1016/j.trb.2015.10.001 10.1016/j.tcs.2010.02.012 10.1016/j.asoc.2021.107754 10.1201/9781439896129 10.1137/1.9780898718515 10.1016/j.compbiolchem.2019.01.004 10.3389/fbioe.2022.830037 10.1108/02644401211235834 10.1093/oso/9780195099713.001.0001 10.1016/j.cie.2019.106011 10.1016/j.jaci.2019.12.897 10.1016/j.endm.2018.01.008 10.1007/s10462-019-09732-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/biomimetics7040241 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_defb964ba0be4ba799141c2b451edc4a PMC9776025 A744350171 36546941 10_3390_biomimetics7040241 |
| Genre | Journal Article |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U21A20464 – fundername: National Natural Science Foundation of China grantid: 62066005 – fundername: National Natural Science Foundation of China grantid: 62266007 – fundername: National Natural Science Foundation of China grantid: U21A20464; 62066005; 62266007 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c563t-19e69c27f46e18b8ff3ee32191dffd41fcf1c8c321de28aab0358b1542562f043 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900668600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Tue Nov 04 02:06:57 EST 2025 Fri Sep 05 06:24:04 EDT 2025 Fri Jul 25 11:57:23 EDT 2025 Tue Nov 11 10:27:55 EST 2025 Tue Nov 04 18:03:31 EST 2025 Thu Jan 02 22:54:56 EST 2025 Tue Nov 18 22:01:20 EST 2025 Sat Nov 29 07:16:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | improved chimp optimization algorithm spherical VRPTW model chimp optimization algorithm metaheuristic algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c563t-19e69c27f46e18b8ff3ee32191dffd41fcf1c8c321de28aab0358b1542562f043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2756668607?pq-origsite=%requestingapplication% |
| PMID | 36546941 |
| PQID | 2756668607 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_defb964ba0be4ba799141c2b451edc4a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9776025 proquest_miscellaneous_2757055091 proquest_journals_2756668607 gale_infotracmisc_A744350171 gale_infotracacademiconefile_A744350171 pubmed_primary_36546941 crossref_citationtrail_10_3390_biomimetics7040241 crossref_primary_10_3390_biomimetics7040241 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Behnke (ref_12) 2017; 106 Prins (ref_54) 2015; 32 Mauceri (ref_13) 2018; 64 Chen (ref_74) 2021; 112 Islam (ref_51) 2019; 79 Chen (ref_56) 2020; 2020 ref_53 Zimmerman (ref_80) 1993; 62 Khachay (ref_15) 2021; 80 Yang (ref_62) 2022; 35 Ghannadpour (ref_7) 2019; 44 Zhang (ref_57) 2015; 170 ref_19 Tian (ref_43) 2018; 318 Si (ref_60) 2022; 204 ref_18 Yu (ref_3) 2019; 122 ref_17 ref_16 Xu (ref_4) 2019; 137 Jain (ref_29) 2018; 44 Mirjalili (ref_37) 2014; 69 Faramarzi (ref_28) 2020; 152 Soysal (ref_11) 2017; 54 Hatamlou (ref_22) 2013; 222 Du (ref_66) 2022; 54 Zulvia (ref_58) 2020; 242 Bi (ref_39) 2022; 52 Su (ref_73) 2021; 17 Wang (ref_55) 2019; 232 Du (ref_65) 2022; 81 ref_67 ref_20 Alsattar (ref_30) 2020; 53 Zhang (ref_59) 2022; 10 Das (ref_14) 2015; 73 Derrac (ref_78) 2011; 1 Eldem (ref_68) 2017; 20 Neumann (ref_34) 2007; 411 Juhn (ref_44) 2020; 145 Erol (ref_24) 2006; 37 Nicklow (ref_49) 2010; 136 Lomnitz (ref_70) 1995; 85 ref_72 Zervoudakis (ref_26) 2020; 145 Faramarzi (ref_27) 2019; 191 Khishe (ref_25) 2020; 149 Pessoa (ref_9) 2020; 183 ref_35 ref_77 ref_32 Gu (ref_41) 2018; 77 ref_75 Simon (ref_21) 2008; 12 Hu (ref_63) 2022; 197 Tong (ref_76) 2019; 50 Singh (ref_33) 2009; 9 Chen (ref_64) 2022; 77 Yang (ref_36) 2012; 29 Zhang (ref_5) 2015; 82 Sayers (ref_48) 2014; 70 Heidari (ref_31) 2019; 97 Trappey (ref_45) 2020; 43 ref_47 ref_46 Dantzig (ref_1) 1959; 6 Xiao (ref_10) 2016; 88 ref_42 Paul (ref_50) 2015; 32 Rashedi (ref_23) 2009; 179 Li (ref_79) 2020; 111 ref_2 Dorigo (ref_52) 2010; 146 Sharma (ref_61) 2022; 121 Ali (ref_69) 2009; 14 Solomon (ref_71) 1987; 35 Li (ref_8) 2016; 49 Mirjalili (ref_38) 2016; 95 ref_6 Krizhevsky (ref_40) 2012; 1 |
| References_xml | – volume: 77 start-page: 354 year: 2018 ident: ref_41 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – ident: ref_75 doi: 10.3390/e24020283 – volume: 6 start-page: 80 year: 1959 ident: ref_1 article-title: The truck dispatching problem publication-title: Manag. Sci. doi: 10.1287/mnsc.6.1.80 – ident: ref_6 doi: 10.1007/978-3-662-45049-9_17 – volume: 81 start-page: 1 year: 2022 ident: ref_65 article-title: Improved chimp optimization algorithm for three-dimensional path planning problem publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12882-4 – volume: 37 start-page: 106 year: 2006 ident: ref_24 article-title: A new optimization method: Big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – ident: ref_32 – volume: 97 start-page: 849 year: 2019 ident: ref_31 article-title: Harris Hawks Optimization: Algorithm and Applications publication-title: Future Gener. Comp. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 242 start-page: 118428 year: 2020 ident: ref_58 article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118428 – volume: 122 start-page: 511 year: 2019 ident: ref_3 article-title: A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2019.03.009 – volume: 77 start-page: 103688 year: 2022 ident: ref_64 article-title: Diagnose Parkinson’s disease and cleft lip and palate using deep convolutional neural networks evolved by IP-based chimp optimization algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103688 – volume: 50 start-page: 100558 year: 2019 ident: ref_76 article-title: Model complex control CMA-ES publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.100558 – volume: 149 start-page: 113338 year: 2020 ident: ref_25 article-title: Chimp Optimization Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 32 start-page: 383 year: 2015 ident: ref_50 article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: An empirical study based on traveling salesman problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.038 – volume: 204 start-page: 117481 year: 2022 ident: ref_60 article-title: Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117481 – volume: 1 start-page: 3 year: 2011 ident: ref_78 article-title: A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 54 start-page: 82 year: 2017 ident: ref_11 article-title: Time-dependent green vehicle routing problem with stochastic vehicle speeds: An approximate dynamic programming algorithm publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2017.04.016 – ident: ref_72 doi: 10.1007/978-3-319-45991-2_1 – volume: 17 start-page: 1967 year: 2021 ident: ref_73 article-title: An improved adaptive differential evolution algorithm for single unmanned aerial vehicle multitasking publication-title: Def. Technol. doi: 10.1016/j.dt.2021.07.008 – volume: 80 start-page: 679 year: 2021 ident: ref_15 article-title: Efficient approximation of the metric CVRP in spaces of fixed doubling dimension publication-title: J. Glob. Optim. doi: 10.1007/s10898-020-00990-0 – volume: 222 start-page: 175 year: 2013 ident: ref_22 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 95 start-page: 51 year: 2016 ident: ref_38 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_18 doi: 10.1007/978-3-642-58069-7_38 – volume: 152 start-page: 113377 year: 2020 ident: ref_28 article-title: Marine Predators Algorithm: A Nature-Inspired Metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 73 start-page: 115 year: 2015 ident: ref_14 article-title: A quasipolynomial time approximation scheme for Euclidean capacitated vehicle routing publication-title: Algorithmica doi: 10.1007/s00453-014-9906-4 – volume: 32 start-page: 518 year: 2015 ident: ref_54 article-title: Local search based metaheuristics for the robust vehicle routing problem with discrete scenarios publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.058 – volume: 52 start-page: 195 year: 2022 ident: ref_39 article-title: Artificial Electric Field Algorithm with Inertia and Repulsion for Spherical Minimum Spanning Tree publication-title: Appl. Intell. doi: 10.1007/s10489-021-02415-1 – volume: 2020 start-page: 9839634 year: 2020 ident: ref_56 article-title: Green vehicle routing and scheduling optimization of ship steel distribution center based on improved intelligent water drop algorithms publication-title: Math. Probl. Eng. – ident: ref_17 – volume: 43 start-page: 101027 year: 2020 ident: ref_45 article-title: Intelligent compilation opatent summaries using machine learning and natural language processing techniques publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.101027 – volume: 145 start-page: 106559 year: 2020 ident: ref_26 article-title: A Mayfly Optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106559 – volume: 70 start-page: 1505 year: 2014 ident: ref_48 article-title: Artificial intelligence techniques for flood risk management in urban environments publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.02.165 – volume: 85 start-page: 951 year: 1995 ident: ref_70 article-title: On the Distribution of Distances between Random Points on a Sphere publication-title: Bull. Seismol. Soc. America doi: 10.1785/BSSA0850030951 – ident: ref_53 – volume: 121 start-page: 108742 year: 2022 ident: ref_61 article-title: A multi-objective chimp optimization algorithm for seismicity de-clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108742 – volume: 12 start-page: 702 year: 2008 ident: ref_21 article-title: Biogeography-Based Optimization publication-title: IEEE Trans Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 146 start-page: 227 year: 2010 ident: ref_52 article-title: Ant colony optimization: Overview and recent advances publication-title: Handb. Metaheuristics doi: 10.1007/978-1-4419-1665-5_8 – volume: 232 start-page: 12 year: 2019 ident: ref_55 article-title: Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.344 – volume: 35 start-page: 254 year: 1987 ident: ref_71 article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints publication-title: Oper. Res. doi: 10.1287/opre.35.2.254 – ident: ref_47 – volume: 44 start-page: 148 year: 2018 ident: ref_29 article-title: A Novel Nature-Inspired Algorithm for Optimization: Squirrel Search Algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – volume: 170 start-page: 234 year: 2015 ident: ref_57 article-title: Vehicle routing problem with fuel consumption and carbon emission publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2015.09.031 – volume: 49 start-page: 231 year: 2016 ident: ref_8 article-title: The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems considering carbon dioxide emissions publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2016.10.002 – volume: 183 start-page: 483 year: 2020 ident: ref_9 article-title: A generic exact solver for vehicle routing and related problems publication-title: Math. Program. doi: 10.1007/s10107-020-01523-z – ident: ref_67 – volume: 69 start-page: 46 year: 2014 ident: ref_37 article-title: Grey Wolf Optimizer publication-title: Adv. Eng Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_42 doi: 10.1145/3319619.3321894 – ident: ref_19 doi: 10.1007/978-3-540-68830-3_1 – volume: 179 start-page: 2232 year: 2009 ident: ref_23 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 318 start-page: 297 year: 2018 ident: ref_43 article-title: LSTM-based traffic flow prediction with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.067 – volume: 106 start-page: 320 year: 2017 ident: ref_12 article-title: The impact of path selection on GHG emissions in city logistics publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2017.08.011 – volume: 54 start-page: 1 year: 2022 ident: ref_66 article-title: Color Image Enhancement: A Metaheuristic Chimp Optimization Algorithm publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-10832-7 – volume: 191 start-page: 105190 year: 2019 ident: ref_27 article-title: Equilibrium Optimizer: A Novel Optimization Algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 35 start-page: 100731 year: 2022 ident: ref_62 article-title: Nodes clustering and multi-hop routing protocol optimization using hybrid chimp optimization and hunger games search algorithms for sustainable energy efficient underwater wireless sensor networks publication-title: Sustain. Comput. Inform. Syst. – volume: 9 start-page: 625 year: 2009 ident: ref_33 article-title: An Artificial Bee colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.001 – volume: 44 start-page: 728 year: 2019 ident: ref_7 article-title: Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.012 – volume: 88 start-page: 146 year: 2016 ident: ref_10 article-title: The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2016.01.011 – ident: ref_35 doi: 10.1007/978-3-642-04944-6_14 – volume: 197 start-page: 207 year: 2022 ident: ref_63 article-title: An enhanced chimp optimization algorithm for optimal degree reduction of Said–Ball curves publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.01.018 – ident: ref_20 doi: 10.7551/mitpress/1090.001.0001 – volume: 62 start-page: 75 year: 1993 ident: ref_80 article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks publication-title: J. Exp. Educ. doi: 10.1080/00220973.1993.9943832 – ident: ref_46 – volume: 111 start-page: 300 year: 2020 ident: ref_79 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 20 start-page: 1242 year: 2017 ident: ref_68 article-title: The Application of Ant colony Optimization in the Solution of 3D Traveling Salesman Problem on a Sphere publication-title: Eng. Sci. Technol. Int. J. – volume: 136 start-page: 412 year: 2010 ident: ref_49 article-title: State of the art for genetic algorithms and beyond in water resources planning and management publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000053 – volume: 82 start-page: 20 year: 2015 ident: ref_5 article-title: An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2015.10.001 – volume: 411 start-page: 2406 year: 2007 ident: ref_34 article-title: Ant colony Optimization and the Minimum Spanning Tree Problem publication-title: Theor. Comp. Sci. doi: 10.1016/j.tcs.2010.02.012 – volume: 14 start-page: 219 year: 2009 ident: ref_69 article-title: Genetic Algorithm Based Solution for Tsp on a Sphere publication-title: Math. Comput. Appl. – volume: 112 start-page: 107754 year: 2021 ident: ref_74 article-title: 2D multi-area coverage path planning using L-SHADE in simulated ocean survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107754 – ident: ref_77 doi: 10.1201/9781439896129 – ident: ref_2 doi: 10.1137/1.9780898718515 – volume: 79 start-page: 6 year: 2019 ident: ref_51 article-title: Protein structure prediction from inaccurate and sparse NMR data using an enhanced genetic algorithm publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2019.01.004 – volume: 10 start-page: 830037 year: 2022 ident: ref_59 article-title: Bioinspired Bare Bones Mayfly Algorithm for Large-Scale Spherical Minimum Spanning Tree publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.830037 – volume: 29 start-page: 464 year: 2012 ident: ref_36 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – ident: ref_16 doi: 10.1093/oso/9780195099713.001.0001 – volume: 137 start-page: 106011 year: 2019 ident: ref_4 article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106011 – volume: 145 start-page: 463 year: 2020 ident: ref_44 article-title: Artificial intelligence approaches using natural language processing to advance EHR-based clinical research publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.12.897 – volume: 64 start-page: 65 year: 2018 ident: ref_13 article-title: A genetic algorithm for a green vehicle routing problem publication-title: Electron. Notes Discret. Math. doi: 10.1016/j.endm.2018.01.008 – volume: 53 start-page: 2237 year: 2020 ident: ref_30 article-title: Novel Meta-Heuristic Bald eagle Search Optimisation Algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09732-5 – volume: 1 start-page: 1097 year: 2012 ident: ref_40 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. |
| RelatedPersons | Liu, Timothy |
| RelatedPersons_xml | – fullname: Liu, Timothy |
| SSID | ssj0001965440 |
| Score | 2.3125062 |
| Snippet | The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 241 |
| SubjectTerms | Algorithms Analysis Approximation chimp optimization algorithm Computational linguistics Convergence Drone aircraft Exploration Genetic algorithms Heuristic improved chimp optimization algorithm Intelligence Language processing Liu, Timothy Mathematical optimization metaheuristic algorithm Natural language interfaces Neural networks Optimization algorithms Planning Population genetics spherical VRPTW model Traveling salesman problem Vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUJCREBxQ1Dh27PgYKiqQqlKpUHqLbMdmUzXZah9U_ffMOOlqo0pw4RJtYmcTe8aeb5yZz4S8A4wPVl3B-Ha2SUXOfKolc6nLy8xwxwOPW7KcHanj4_L8XJ9sbfWFMWEDPfDQcfuND1ZLYU1mPRwV4BnBXG5FwXzjRIRGmdJbztTFQPpSCJENWTIc_Pp9zGZvO0wMXCpQ3FywiSWKhP13p-UtuzSNmdwyQoePyMMRPdJqeOvH5J7vn5DdqgfPubuh72mM54wL5btkXfV0WDLwDT2Ytd1V-rXH7-pw-g0mim7MwKTV5a_5ol3NOgoAlh5haHh6CqLz9BQ5B1CK9MzP8IkUA4jA2NGTYR8aisu4FNNI6E9w7ufXy6fkx-Hn7wdf0nGThdQVkq9Spr3ULldBSM9KW4bAvecwj7EmhEaw4AJzpYMrjc9LY2zGi9IC8AKslIdM8Gdkp5_3_gWhzBpAL9pqowv4N2cs_HSGe9E02mYsIey2w2s3MpDjRhiXNXgiKKT6rpAS8nFzz9XAv_HX2p9QjpuayJ0dL4BG1aNG1f_SqIR8QC2ocYTD6zkzJipAI5Erq66UEPg5VsHj9iY1YWS6afGtHtXjzLCskW5fylJmKiFvN8V4J0a79X6-jnWQ5AigXEKeD2q3aRLH7DONTVUThZy0eVrSt7PIGw5QXwLEffk_OukVeZBjIkgM7NkjO6vF2r8m993vVbtcvImD8Q9iwT9n priority: 102 providerName: Directory of Open Access Journals |
| Title | An Improved Chimp-Inspired Optimization Algorithm for Large-Scale Spherical Vehicle Routing Problem with Time Windows |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36546941 https://www.proquest.com/docview/2756668607 https://www.proquest.com/docview/2757055091 https://pubmed.ncbi.nlm.nih.gov/PMC9776025 https://doaj.org/article/defb964ba0be4ba799141c2b451edc4a |
| Volume | 7 |
| WOSCitedRecordID | wos000900668600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4ELr0IJlJWREBxQ1Dh2Hj6htGpFpbJEFMpyimLH6UZqkmUfIP49M05226hSL1xWu7azzsifZ8bjeRDyFnR8kOoR7G-tClf4zLgyZNrVfuzlXPOS25IsF2fReBxPJjLtDW6L3q1yzRMtoy5ajTbyA0xTHoZx6EUfZ79crBqFt6t9CY0tsoNZEnzrupde21hkGAjhdbEyHE73BxjTXtUYHriIAL6-YAN5ZNP232bON6TT0HPyhig6efS_RDwmD3sllCYdap6Qe6Z5SnaTBg7g9V_6jlq3UGtv3yWrpKGd5cEU9Gha1TP3tMHrefj5BfhN3Qdy0uTqEqZaTmsKejA9Qw9z9xwQYOg5pi5AMNALM8UZKfohgcykaVfOhqI1mGI0Cv1RNUX7Z_GMfD85_nb0ye1rNbg6CPnSZdKEUvtRKULDYhWXJTeGAztkRVkWgpW6ZDrW0FIYP85z5fEgVqC_gcrll57gz8l20zbmBaFM5aAESSVzGcC_6VzBV51zI4pCKo85hK1XLNN9InOsp3GVwYEGVzm7vcoO-bB5Ztal8bhz9CECYTMSU3DbhnZ-mfU7OitMqWQoVO4pA58RKNqCaV-JgAE-RO6Q9wijDBkFvJ7O-3gHIBJTbmVJJATe6kYw3f5gJGxwPexegynrGcwiu0aSQ95suvFJdJprTLuyYzBXEmiEDtnrcLshiWMQm0RSowGiBzQPe5pqatOPw4khBE355d2v9Yo88DFSxHr-7JPt5XxlXpP7-veyWsxHZCuaxCOyc3g8Tr-OrCFkZPcutKWnn9Of_wDfEFFB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRK9sBVKoMAgsRyQVY9nYnsOCIVC1ahpiNTSlpPxjMdNpMYOWaj6p_iNvGc7aa1KvfXAJUo84-U539tm3gLwFm181OoB8rfRiSM9bh3lc-MYL3RjYUQqipYsR92g1wtPTlR_Bf4ucmEorHIhEwtBneSG1si3qEy574e-G3we_3aoaxTtri5aaJSw2LMX5-iyTT91vuL_-87zdr4dbu86VVcBx7R8MXO4sr4yXpBK3_JQh2kqrBXIuDxJ00Ty1KTchAaPJNYL41i7ohVqtDTQOPBSVwq87h1YlQT2Bqz2O_v9n5erOspvSemW2TlCKHeLsuiHI0pInAbIMJ7kNQ1YNAq4rg6u6MN6rOYV5bfz4H97bQ_hfmVms3bJF49gxWaPYb2dxbN8dMHesyLwtdhRWId5O2Pl2opN2PZgOBo7nYwCEPDnd5SooypVlbXPTpG02WDE0NJnXYqhdw4Q45YdUHEGgjs7sgO6I6NIK7QKWL9s2MNovZtRvg07HmZJfj59Aj9u5QU8hUaWZ_YZMK5jNPOUVrFq4dVMrPGriYWVSaK0y5vAFwiJTFWqnTqGnEXoshGqouuoasLH5TnjslDJjbO_EPCWM6nIeHEgn5xGlcyKEptq5Usdu9riZ4CuhOTG07LFEY8ybsIHgm1EohAfz8RVRgcSSUXFonYgJe1bB3i7zdpMFGGmPrwAb1SJ0Gl0idwmvFkO05kUFpjZfF7MoWpQaPM2YaPkkyVJgtL0FJEa1DioRnN9JBsOigLr6BP56As8v_mxXsO93cP9btTt9PZewJpHeTFFnNMmNGaTuX0Jd82f2XA6eVVJCQa_bpvD_gElX6rJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv3MalMMBIXB5Q1Dh2k_gBobJRUa2USoNtPAXbsddKa1J6Ydpf49dxTpJ2iybtbQ-8VG3sXE76nZt9LoS8BhsftHoE_G106omAWU-GzHgmiH3FDXe8aMly0I8Gg_joSA43yN9VLgyGVa5kYiGo09zgGnkLy5SHYRz6UctVYRHD3e7H6W8PO0jhTuuqnUYJkT17dgru2_xDbxf-6zdB0P38feeLV3UY8Ew75AuPSRtKE0ROhJbFOnaOW8uBiVnqXCqYM46Z2MCR1AaxUtrn7ViD1QGGQuB8weG6N8gmmOQiaJDNYe_r8Of5Co8M20L4ZaYO59JvYUb9eILJifMImCcQrKYNi6YBl1XDBd1Yj9u8oAi7d__nV3iP3KnMb9op-eU-2bDZA7LVydQin5zRt7QIiC12GrbIspPRcs3FpnRnNJ5MvV6GgQnw8xtI2kmVwko7J8dA2mI0oeAB0D7G1nv7gH1L97FoA7IBPbAjvCPFCCywFuiwbORDcR2cYh4OPRxnaX46f0h-XMsLeEQaWZ7ZJ4QyrcD8k1oq2YarGaXhq1HcijSV2mdNwlZoSUxVwh07iZwk4MohwpLLCGuS9-tzpmUBkytnf0IQrmdi8fHiQD47TipZlqTWaRkKrXxt4TMCF0MwE2jRZoBNoZrkHUI4QREJj2dUlekBRGKxsaQTCYH72RHcbrs2E0SbqQ-vgJxUonWenKO4SV6th_FMDBfMbL4s5mCVKLCFm-RxyTNrkjim70kkNapxU43m-kg2HhWF18FXCsFHeHr1Y70kt4Ctkn5vsPeM3A4wXaYIf9omjcVsaZ-Tm-bPYjyfvagEBiW_rpvB_gGKCLOJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Chimp-Inspired+Optimization+Algorithm+for+Large-Scale+Spherical+Vehicle+Routing+Problem+with+Time+Windows&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Xiang%2C+Yifei&rft.au=Zhou%2C+Yongquan&rft.au=Huang%2C+Huajuan&rft.au=Luo%2C+Qifang&rft.date=2022-12-01&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=7&rft.issue=4&rft.spage=241&rft_id=info:doi/10.3390%2Fbiomimetics7040241&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomimetics7040241 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |