An Improved Chimp-Inspired Optimization Algorithm for Large-Scale Spherical Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In orde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomimetics (Basel, Switzerland) Ročník 7; číslo 4; s. 241
Hlavní autoři: Xiang, Yifei, Zhou, Yongquan, Huang, Huajuan, Luo, Qifang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.12.2022
MDPI
Témata:
ISSN:2313-7673, 2313-7673
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.
AbstractList The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.
The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present, many studies have generally analyzed this problem on the two-dimensional plane, and few studies have explored it on spherical surfaces. In order to carry out research related to the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this study carries out research based on the situation of a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which has been successfully applied to solve various practical problems and has achieved good results. The chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration and exploitation in the optimization process so that the algorithm can search the solution space adaptively, which is closely related to its outstanding adaptive factors. However, the performance of the chimp optimization algorithm in solving discrete optimization problems still needs to be improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower and slower as the number of iterations increases. Therefore, this paper introduces the multiple-population strategy, genetic operators, and local search methods into the algorithm to improve its overall exploration ability and convergence speed so that the algorithm can quickly find solutions with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion, this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a multi-dimensional way by comparing it with many excellent algorithms available at present. The experimental result shows that the proposed algorithm is effective and superior in solving the discrete problem of spherical VRPTW, and its performance is superior to that of other algorithms.
Audience Academic
Author Xiang, Yifei
Luo, Qifang
Zhou, Yongquan
Huang, Huajuan
AuthorAffiliation 2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
AuthorAffiliation_xml – name: 1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
– name: 2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
Author_xml – sequence: 1
  givenname: Yifei
  surname: Xiang
  fullname: Xiang, Yifei
– sequence: 2
  givenname: Yongquan
  surname: Zhou
  fullname: Zhou, Yongquan
– sequence: 3
  givenname: Huajuan
  surname: Huang
  fullname: Huang, Huajuan
– sequence: 4
  givenname: Qifang
  surname: Luo
  fullname: Luo, Qifang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36546941$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwSfFf7GSDNBoVGGmkIlpgaTnOdcZVYgcnaQVPj6fTQqcgFCm5OTnni52c59mBDx6y7CXBp4xV-G3tQu96mJwZJeaYcvIkO6KMsFwKyQ4ezIfZyTheYYxJJQrO8bPskKVBVJwcZfPCo1U_xHANDVpuXD_kKz8OLqbb82FyvfupJxc8WnRtiG7a9MiGiNY6tpBfGN0Buhg2EF0a0VfYOJOUz2GenG_RpxjqDnp0k3LoMq0WfXO-CTfji-yp1d0IJ3fX4-zL-7PL5cd8ff5htVysc1MINuWkAlEZKi0XQMq6tJYBMEoq0ljbcGKNJaY0SWmAllrXmBVlTQpOC0Et5uw4W-24TdBXaoiu1_GHCtqpWyHEVuk4bdesGrB1JXitcQ3pLKuKcGJozQsCjeE6sd7tWMNc90kCP0Xd7UH3n3i3UW24VpWUAtMiAd7cAWL4PsM4qd6NBrpOewjzqKgsJC4KXJFkff3IehXm6NOn2rqEEKXA8o-rTb9BOW9Deq_ZQtVCcs4KTOSWdfoPVzoa6J1JpbIu6XuBVw83-nuH96VJhnJnMDGMYwSrjJtuW5LIrlMEq21F1d8VTVH6KHpP_0_oF0Qw7Zs
CitedBy_id crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1016_j_asej_2025_103637
crossref_primary_10_3390_app14125090
crossref_primary_10_3390_biomimetics8030322
crossref_primary_10_1016_j_eswa_2025_127945
crossref_primary_10_1007_s10489_024_06076_8
crossref_primary_10_1007_s12530_023_09524_x
crossref_primary_10_1109_ACCESS_2024_3401487
crossref_primary_10_1016_j_heliyon_2023_e21596
crossref_primary_10_1016_j_swevo_2025_102004
Cites_doi 10.1016/j.patcog.2017.10.013
10.3390/e24020283
10.1287/mnsc.6.1.80
10.1007/978-3-662-45049-9_17
10.1007/s11042-022-12882-4
10.1016/j.advengsoft.2005.04.005
10.1016/j.future.2019.02.028
10.1016/j.jclepro.2019.118428
10.1016/j.trb.2019.03.009
10.1016/j.bspc.2022.103688
10.1016/j.swevo.2019.100558
10.1016/j.eswa.2020.113338
10.1016/j.asoc.2015.03.038
10.1016/j.eswa.2022.117481
10.1016/j.swevo.2011.02.002
10.1016/j.trd.2017.04.016
10.1007/978-3-319-45991-2_1
10.1016/j.dt.2021.07.008
10.1007/s10898-020-00990-0
10.1016/j.ins.2012.08.023
10.1016/j.advengsoft.2016.01.008
10.1007/978-3-642-58069-7_38
10.1016/j.eswa.2020.113377
10.1007/s00453-014-9906-4
10.1016/j.asoc.2015.03.058
10.1007/s10489-021-02415-1
10.1016/j.aei.2019.101027
10.1016/j.cie.2020.106559
10.1016/j.proeng.2014.02.165
10.1785/BSSA0850030951
10.1016/j.asoc.2022.108742
10.1109/TEVC.2008.919004
10.1007/978-1-4419-1665-5_8
10.1016/j.jclepro.2019.05.344
10.1287/opre.35.2.254
10.1016/j.swevo.2018.02.013
10.1016/j.ijpe.2015.09.031
10.1016/j.trd.2016.10.002
10.1007/s10107-020-01523-z
10.1016/j.advengsoft.2013.12.007
10.1145/3319619.3321894
10.1007/978-3-540-68830-3_1
10.1016/j.ins.2009.03.004
10.1016/j.neucom.2018.08.067
10.1016/j.tre.2017.08.011
10.1007/s11063-022-10832-7
10.1016/j.knosys.2019.105190
10.1016/j.asoc.2008.09.001
10.1016/j.swevo.2018.08.012
10.1016/j.tre.2016.01.011
10.1007/978-3-642-04944-6_14
10.1016/j.matcom.2022.01.018
10.7551/mitpress/1090.001.0001
10.1080/00220973.1993.9943832
10.1016/j.future.2020.03.055
10.1061/(ASCE)WR.1943-5452.0000053
10.1016/j.trb.2015.10.001
10.1016/j.tcs.2010.02.012
10.1016/j.asoc.2021.107754
10.1201/9781439896129
10.1137/1.9780898718515
10.1016/j.compbiolchem.2019.01.004
10.3389/fbioe.2022.830037
10.1108/02644401211235834
10.1093/oso/9780195099713.001.0001
10.1016/j.cie.2019.106011
10.1016/j.jaci.2019.12.897
10.1016/j.endm.2018.01.008
10.1007/s10462-019-09732-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics7040241
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_defb964ba0be4ba799141c2b451edc4a
PMC9776025
A744350171
36546941
10_3390_biomimetics7040241
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U21A20464
– fundername: National Natural Science Foundation of China
  grantid: 62066005
– fundername: National Natural Science Foundation of China
  grantid: 62266007
– fundername: National Natural Science Foundation of China
  grantid: U21A20464; 62066005; 62266007
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c563t-19e69c27f46e18b8ff3ee32191dffd41fcf1c8c321de28aab0358b1542562f043
IEDL.DBID M7P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900668600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Fri Oct 03 12:51:06 EDT 2025
Tue Nov 04 02:06:57 EST 2025
Fri Sep 05 06:24:04 EDT 2025
Fri Jul 25 11:57:23 EDT 2025
Tue Nov 11 10:27:55 EST 2025
Tue Nov 04 18:03:31 EST 2025
Thu Jan 02 22:54:56 EST 2025
Tue Nov 18 22:01:20 EST 2025
Sat Nov 29 07:16:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords improved chimp optimization algorithm
spherical VRPTW model
chimp optimization algorithm
metaheuristic algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-19e69c27f46e18b8ff3ee32191dffd41fcf1c8c321de28aab0358b1542562f043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2756668607?pq-origsite=%requestingapplication%
PMID 36546941
PQID 2756668607
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_defb964ba0be4ba799141c2b451edc4a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9776025
proquest_miscellaneous_2757055091
proquest_journals_2756668607
gale_infotracmisc_A744350171
gale_infotracacademiconefile_A744350171
pubmed_primary_36546941
crossref_citationtrail_10_3390_biomimetics7040241
crossref_primary_10_3390_biomimetics7040241
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Behnke (ref_12) 2017; 106
Prins (ref_54) 2015; 32
Mauceri (ref_13) 2018; 64
Chen (ref_74) 2021; 112
Islam (ref_51) 2019; 79
Chen (ref_56) 2020; 2020
ref_53
Zimmerman (ref_80) 1993; 62
Khachay (ref_15) 2021; 80
Yang (ref_62) 2022; 35
Ghannadpour (ref_7) 2019; 44
Zhang (ref_57) 2015; 170
ref_19
Tian (ref_43) 2018; 318
Si (ref_60) 2022; 204
ref_18
Yu (ref_3) 2019; 122
ref_17
ref_16
Xu (ref_4) 2019; 137
Jain (ref_29) 2018; 44
Mirjalili (ref_37) 2014; 69
Faramarzi (ref_28) 2020; 152
Soysal (ref_11) 2017; 54
Hatamlou (ref_22) 2013; 222
Du (ref_66) 2022; 54
Zulvia (ref_58) 2020; 242
Bi (ref_39) 2022; 52
Su (ref_73) 2021; 17
Wang (ref_55) 2019; 232
Du (ref_65) 2022; 81
ref_67
ref_20
Alsattar (ref_30) 2020; 53
Zhang (ref_59) 2022; 10
Das (ref_14) 2015; 73
Derrac (ref_78) 2011; 1
Eldem (ref_68) 2017; 20
Neumann (ref_34) 2007; 411
Juhn (ref_44) 2020; 145
Erol (ref_24) 2006; 37
Nicklow (ref_49) 2010; 136
Lomnitz (ref_70) 1995; 85
ref_72
Zervoudakis (ref_26) 2020; 145
Faramarzi (ref_27) 2019; 191
Khishe (ref_25) 2020; 149
Pessoa (ref_9) 2020; 183
ref_35
ref_77
ref_32
Gu (ref_41) 2018; 77
ref_75
Simon (ref_21) 2008; 12
Hu (ref_63) 2022; 197
Tong (ref_76) 2019; 50
Singh (ref_33) 2009; 9
Chen (ref_64) 2022; 77
Yang (ref_36) 2012; 29
Zhang (ref_5) 2015; 82
Sayers (ref_48) 2014; 70
Heidari (ref_31) 2019; 97
Trappey (ref_45) 2020; 43
ref_47
ref_46
Dantzig (ref_1) 1959; 6
Xiao (ref_10) 2016; 88
ref_42
Paul (ref_50) 2015; 32
Rashedi (ref_23) 2009; 179
Li (ref_79) 2020; 111
ref_2
Dorigo (ref_52) 2010; 146
Sharma (ref_61) 2022; 121
Ali (ref_69) 2009; 14
Solomon (ref_71) 1987; 35
Li (ref_8) 2016; 49
Mirjalili (ref_38) 2016; 95
ref_6
Krizhevsky (ref_40) 2012; 1
References_xml – volume: 77
  start-page: 354
  year: 2018
  ident: ref_41
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref_75
  doi: 10.3390/e24020283
– volume: 6
  start-page: 80
  year: 1959
  ident: ref_1
  article-title: The truck dispatching problem
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.6.1.80
– ident: ref_6
  doi: 10.1007/978-3-662-45049-9_17
– volume: 81
  start-page: 1
  year: 2022
  ident: ref_65
  article-title: Improved chimp optimization algorithm for three-dimensional path planning problem
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12882-4
– volume: 37
  start-page: 106
  year: 2006
  ident: ref_24
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– ident: ref_32
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_31
  article-title: Harris Hawks Optimization: Algorithm and Applications
  publication-title: Future Gener. Comp. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 242
  start-page: 118428
  year: 2020
  ident: ref_58
  article-title: A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118428
– volume: 122
  start-page: 511
  year: 2019
  ident: ref_3
  article-title: A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2019.03.009
– volume: 77
  start-page: 103688
  year: 2022
  ident: ref_64
  article-title: Diagnose Parkinson’s disease and cleft lip and palate using deep convolutional neural networks evolved by IP-based chimp optimization algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103688
– volume: 50
  start-page: 100558
  year: 2019
  ident: ref_76
  article-title: Model complex control CMA-ES
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100558
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_25
  article-title: Chimp Optimization Algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 32
  start-page: 383
  year: 2015
  ident: ref_50
  article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: An empirical study based on traveling salesman problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.038
– volume: 204
  start-page: 117481
  year: 2022
  ident: ref_60
  article-title: Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117481
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_78
  article-title: A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 54
  start-page: 82
  year: 2017
  ident: ref_11
  article-title: Time-dependent green vehicle routing problem with stochastic vehicle speeds: An approximate dynamic programming algorithm
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trd.2017.04.016
– ident: ref_72
  doi: 10.1007/978-3-319-45991-2_1
– volume: 17
  start-page: 1967
  year: 2021
  ident: ref_73
  article-title: An improved adaptive differential evolution algorithm for single unmanned aerial vehicle multitasking
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2021.07.008
– volume: 80
  start-page: 679
  year: 2021
  ident: ref_15
  article-title: Efficient approximation of the metric CVRP in spaces of fixed doubling dimension
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-020-00990-0
– volume: 222
  start-page: 175
  year: 2013
  ident: ref_22
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_38
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_18
  doi: 10.1007/978-3-642-58069-7_38
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_28
  article-title: Marine Predators Algorithm: A Nature-Inspired Metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 73
  start-page: 115
  year: 2015
  ident: ref_14
  article-title: A quasipolynomial time approximation scheme for Euclidean capacitated vehicle routing
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9906-4
– volume: 32
  start-page: 518
  year: 2015
  ident: ref_54
  article-title: Local search based metaheuristics for the robust vehicle routing problem with discrete scenarios
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.058
– volume: 52
  start-page: 195
  year: 2022
  ident: ref_39
  article-title: Artificial Electric Field Algorithm with Inertia and Repulsion for Spherical Minimum Spanning Tree
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02415-1
– volume: 2020
  start-page: 9839634
  year: 2020
  ident: ref_56
  article-title: Green vehicle routing and scheduling optimization of ship steel distribution center based on improved intelligent water drop algorithms
  publication-title: Math. Probl. Eng.
– ident: ref_17
– volume: 43
  start-page: 101027
  year: 2020
  ident: ref_45
  article-title: Intelligent compilation opatent summaries using machine learning and natural language processing techniques
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.101027
– volume: 145
  start-page: 106559
  year: 2020
  ident: ref_26
  article-title: A Mayfly Optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106559
– volume: 70
  start-page: 1505
  year: 2014
  ident: ref_48
  article-title: Artificial intelligence techniques for flood risk management in urban environments
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.02.165
– volume: 85
  start-page: 951
  year: 1995
  ident: ref_70
  article-title: On the Distribution of Distances between Random Points on a Sphere
  publication-title: Bull. Seismol. Soc. America
  doi: 10.1785/BSSA0850030951
– ident: ref_53
– volume: 121
  start-page: 108742
  year: 2022
  ident: ref_61
  article-title: A multi-objective chimp optimization algorithm for seismicity de-clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108742
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_21
  article-title: Biogeography-Based Optimization
  publication-title: IEEE Trans Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 146
  start-page: 227
  year: 2010
  ident: ref_52
  article-title: Ant colony optimization: Overview and recent advances
  publication-title: Handb. Metaheuristics
  doi: 10.1007/978-1-4419-1665-5_8
– volume: 232
  start-page: 12
  year: 2019
  ident: ref_55
  article-title: Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.344
– volume: 35
  start-page: 254
  year: 1987
  ident: ref_71
  article-title: Algorithms for the vehicle routing and scheduling problems with time window constraints
  publication-title: Oper. Res.
  doi: 10.1287/opre.35.2.254
– ident: ref_47
– volume: 44
  start-page: 148
  year: 2018
  ident: ref_29
  article-title: A Novel Nature-Inspired Algorithm for Optimization: Squirrel Search Algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.013
– volume: 170
  start-page: 234
  year: 2015
  ident: ref_57
  article-title: Vehicle routing problem with fuel consumption and carbon emission
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2015.09.031
– volume: 49
  start-page: 231
  year: 2016
  ident: ref_8
  article-title: The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems considering carbon dioxide emissions
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trd.2016.10.002
– volume: 183
  start-page: 483
  year: 2020
  ident: ref_9
  article-title: A generic exact solver for vehicle routing and related problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01523-z
– ident: ref_67
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_37
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_42
  doi: 10.1145/3319619.3321894
– ident: ref_19
  doi: 10.1007/978-3-540-68830-3_1
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_23
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 318
  start-page: 297
  year: 2018
  ident: ref_43
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– volume: 106
  start-page: 320
  year: 2017
  ident: ref_12
  article-title: The impact of path selection on GHG emissions in city logistics
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2017.08.011
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_66
  article-title: Color Image Enhancement: A Metaheuristic Chimp Optimization Algorithm
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-10832-7
– volume: 191
  start-page: 105190
  year: 2019
  ident: ref_27
  article-title: Equilibrium Optimizer: A Novel Optimization Algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 35
  start-page: 100731
  year: 2022
  ident: ref_62
  article-title: Nodes clustering and multi-hop routing protocol optimization using hybrid chimp optimization and hunger games search algorithms for sustainable energy efficient underwater wireless sensor networks
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 9
  start-page: 625
  year: 2009
  ident: ref_33
  article-title: An Artificial Bee colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.09.001
– volume: 44
  start-page: 728
  year: 2019
  ident: ref_7
  article-title: Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.012
– volume: 88
  start-page: 146
  year: 2016
  ident: ref_10
  article-title: The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2016.01.011
– ident: ref_35
  doi: 10.1007/978-3-642-04944-6_14
– volume: 197
  start-page: 207
  year: 2022
  ident: ref_63
  article-title: An enhanced chimp optimization algorithm for optimal degree reduction of Said–Ball curves
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2022.01.018
– ident: ref_20
  doi: 10.7551/mitpress/1090.001.0001
– volume: 62
  start-page: 75
  year: 1993
  ident: ref_80
  article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks
  publication-title: J. Exp. Educ.
  doi: 10.1080/00220973.1993.9943832
– ident: ref_46
– volume: 111
  start-page: 300
  year: 2020
  ident: ref_79
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 20
  start-page: 1242
  year: 2017
  ident: ref_68
  article-title: The Application of Ant colony Optimization in the Solution of 3D Traveling Salesman Problem on a Sphere
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 136
  start-page: 412
  year: 2010
  ident: ref_49
  article-title: State of the art for genetic algorithms and beyond in water resources planning and management
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000053
– volume: 82
  start-page: 20
  year: 2015
  ident: ref_5
  article-title: An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2015.10.001
– volume: 411
  start-page: 2406
  year: 2007
  ident: ref_34
  article-title: Ant colony Optimization and the Minimum Spanning Tree Problem
  publication-title: Theor. Comp. Sci.
  doi: 10.1016/j.tcs.2010.02.012
– volume: 14
  start-page: 219
  year: 2009
  ident: ref_69
  article-title: Genetic Algorithm Based Solution for Tsp on a Sphere
  publication-title: Math. Comput. Appl.
– volume: 112
  start-page: 107754
  year: 2021
  ident: ref_74
  article-title: 2D multi-area coverage path planning using L-SHADE in simulated ocean survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107754
– ident: ref_77
  doi: 10.1201/9781439896129
– ident: ref_2
  doi: 10.1137/1.9780898718515
– volume: 79
  start-page: 6
  year: 2019
  ident: ref_51
  article-title: Protein structure prediction from inaccurate and sparse NMR data using an enhanced genetic algorithm
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.01.004
– volume: 10
  start-page: 830037
  year: 2022
  ident: ref_59
  article-title: Bioinspired Bare Bones Mayfly Algorithm for Large-Scale Spherical Minimum Spanning Tree
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.830037
– volume: 29
  start-page: 464
  year: 2012
  ident: ref_36
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– ident: ref_16
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 137
  start-page: 106011
  year: 2019
  ident: ref_4
  article-title: A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106011
– volume: 145
  start-page: 463
  year: 2020
  ident: ref_44
  article-title: Artificial intelligence approaches using natural language processing to advance EHR-based clinical research
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2019.12.897
– volume: 64
  start-page: 65
  year: 2018
  ident: ref_13
  article-title: A genetic algorithm for a green vehicle routing problem
  publication-title: Electron. Notes Discret. Math.
  doi: 10.1016/j.endm.2018.01.008
– volume: 53
  start-page: 2237
  year: 2020
  ident: ref_30
  article-title: Novel Meta-Heuristic Bald eagle Search Optimisation Algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09732-5
– volume: 1
  start-page: 1097
  year: 2012
  ident: ref_40
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0001965440
Score 2.3125062
Snippet The vehicle routing problem with time windows (VRPTW) is a classical optimization problem. There have been many related studies in recent years. At present,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 241
SubjectTerms Algorithms
Analysis
Approximation
chimp optimization algorithm
Computational linguistics
Convergence
Drone aircraft
Exploration
Genetic algorithms
Heuristic
improved chimp optimization algorithm
Intelligence
Language processing
Liu, Timothy
Mathematical optimization
metaheuristic algorithm
Natural language interfaces
Neural networks
Optimization algorithms
Planning
Population genetics
spherical VRPTW model
Traveling salesman problem
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUJCREBxQ1Dh27PgYKiqQqlKpUHqLbMdmUzXZah9U_ffMOOlqo0pw4RJtYmcTe8aeb5yZz4S8A4wPVl3B-Ha2SUXOfKolc6nLy8xwxwOPW7KcHanj4_L8XJ9sbfWFMWEDPfDQcfuND1ZLYU1mPRwV4BnBXG5FwXzjRIRGmdJbztTFQPpSCJENWTIc_Pp9zGZvO0wMXCpQ3FywiSWKhP13p-UtuzSNmdwyQoePyMMRPdJqeOvH5J7vn5DdqgfPubuh72mM54wL5btkXfV0WDLwDT2Ytd1V-rXH7-pw-g0mim7MwKTV5a_5ol3NOgoAlh5haHh6CqLz9BQ5B1CK9MzP8IkUA4jA2NGTYR8aisu4FNNI6E9w7ufXy6fkx-Hn7wdf0nGThdQVkq9Spr3ULldBSM9KW4bAvecwj7EmhEaw4AJzpYMrjc9LY2zGi9IC8AKslIdM8Gdkp5_3_gWhzBpAL9pqowv4N2cs_HSGe9E02mYsIey2w2s3MpDjRhiXNXgiKKT6rpAS8nFzz9XAv_HX2p9QjpuayJ0dL4BG1aNG1f_SqIR8QC2ocYTD6zkzJipAI5Erq66UEPg5VsHj9iY1YWS6afGtHtXjzLCskW5fylJmKiFvN8V4J0a79X6-jnWQ5AigXEKeD2q3aRLH7DONTVUThZy0eVrSt7PIGw5QXwLEffk_OukVeZBjIkgM7NkjO6vF2r8m993vVbtcvImD8Q9iwT9n
  priority: 102
  providerName: Directory of Open Access Journals
Title An Improved Chimp-Inspired Optimization Algorithm for Large-Scale Spherical Vehicle Routing Problem with Time Windows
URI https://www.ncbi.nlm.nih.gov/pubmed/36546941
https://www.proquest.com/docview/2756668607
https://www.proquest.com/docview/2757055091
https://pubmed.ncbi.nlm.nih.gov/PMC9776025
https://doaj.org/article/defb964ba0be4ba799141c2b451edc4a
Volume 7
WOSCitedRecordID wos000900668600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4ELr0IJlJWREBxQ1Dh2Hj6htGpFpbJEFMpyimLH6UZqkmUfIP49M05226hSL1xWu7azzsifZ8bjeRDyFnR8kOoR7G-tClf4zLgyZNrVfuzlXPOS25IsF2fReBxPJjLtDW6L3q1yzRMtoy5ajTbyA0xTHoZx6EUfZ79crBqFt6t9CY0tsoNZEnzrupde21hkGAjhdbEyHE73BxjTXtUYHriIAL6-YAN5ZNP232bON6TT0HPyhig6efS_RDwmD3sllCYdap6Qe6Z5SnaTBg7g9V_6jlq3UGtv3yWrpKGd5cEU9Gha1TP3tMHrefj5BfhN3Qdy0uTqEqZaTmsKejA9Qw9z9xwQYOg5pi5AMNALM8UZKfohgcykaVfOhqI1mGI0Cv1RNUX7Z_GMfD85_nb0ye1rNbg6CPnSZdKEUvtRKULDYhWXJTeGAztkRVkWgpW6ZDrW0FIYP85z5fEgVqC_gcrll57gz8l20zbmBaFM5aAESSVzGcC_6VzBV51zI4pCKo85hK1XLNN9InOsp3GVwYEGVzm7vcoO-bB5Ztal8bhz9CECYTMSU3DbhnZ-mfU7OitMqWQoVO4pA58RKNqCaV-JgAE-RO6Q9wijDBkFvJ7O-3gHIBJTbmVJJATe6kYw3f5gJGxwPexegynrGcwiu0aSQ95suvFJdJprTLuyYzBXEmiEDtnrcLshiWMQm0RSowGiBzQPe5pqatOPw4khBE355d2v9Yo88DFSxHr-7JPt5XxlXpP7-veyWsxHZCuaxCOyc3g8Tr-OrCFkZPcutKWnn9Of_wDfEFFB
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRK9sBVKoMAgsRyQVY9nYnsOCIVC1ahpiNTSlpPxjMdNpMYOWaj6p_iNvGc7aa1KvfXAJUo84-U539tm3gLwFm181OoB8rfRiSM9bh3lc-MYL3RjYUQqipYsR92g1wtPTlR_Bf4ucmEorHIhEwtBneSG1si3qEy574e-G3we_3aoaxTtri5aaJSw2LMX5-iyTT91vuL_-87zdr4dbu86VVcBx7R8MXO4sr4yXpBK3_JQh2kqrBXIuDxJ00Ty1KTchAaPJNYL41i7ohVqtDTQOPBSVwq87h1YlQT2Bqz2O_v9n5erOspvSemW2TlCKHeLsuiHI0pInAbIMJ7kNQ1YNAq4rg6u6MN6rOYV5bfz4H97bQ_hfmVms3bJF49gxWaPYb2dxbN8dMHesyLwtdhRWId5O2Pl2opN2PZgOBo7nYwCEPDnd5SooypVlbXPTpG02WDE0NJnXYqhdw4Q45YdUHEGgjs7sgO6I6NIK7QKWL9s2MNovZtRvg07HmZJfj59Aj9u5QU8hUaWZ_YZMK5jNPOUVrFq4dVMrPGriYWVSaK0y5vAFwiJTFWqnTqGnEXoshGqouuoasLH5TnjslDJjbO_EPCWM6nIeHEgn5xGlcyKEptq5Usdu9riZ4CuhOTG07LFEY8ybsIHgm1EohAfz8RVRgcSSUXFonYgJe1bB3i7zdpMFGGmPrwAb1SJ0Gl0idwmvFkO05kUFpjZfF7MoWpQaPM2YaPkkyVJgtL0FJEa1DioRnN9JBsOigLr6BP56As8v_mxXsO93cP9btTt9PZewJpHeTFFnNMmNGaTuX0Jd82f2XA6eVVJCQa_bpvD_gElX6rJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv3MalMMBIXB5Q1Dh2k_gBobJRUa2USoNtPAXbsddKa1J6Ydpf49dxTpJ2iybtbQ-8VG3sXE76nZt9LoS8BhsftHoE_G106omAWU-GzHgmiH3FDXe8aMly0I8Gg_joSA43yN9VLgyGVa5kYiGo09zgGnkLy5SHYRz6UctVYRHD3e7H6W8PO0jhTuuqnUYJkT17dgru2_xDbxf-6zdB0P38feeLV3UY8Ew75AuPSRtKE0ROhJbFOnaOW8uBiVnqXCqYM46Z2MCR1AaxUtrn7ViD1QGGQuB8weG6N8gmmOQiaJDNYe_r8Of5Co8M20L4ZaYO59JvYUb9eILJifMImCcQrKYNi6YBl1XDBd1Yj9u8oAi7d__nV3iP3KnMb9op-eU-2bDZA7LVydQin5zRt7QIiC12GrbIspPRcs3FpnRnNJ5MvV6GgQnw8xtI2kmVwko7J8dA2mI0oeAB0D7G1nv7gH1L97FoA7IBPbAjvCPFCCywFuiwbORDcR2cYh4OPRxnaX46f0h-XMsLeEQaWZ7ZJ4QyrcD8k1oq2YarGaXhq1HcijSV2mdNwlZoSUxVwh07iZwk4MohwpLLCGuS9-tzpmUBkytnf0IQrmdi8fHiQD47TipZlqTWaRkKrXxt4TMCF0MwE2jRZoBNoZrkHUI4QREJj2dUlekBRGKxsaQTCYH72RHcbrs2E0SbqQ-vgJxUonWenKO4SV6th_FMDBfMbL4s5mCVKLCFm-RxyTNrkjim70kkNapxU43m-kg2HhWF18FXCsFHeHr1Y70kt4Ctkn5vsPeM3A4wXaYIf9omjcVsaZ-Tm-bPYjyfvagEBiW_rpvB_gGKCLOJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Chimp-Inspired+Optimization+Algorithm+for+Large-Scale+Spherical+Vehicle+Routing+Problem+with+Time+Windows&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Xiang%2C+Yifei&rft.au=Zhou%2C+Yongquan&rft.au=Huang%2C+Huajuan&rft.au=Luo%2C+Qifang&rft.date=2022-12-01&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=7&rft.issue=4&rft.spage=241&rft_id=info:doi/10.3390%2Fbiomimetics7040241&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomimetics7040241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon