climatic basis for microrefugia: the influence of terrain on climate

There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributi...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 17; no. 2; pp. 1022 - 1035
Main Author: DOBROWSKI, SOLOMON Z
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.02.2011
Wiley-Blackwell
Subjects:
ISSN:1354-1013, 1365-2486
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.
AbstractList There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change. [PUBLICATION ABSTRACT]
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.
Author DOBROWSKI, SOLOMON Z.
Author_xml – sequence: 1
  fullname: DOBROWSKI, SOLOMON Z
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757714$$DView record in Pascal Francis
BookMark eNqNkV1rFDEUhoNUsK3-BoMgejNrPiYfIyjoaldh8QMtQm9Ckk1q1tmkJjO4_fdmnLIXvZDmJofked_knPcEHMUUHQAQowWu68V2gSlnDWklXxBUTxEhnC7298Dx4eJoqlnbYITpA3BSyhYhRAnix-Cd7cNOD8FCo0so0KcMd8HmlJ0fL4N-CYefDobo-9FF62DycHA56xBhinAWu4fgvtd9cY9u9lNwfvb--_JDs_68-rh8s24s45Q2G-kIQYQKI6Q33m9aT1BnhbFWuNaZFhmLmNdCcM58x4wmG9GZjeFUaCRbegqezb5XOf0eXRnULhTr-l5Hl8aiJKOtZFzwSj7_L4k5pxx1WHQVfXIL3aYxx9qHkoSQFolOVOjpDaSL1b3POtpQ1FWu_edrVXtiQuDph3Lm6gRLqTM8IBipKS-1VVMsaopFTXmpf3mpfZW-viW1YajJpDjUcfd3MXg1G_wJvbu-88NqtXw7VVXfzPpQBrc_6HX-pbioDaofn1aqO7v4-mW1vFDryj-eea-T0pe5zuP8W3WmCHcUUynpX-Swx7o
CitedBy_id crossref_primary_10_1111_gcb_13679
crossref_primary_10_1111_csp2_70093
crossref_primary_10_1007_s10584_016_1789_8
crossref_primary_10_1111_ecog_03836
crossref_primary_10_1002_fee_1516
crossref_primary_10_1016_j_bse_2013_12_019
crossref_primary_10_1111_jbi_12254
crossref_primary_10_3390_f12101366
crossref_primary_10_1016_j_rse_2017_08_005
crossref_primary_10_1038_nclimate1667
crossref_primary_10_1038_ncomms12349
crossref_primary_10_1016_j_ppees_2015_06_004
crossref_primary_10_1016_j_gecco_2025_e03541
crossref_primary_10_1111_ivb_12315
crossref_primary_10_1111_jse_13150
crossref_primary_10_1016_j_foreco_2023_121478
crossref_primary_10_3354_cr01306
crossref_primary_10_1016_j_tree_2025_06_009
crossref_primary_10_1007_s11356_022_19631_y
crossref_primary_10_1088_2752_664X_adfa9e
crossref_primary_10_1111_cobi_13130
crossref_primary_10_1111_gcb_14874
crossref_primary_10_1111_ecog_03947
crossref_primary_10_1111_gcb_13544
crossref_primary_10_1111_gcb_14755
crossref_primary_10_1038_s41467_023_41063_6
crossref_primary_10_3390_jof9030341
crossref_primary_10_1007_s10980_023_01596_z
crossref_primary_10_1002_fee_2831
crossref_primary_10_1111_jbi_13569
crossref_primary_10_17221_85_2019_HORTSCI
crossref_primary_10_3354_cr01440
crossref_primary_10_1002_ece3_426
crossref_primary_10_1016_j_agrformet_2019_02_015
crossref_primary_10_1007_s10980_021_01394_5
crossref_primary_10_1016_j_geomorph_2024_109241
crossref_primary_10_1016_j_gecco_2024_e03157
crossref_primary_10_1016_j_sajb_2015_01_014
crossref_primary_10_3390_rs12223690
crossref_primary_10_1186_s42408_025_00353_8
crossref_primary_10_1002_joc_4390
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_1111_gcb_12129
crossref_primary_10_1111_gcb_15514
crossref_primary_10_1186_1471_2148_14_9
crossref_primary_10_1111_ecog_02647
crossref_primary_10_1007_s13280_014_0599_3
crossref_primary_10_1894_0038_4909_68_3_157
crossref_primary_10_1111_gcb_70253
crossref_primary_10_1371_journal_pone_0159909
crossref_primary_10_1016_j_foreco_2020_118006
crossref_primary_10_1111_jbi_13689
crossref_primary_10_1088_1748_9326_ac9dae
crossref_primary_10_1002_ecs2_4172
crossref_primary_10_1890_ES14_00313_1
crossref_primary_10_1093_aob_mcab041
crossref_primary_10_1111_bor_12219
crossref_primary_10_1016_j_rse_2023_113521
crossref_primary_10_1111_2041_210X_12488
crossref_primary_10_1007_s10531_019_01734_7
crossref_primary_10_1111_gcb_15510
crossref_primary_10_1016_j_ppees_2013_11_001
crossref_primary_10_1088_1755_1315_179_1_012001
crossref_primary_10_1111_gcb_14415
crossref_primary_10_1111_nph_14042
crossref_primary_10_3390_su132011275
crossref_primary_10_1016_j_fecs_2025_100345
crossref_primary_10_1002_joc_5135
crossref_primary_10_1111_gcb_12476
crossref_primary_10_1371_journal_pone_0135732
crossref_primary_10_1111_nph_15499
crossref_primary_10_1038_s41558_023_01650_3
crossref_primary_10_1111_gcb_14897
crossref_primary_10_1371_journal_pone_0055735
crossref_primary_10_1038_s41559_024_02372_1
crossref_primary_10_1111_jbi_12219
crossref_primary_10_1080_23766808_2021_1957652
crossref_primary_10_3389_fpls_2022_947166
crossref_primary_10_1111_jbi_13426
crossref_primary_10_1007_s40333_024_0102_3
crossref_primary_10_1016_j_foreco_2020_118234
crossref_primary_10_1016_j_jenvman_2025_125374
crossref_primary_10_1111_ecog_02990
crossref_primary_10_1080_13658816_2013_846472
crossref_primary_10_1111_csp2_13183
crossref_primary_10_1038_s41598_019_43603_x
crossref_primary_10_1111_jse_12171
crossref_primary_10_1890_ES13_00403_1
crossref_primary_10_1111_gcb_13320
crossref_primary_10_1016_j_agrformet_2025_110434
crossref_primary_10_1111_jbi_70010
crossref_primary_10_1016_j_foreco_2015_06_032
crossref_primary_10_3389_ffgc_2020_00025
crossref_primary_10_1088_1748_9326_ac0b67
crossref_primary_10_1007_s10980_015_0167_7
crossref_primary_10_1371_journal_pone_0304756
crossref_primary_10_1111_ecog_02788
crossref_primary_10_1002_ece3_4432
crossref_primary_10_1186_s12870_025_07127_z
crossref_primary_10_1088_1748_9326_aa6da8
crossref_primary_10_1007_s10980_025_02146_5
crossref_primary_10_1088_1748_9326_acd4d3
crossref_primary_10_1029_2021JD036042
crossref_primary_10_1093_condor_duz057
crossref_primary_10_1111_jbi_13660
crossref_primary_10_12688_f1000research_2_187_v3
crossref_primary_10_1016_j_palaeo_2024_112298
crossref_primary_10_1111_jvs_13119
crossref_primary_10_12688_f1000research_2_187_v2
crossref_primary_10_1038_s41598_020_58638_8
crossref_primary_10_1016_j_biocon_2025_111473
crossref_primary_10_1111_ele_12070
crossref_primary_10_1016_j_agrformet_2025_110723
crossref_primary_10_12688_f1000research_2_187_v1
crossref_primary_10_1016_j_jenvman_2024_120995
crossref_primary_10_1007_s10584_017_2010_4
crossref_primary_10_1002_ece3_1295
crossref_primary_10_1186_s40665_017_0030_y
crossref_primary_10_1111_gcb_13629
crossref_primary_10_1111_jbi_14858
crossref_primary_10_1007_s10113_012_0385_3
crossref_primary_10_1016_j_tree_2024_05_002
crossref_primary_10_1093_aob_mcw233
crossref_primary_10_1002_ece3_5659
crossref_primary_10_1371_journal_pone_0301109
crossref_primary_10_1111_nph_12929
crossref_primary_10_1007_s10584_021_03140_x
crossref_primary_10_1111_gcb_12770
crossref_primary_10_1007_s11356_020_07692_w
crossref_primary_10_1016_j_indcrop_2020_113144
crossref_primary_10_1111_csp2_70069
crossref_primary_10_1111_gcb_12204
crossref_primary_10_1002_evan_21443
crossref_primary_10_1371_journal_pone_0300378
crossref_primary_10_1111_gcb_12203
crossref_primary_10_1111_j_1466_8238_2011_00686_x
crossref_primary_10_1080_02723646_2021_1938923
crossref_primary_10_1016_j_quascirev_2019_01_002
crossref_primary_10_1038_s42003_024_07239_6
crossref_primary_10_1080_09670874_2020_1752956
crossref_primary_10_1111_1365_2745_14132
crossref_primary_10_3398_064_080_0303
crossref_primary_10_1002_ecs2_2195
crossref_primary_10_1093_aob_mcw248
crossref_primary_10_1556_ComEc_15_2014_2_6
crossref_primary_10_3389_ffgc_2020_596256
crossref_primary_10_3390_biology13110937
crossref_primary_10_1038_s41598_022_05440_3
crossref_primary_10_1007_s00704_019_02855_3
crossref_primary_10_1007_s10841_021_00357_0
crossref_primary_10_1111_csp2_70079
crossref_primary_10_1111_ddi_12673
crossref_primary_10_1007_s10980_020_01071_z
crossref_primary_10_1126_science_1237190
crossref_primary_10_1111_cobi_14246
crossref_primary_10_1088_1748_9326_ad3461
crossref_primary_10_1016_j_ecolind_2022_108941
crossref_primary_10_1016_j_dendro_2022_125939
crossref_primary_10_1111_jbi_13994
crossref_primary_10_1111_1440_1703_12541
crossref_primary_10_1002_eco_1994
crossref_primary_10_1017_S0266467423000111
crossref_primary_10_1111_ecog_02551
crossref_primary_10_1111_oik_10248
crossref_primary_10_1007_s11258_022_01233_w
crossref_primary_10_1016_j_biocon_2025_111464
crossref_primary_10_1002_pei3_10153
crossref_primary_10_1016_j_gecco_2025_e03596
crossref_primary_10_1073_pnas_2204434119
crossref_primary_10_1002_eap_2280
crossref_primary_10_1029_2019GL085546
crossref_primary_10_1111_ibi_12721
crossref_primary_10_1111_j_1600_0706_2011_19694_x
crossref_primary_10_1007_s10661_023_11553_7
crossref_primary_10_1002_2017JG004108
crossref_primary_10_1371_journal_pone_0112943
crossref_primary_10_1111_conl_12712
crossref_primary_10_1111_geb_13834
crossref_primary_10_1111_ddi_12688
crossref_primary_10_1111_geb_13830
crossref_primary_10_1111_mec_13692
crossref_primary_10_1111_oik_09171
crossref_primary_10_1016_j_foreco_2021_119680
crossref_primary_10_1016_j_foreco_2016_08_004
crossref_primary_10_1016_j_jenvman_2025_126947
crossref_primary_10_1080_17550874_2014_987330
crossref_primary_10_1002_ecm_1390
crossref_primary_10_1111_aec_12758
crossref_primary_10_1371_journal_pone_0065008
crossref_primary_10_1177_1940082917722027
crossref_primary_10_1002_ecy_4257
crossref_primary_10_1111_cobi_12799
crossref_primary_10_1111_gcb_14000
crossref_primary_10_1016_j_foreco_2016_01_017
crossref_primary_10_1016_j_ufug_2024_128586
crossref_primary_10_1111_cobi_12556
crossref_primary_10_1371_journal_pone_0218168
crossref_primary_10_1111_geb_12974
crossref_primary_10_1111_ddi_12456
crossref_primary_10_1111_cobi_13531
crossref_primary_10_1111_geb_12731
crossref_primary_10_1002_ecs2_70315
crossref_primary_10_1093_biosci_biy020
crossref_primary_10_1111_ele_12272
crossref_primary_10_1007_s10980_015_0160_1
crossref_primary_10_1016_j_foreco_2021_119446
crossref_primary_10_1016_j_apgeog_2017_05_011
crossref_primary_10_1007_s00442_015_3514_0
crossref_primary_10_1007_s00035_014_0144_9
crossref_primary_10_1038_s41598_023_39772_5
crossref_primary_10_1111_1365_2664_13008
crossref_primary_10_1111_gcb_12051
crossref_primary_10_1111_cobi_13777
crossref_primary_10_3390_rs11202385
crossref_primary_10_1016_j_foreco_2023_120794
crossref_primary_10_1111_gcb_14597
crossref_primary_10_1002_ecs2_3137
crossref_primary_10_1016_j_foreco_2018_12_006
crossref_primary_10_1007_s10980_019_00907_7
crossref_primary_10_1111_j_1365_2486_2012_02679_x
crossref_primary_10_1002_ece3_7
crossref_primary_10_1016_j_biocon_2022_109768
crossref_primary_10_1016_j_fecs_2024_100278
crossref_primary_10_1016_j_quascirev_2021_107005
crossref_primary_10_1890_15_1129_1
crossref_primary_10_1111_nph_12833
crossref_primary_10_1093_biosci_biy103
crossref_primary_10_1016_j_jenvman_2021_112871
crossref_primary_10_1016_j_scitotenv_2023_165542
crossref_primary_10_1111_csp2_70153
crossref_primary_10_1111_ecog_07131
crossref_primary_10_3390_land14030570
crossref_primary_10_1002_ecs2_2155
crossref_primary_10_1016_j_foreco_2022_120487
crossref_primary_10_1016_j_ppees_2018_02_003
crossref_primary_10_1371_journal_pone_0130566
crossref_primary_10_1016_j_biocon_2024_110963
crossref_primary_10_1002_ecs2_2279
crossref_primary_10_1111_gcb_13174
crossref_primary_10_3390_su13063147
crossref_primary_10_1016_j_isci_2023_108202
crossref_primary_10_1111_ddi_12356
crossref_primary_10_1111_1365_2656_13491
crossref_primary_10_2478_s11756_014_0430_4
crossref_primary_10_3389_fevo_2022_980660
crossref_primary_10_1016_j_foreco_2021_119596
crossref_primary_10_1111_jbi_13822
crossref_primary_10_1146_annurev_marine_121916_063304
crossref_primary_10_1002_ece3_2763
crossref_primary_10_1111_2041_210X_12539
crossref_primary_10_1016_j_srs_2025_100269
crossref_primary_10_1111_plb_12578
crossref_primary_10_1016_j_ttbdis_2022_102035
crossref_primary_10_1111_jbi_12621
crossref_primary_10_1002_ece3_1319
crossref_primary_10_1371_journal_pone_0256586
crossref_primary_10_1080_14888386_2015_1116407
crossref_primary_10_1186_s13071_020_04336_3
crossref_primary_10_1029_2020JG005986
crossref_primary_10_1016_j_tree_2014_04_006
crossref_primary_10_1111_gcb_13045
crossref_primary_10_1029_2020RG000730
crossref_primary_10_3390_cli13020026
crossref_primary_10_1111_gcb_12026
crossref_primary_10_1002_joc_5020
crossref_primary_10_1007_s12145_024_01646_3
crossref_primary_10_1016_j_jafrearsci_2020_103996
crossref_primary_10_1016_j_ecolmodel_2018_06_004
crossref_primary_10_1111_geb_12302
crossref_primary_10_1016_j_agrformet_2023_109698
crossref_primary_10_3390_f13081311
crossref_primary_10_1177_0959683620950452
crossref_primary_10_3390_f14050908
crossref_primary_10_3389_ffgc_2019_00094
crossref_primary_10_1007_s10980_015_0318_x
crossref_primary_10_1016_j_quascirev_2015_03_028
crossref_primary_10_1175_MWR_D_19_0196_1
crossref_primary_10_1111_j_1756_1051_2013_00082_x
crossref_primary_10_1146_annurev_ecolsys_102710_145015
crossref_primary_10_3389_fevo_2023_1008594
crossref_primary_10_1111_2041_210X_12427
crossref_primary_10_1016_j_biocon_2022_109781
crossref_primary_10_1139_cjfr_2017_0374
crossref_primary_10_1016_j_foreco_2022_120101
crossref_primary_10_3390_d14121037
crossref_primary_10_1093_aob_mcw182
crossref_primary_10_1111_gcb_12382
crossref_primary_10_1002_ece3_72160
crossref_primary_10_1016_j_isci_2024_109734
crossref_primary_10_1016_j_tree_2013_04_003
crossref_primary_10_1016_j_foreco_2021_119491
crossref_primary_10_1111_gcb_15645
crossref_primary_10_1016_j_foreco_2012_11_047
crossref_primary_10_1016_j_agrformet_2023_109586
crossref_primary_10_1111_oik_04508
crossref_primary_10_1111_jvs_13084
crossref_primary_10_1111_mec_12317
crossref_primary_10_3390_d11040054
crossref_primary_10_3390_f9110715
crossref_primary_10_1016_j_ecolmodel_2015_01_019
crossref_primary_10_1111_ele_12110
crossref_primary_10_1016_j_agrformet_2013_03_008
crossref_primary_10_3390_land12112051
crossref_primary_10_1007_s00035_016_0169_3
crossref_primary_10_1016_j_agrformet_2014_11_010
crossref_primary_10_1111_ens_12340
crossref_primary_10_1016_j_foreco_2013_12_012
crossref_primary_10_1111_gcb_13343
crossref_primary_10_1111_gcb_13585
crossref_primary_10_1111_ecog_05080
crossref_primary_10_3390_f9120756
crossref_primary_10_1093_jpe_rtae050
crossref_primary_10_3389_fevo_2021_605951
crossref_primary_10_3390_w8080321
crossref_primary_10_1111_cobi_12212
crossref_primary_10_1371_journal_pone_0183106
crossref_primary_10_1016_j_ecoinf_2024_102674
crossref_primary_10_1093_jofore_fvaa005
crossref_primary_10_1016_j_agrformet_2022_109037
crossref_primary_10_1080_24694452_2016_1232617
crossref_primary_10_1088_1748_9326_acbb90
crossref_primary_10_1111_geb_13618
crossref_primary_10_1016_j_ecocom_2017_09_004
crossref_primary_10_1002_ecy_2134
crossref_primary_10_3390_plants12193399
crossref_primary_10_1016_j_atmosres_2016_05_020
crossref_primary_10_5194_bg_21_605_2024
crossref_primary_10_1111_gcb_12286
crossref_primary_10_1111_gcb_13255
crossref_primary_10_1371_journal_pone_0126274
crossref_primary_10_1007_s10531_017_1354_4
crossref_primary_10_1017_S0024282920000523
crossref_primary_10_3390_f10100834
crossref_primary_10_1007_s10980_015_0173_9
crossref_primary_10_3389_frsus_2024_1398130
crossref_primary_10_1139_cjfas_2022_0302
crossref_primary_10_1088_1748_9326_abb9df
crossref_primary_10_4000_physio_geo_4923
crossref_primary_10_1111_gcb_13243
crossref_primary_10_1111_geb_12991
crossref_primary_10_1007_s00442_012_2349_1
crossref_primary_10_1007_s10531_020_01957_z
crossref_primary_10_1093_biolinnean_bly055
crossref_primary_10_3390_f13050711
crossref_primary_10_24072_pcjournal_519
crossref_primary_10_1016_j_ocecoaman_2021_105747
crossref_primary_10_1029_2020WR027630
crossref_primary_10_1890_ES11_00044_1
crossref_primary_10_1111_mec_12085
crossref_primary_10_1002_ece3_4198
crossref_primary_10_1007_s00035_013_0117_4
crossref_primary_10_1029_2018WR023302
crossref_primary_10_1016_j_quaint_2020_10_007
crossref_primary_10_1093_aobpla_plaa005
crossref_primary_10_1007_s11629_024_8851_1
crossref_primary_10_1080_14702541_2018_1526315
crossref_primary_10_1016_j_scitotenv_2023_162697
crossref_primary_10_1111_ecog_04243
crossref_primary_10_1111_oik_04203
crossref_primary_10_1007_s40333_017_0076_5
crossref_primary_10_1016_j_quaint_2020_11_046
crossref_primary_10_1016_j_agrformet_2023_109662
crossref_primary_10_1371_journal_pone_0072855
crossref_primary_10_3390_rs14071708
crossref_primary_10_1017_S0024282917000731
crossref_primary_10_1002_ecs2_2451
crossref_primary_10_1016_j_scitotenv_2024_171696
crossref_primary_10_1111_ddi_13146
crossref_primary_10_1080_08111146_2018_1551205
crossref_primary_10_1038_s41558_019_0530_9
crossref_primary_10_3390_fishes9110465
crossref_primary_10_1002_2015WR017037
crossref_primary_10_7717_peerj_8980
crossref_primary_10_1093_aobpla_plw049
crossref_primary_10_1111_risa_70034
crossref_primary_10_1007_s00484_022_02240_2
crossref_primary_10_1007_s00442_019_04519_5
crossref_primary_10_1029_2022EF003338
crossref_primary_10_1111_gcb_15169
crossref_primary_10_1111_cobi_12847
crossref_primary_10_1093_aob_mcy173
crossref_primary_10_1111_ddi_13398
crossref_primary_10_3390_land6010019
crossref_primary_10_1007_s10980_023_01776_x
crossref_primary_10_5194_hess_28_2683_2024
crossref_primary_10_1002_jwmg_22667
crossref_primary_10_1007_s00484_015_1058_y
crossref_primary_10_1186_s13595_023_01183_x
crossref_primary_10_1007_s11027_017_9738_z
crossref_primary_10_3390_su11010048
crossref_primary_10_1002_ecy_2571
crossref_primary_10_1111_cobi_12938
crossref_primary_10_1016_j_foreco_2022_120524
crossref_primary_10_3390_biom14081010
crossref_primary_10_1038_s41559_019_0842_1
crossref_primary_10_1016_j_foreco_2016_03_030
crossref_primary_10_3390_f15101743
crossref_primary_10_3389_fevo_2021_633697
crossref_primary_10_1002_ece3_7253
crossref_primary_10_1016_j_ecolmodel_2020_109354
crossref_primary_10_1111_1365_2745_12826
crossref_primary_10_1371_journal_pone_0105541
crossref_primary_10_1080_17550874_2016_1211192
crossref_primary_10_1093_isd_ixz022
crossref_primary_10_1002_ajb2_1248
crossref_primary_10_1038_s41467_024_44734_0
crossref_primary_10_1016_j_marenvres_2019_03_015
crossref_primary_10_1890_11_1269_1
crossref_primary_10_1002_joc_2428
crossref_primary_10_1007_s10531_017_1477_7
crossref_primary_10_1002_ecs2_1573
crossref_primary_10_1007_s11258_020_01001_8
crossref_primary_10_1016_j_foreco_2015_10_043
crossref_primary_10_1038_s41598_025_10296_4
crossref_primary_10_1016_j_rse_2024_114587
crossref_primary_10_1016_j_ecolmodel_2017_01_024
crossref_primary_10_1111_nyas_12104
crossref_primary_10_1016_j_scitotenv_2022_153377
crossref_primary_10_1111_cobi_12510
crossref_primary_10_1111_ecog_00802
crossref_primary_10_1016_j_jaridenv_2020_104139
crossref_primary_10_1016_j_tree_2018_12_012
crossref_primary_10_1007_s00300_016_1973_3
crossref_primary_10_1111_ecog_07556
crossref_primary_10_1590_0102_33062014abb3731
crossref_primary_10_1016_j_ecocom_2014_11_006
crossref_primary_10_1038_s41586_018_0715_9
crossref_primary_10_1088_1748_9326_aac83e
crossref_primary_10_1525_elementa_2023_00107
crossref_primary_10_1111_csp2_12680
crossref_primary_10_1002_ece3_7392
crossref_primary_10_1111_ddi_12098
crossref_primary_10_1017_qua_2018_68
crossref_primary_10_1175_JAMC_D_12_0115_1
crossref_primary_10_5194_essd_11_1083_2019
crossref_primary_10_1029_2020JD032686
crossref_primary_10_1093_jmammal_gyw128
crossref_primary_10_1007_s11295_017_1201_5
crossref_primary_10_1002_ece3_2940
crossref_primary_10_1016_j_ecolmodel_2017_01_018
crossref_primary_10_3390_f16010084
crossref_primary_10_1111_rec_13573
crossref_primary_10_1002_ecy_2686
crossref_primary_10_1016_j_scitotenv_2025_180498
crossref_primary_10_3390_rs17152553
crossref_primary_10_1086_737022
crossref_primary_10_1017_qua_2018_120
crossref_primary_10_1371_journal_pone_0097601
crossref_primary_10_3390_w17182659
crossref_primary_10_1016_j_scitotenv_2023_162120
crossref_primary_10_1371_journal_pone_0145060
crossref_primary_10_1007_s00442_019_04345_9
crossref_primary_10_1002_ecs2_1673
crossref_primary_10_1002_ecs2_2763
crossref_primary_10_1111_cobi_13857
crossref_primary_10_1016_j_foreco_2024_122232
crossref_primary_10_3390_fire8030091
crossref_primary_10_1371_journal_pbio_2001104
crossref_primary_10_1371_journal_pone_0069393
crossref_primary_10_1002_fee_2189
crossref_primary_10_1002_ajb2_1459
crossref_primary_10_1111_mec_15650
crossref_primary_10_1016_j_ympev_2013_04_014
crossref_primary_10_1007_s00484_024_02702_9
crossref_primary_10_1016_j_atmosres_2015_01_003
crossref_primary_10_3390_d13020067
crossref_primary_10_1007_s10021_011_9418_x
crossref_primary_10_1016_j_biocon_2024_110763
crossref_primary_10_3390_d12020056
crossref_primary_10_1111_ecog_03096
crossref_primary_10_1111_geb_12240
crossref_primary_10_1007_s10980_014_0112_1
crossref_primary_10_1002_fee_2190
crossref_primary_10_1016_j_rse_2020_112233
crossref_primary_10_1186_2192_1709_2_30
crossref_primary_10_1016_j_scitotenv_2024_174622
crossref_primary_10_1002_met_1630
crossref_primary_10_1111_geb_13447
crossref_primary_10_1111_geb_12359
crossref_primary_10_3389_fevo_2017_00114
crossref_primary_10_3390_rs16224310
crossref_primary_10_1002_ece3_6087
crossref_primary_10_1016_j_ecolind_2015_07_017
crossref_primary_10_1111_jse_12649
crossref_primary_10_1657_1938_4246_44_2_197
crossref_primary_10_1016_j_jaridenv_2024_105284
crossref_primary_10_1111_avsc_12628
crossref_primary_10_1111_ele_70014
crossref_primary_10_1007_s00484_015_1089_4
crossref_primary_10_1016_j_agrformet_2023_109722
crossref_primary_10_1016_j_biocon_2014_08_001
crossref_primary_10_1371_journal_pone_0104648
crossref_primary_10_1371_journal_pone_0205156
crossref_primary_10_1111_cobi_12508
crossref_primary_10_1111_cobi_12509
crossref_primary_10_1186_s41936_021_00221_2
crossref_primary_10_1002_fee_2188
crossref_primary_10_1080_17550874_2017_1302997
crossref_primary_10_1002_ecm_1566
crossref_primary_10_1016_j_tree_2020_10_018
crossref_primary_10_1139_cjfr_2020_0539
crossref_primary_10_1111_cobi_12504
crossref_primary_10_1111_cobi_12505
crossref_primary_10_7717_peerj_3479
crossref_primary_10_1007_s11252_018_0777_3
crossref_primary_10_1002_ecs2_2844
crossref_primary_10_1111_nph_15565
crossref_primary_10_1002_joc_4413
crossref_primary_10_1016_j_rama_2023_10_006
crossref_primary_10_1111_nyas_13597
crossref_primary_10_3389_ffgc_2022_946728
crossref_primary_10_1002_fee_2204
crossref_primary_10_1002_fee_2207
crossref_primary_10_1007_s10750_012_1371_y
crossref_primary_10_1111_ecog_05973
crossref_primary_10_1007_s10530_016_1334_8
crossref_primary_10_1016_j_jag_2016_11_005
crossref_primary_10_1111_nph_12059
crossref_primary_10_1016_j_foreco_2014_05_030
crossref_primary_10_3120_0024_9637_60_3_193
crossref_primary_10_1016_j_scitotenv_2024_170749
crossref_primary_10_3390_f7030054
crossref_primary_10_1111_geb_13277
crossref_primary_10_1002_ecs2_3820
crossref_primary_10_1016_j_envexpbot_2019_103886
crossref_primary_10_1111_geb_13151
crossref_primary_10_1111_geb_13272
crossref_primary_10_1659_MRD_JOURNAL_D_16_00028_1
crossref_primary_10_1007_s10980_021_01325_4
crossref_primary_10_1111_gcb_13942
crossref_primary_10_1016_j_agrformet_2023_109828
crossref_primary_10_1002_joc_3573
crossref_primary_10_1656_045_028_s1106
crossref_primary_10_1002_eap_2468
crossref_primary_10_1016_j_ecolmodel_2016_07_018
crossref_primary_10_1371_journal_pone_0022873
crossref_primary_10_1007_s00704_021_03712_y
crossref_primary_10_1016_j_jinsphys_2025_104866
crossref_primary_10_1016_j_jtbi_2021_110940
crossref_primary_10_1016_j_sajb_2021_04_024
crossref_primary_10_1111_jvs_12474
crossref_primary_10_1007_s41745_021_00237_1
crossref_primary_10_1093_icesjms_fsx124
crossref_primary_10_1111_jvs_12597
crossref_primary_10_1038_s41598_017_17105_7
crossref_primary_10_1111_jbi_13057
crossref_primary_10_1016_j_biocon_2023_110352
crossref_primary_10_1139_cjfr_2018_0284
crossref_primary_10_1007_s00484_021_02226_6
crossref_primary_10_1016_j_envexpbot_2019_103899
crossref_primary_10_1126_science_1247579
crossref_primary_10_1002_aps3_1237
crossref_primary_10_1525_elementa_2021_00084
crossref_primary_10_3390_su12072671
crossref_primary_10_1002_ecs2_1632
crossref_primary_10_3389_fevo_2020_613738
crossref_primary_10_1016_j_ecolmodel_2015_06_023
crossref_primary_10_1016_j_foreco_2014_10_038
crossref_primary_10_1016_j_foreco_2025_122993
crossref_primary_10_1111_eva_12440
crossref_primary_10_1016_j_ppees_2024_125792
crossref_primary_10_1111_gcb_12883
crossref_primary_10_1111_gcb_12642
crossref_primary_10_1111_j_1095_8312_2011_01819_x
crossref_primary_10_1186_s13071_019_3744_9
crossref_primary_10_1111_1365_2745_13527
crossref_primary_10_1002_joc_7700
crossref_primary_10_1016_j_agrformet_2021_108741
crossref_primary_10_1016_j_biocon_2020_108759
crossref_primary_10_1007_s10526_014_9622_7
crossref_primary_10_1007_s10661_022_10530_w
crossref_primary_10_1111_mec_17593
crossref_primary_10_1007_s10584_020_02801_7
crossref_primary_10_1007_s10021_022_00762_9
crossref_primary_10_1073_pnas_1602817113
crossref_primary_10_1016_j_ecolmodel_2015_06_028
crossref_primary_10_1080_03235408_2019_1580177
crossref_primary_10_1080_2150704X_2015_1088671
crossref_primary_10_1073_pnas_1403053111
crossref_primary_10_1088_1748_9326_ad11bf
crossref_primary_10_3389_ffgc_2020_00017
crossref_primary_10_1111_gcb_12515
crossref_primary_10_1016_j_foreco_2023_121190
crossref_primary_10_1111_aec_12184
crossref_primary_10_1016_j_gecadv_2025_100017
crossref_primary_10_1002_ecy_3717
crossref_primary_10_1016_j_flora_2022_152034
crossref_primary_10_1111_1365_2745_12426
crossref_primary_10_1016_j_agrformet_2017_12_252
crossref_primary_10_3390_rs14174227
crossref_primary_10_5194_tc_18_5803_2024
crossref_primary_10_1111_acv_12836
crossref_primary_10_1111_1365_2745_13750
crossref_primary_10_1016_j_biocon_2023_110132
crossref_primary_10_3390_f6010001
crossref_primary_10_1111_1440_1703_12227
crossref_primary_10_1002_ecs2_1610
crossref_primary_10_1016_j_apgeog_2023_102953
crossref_primary_10_1016_j_agrformet_2014_09_026
crossref_primary_10_1016_j_chemgeo_2024_122158
crossref_primary_10_1016_j_rse_2022_113427
crossref_primary_10_1890_140055
crossref_primary_10_1016_j_agrformet_2021_108520
crossref_primary_10_1029_2023GL105879
crossref_primary_10_1038_s43247_021_00326_0
crossref_primary_10_1007_s10531_016_1071_4
crossref_primary_10_1111_jbi_12298
crossref_primary_10_1080_17550874_2022_2143731
crossref_primary_10_1002_ajb2_1042
crossref_primary_10_1111_ddi_12917
crossref_primary_10_1038_s41467_024_49181_5
crossref_primary_10_1186_s42408_025_00381_4
crossref_primary_10_1007_s00484_022_02276_4
crossref_primary_10_1111_brv_12247
crossref_primary_10_1111_brv_12130
crossref_primary_10_1111_j_1365_2486_2012_02729_x
crossref_primary_10_1111_j_1365_2486_2012_02661_x
crossref_primary_10_1016_j_biocon_2017_06_019
crossref_primary_10_1016_j_scitotenv_2023_167091
crossref_primary_10_1111_aec_12163
crossref_primary_10_1007_s11284_016_1429_9
crossref_primary_10_1002_eap_1575
crossref_primary_10_1371_journal_pone_0126918
crossref_primary_10_1007_s13127_014_0181_7
crossref_primary_10_1111_njb_04062
crossref_primary_10_1111_nyas_12172
crossref_primary_10_3390_f7040077
crossref_primary_10_1088_1748_9326_11_5_054023
crossref_primary_10_1016_j_biocon_2016_06_031
crossref_primary_10_1016_j_scitotenv_2023_161789
crossref_primary_10_1016_j_foreco_2017_07_011
crossref_primary_10_1111_geb_13061
crossref_primary_10_1186_s40665_018_0039_x
crossref_primary_10_1111_ecog_02494
crossref_primary_10_1016_j_eiar_2025_108091
crossref_primary_10_1080_04353676_2016_1256746
crossref_primary_10_1016_j_foreco_2020_118658
crossref_primary_10_1038_s41598_019_38720_6
crossref_primary_10_1890_ES14_00296_1
crossref_primary_10_1016_j_dendro_2023_126145
crossref_primary_10_1038_s41598_019_55989_9
crossref_primary_10_1016_j_scitotenv_2024_171741
crossref_primary_10_1007_s10531_016_1094_x
crossref_primary_10_1016_j_quascirev_2024_108650
crossref_primary_10_1111_j_1469_8137_2012_04170_x
crossref_primary_10_1890_140275
crossref_primary_10_1016_j_biocon_2017_06_006
crossref_primary_10_1111_j_1365_2486_2011_02630_x
crossref_primary_10_1016_j_foreco_2025_122839
crossref_primary_10_1890_ES13_00340_1
crossref_primary_10_1007_s10722_021_01282_6
crossref_primary_10_1016_j_agrformet_2021_108667
crossref_primary_10_1073_pnas_2503670122
crossref_primary_10_1007_s10980_019_00924_6
crossref_primary_10_1111_evo_14460
crossref_primary_10_1016_j_jenvman_2025_127067
crossref_primary_10_1002_ece3_71629
crossref_primary_10_1016_j_jaa_2016_08_004
crossref_primary_10_1016_j_agee_2019_04_035
crossref_primary_10_1007_s10531_019_01896_4
crossref_primary_10_1016_j_actao_2016_08_002
crossref_primary_10_1002_ece3_11126
crossref_primary_10_1007_s10980_016_0369_7
crossref_primary_10_1080_14888386_2015_1117022
crossref_primary_10_1016_j_quascirev_2014_05_026
crossref_primary_10_1016_j_catena_2020_104626
crossref_primary_10_1111_j_1365_2699_2012_02766_x
crossref_primary_10_3390_d12060210
crossref_primary_10_1002_joc_5854
crossref_primary_10_1093_beheco_arab154
crossref_primary_10_1371_journal_pone_0220927
crossref_primary_10_1080_15230430_2017_1415624
crossref_primary_10_1016_j_agrformet_2021_108432
crossref_primary_10_1111_aec_12146
crossref_primary_10_15835_nbha49112218
crossref_primary_10_1016_j_agrformet_2017_05_019
crossref_primary_10_1890_11_1479_1
crossref_primary_10_1111_mec_70043
crossref_primary_10_1007_s00035_022_00283_0
crossref_primary_10_1016_j_baae_2024_04_003
crossref_primary_10_3390_plants12061248
crossref_primary_10_1111_jbi_13596
crossref_primary_10_1186_s42408_024_00264_0
crossref_primary_10_1016_j_biocon_2016_05_028
crossref_primary_10_4000_geomorphologie_14564
crossref_primary_10_1073_pnas_1311190110
crossref_primary_10_1371_journal_pone_0205677
Cites_doi 10.1016/S0168-1923(98)00076-8
10.2307/1313224
10.1111/j.1365-2699.2009.02268.x
10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2
10.1016/j.ecolmodel.2005.09.006
10.1016/j.tree.2005.11.022
10.2307/1941646
10.1007/978-3-642-18967-8_26
10.1002/joc.2007
10.5194/cp-3-109-2007
10.1029/2004JD005047
10.1098/rstb.2002.1074
10.1175/JCLI3321.1
10.1002/1097-0088(200010)20:12<1471::AID-JOC554>3.0.CO;2-6
10.1111/j.1365-2486.2008.01762.x
10.1007/BF02573952
10.1017/S0094837300026932
10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2
10.1111/j.1365-2699.2007.01861.x
10.1038/35016000
10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2
10.1023/A:1008183331604
10.1016/j.agrformet.2004.06.006
10.1016/j.jhydrol.2007.02.018
10.1002/joc.1276
10.1007/BF00865530
10.1080/02723646.1994.10642509
10.1175/1520-0450(2003)042<1255:ANSOIB>2.0.CO;2
10.1016/S0168-1923(99)00087-8
10.1175/2007JAMC1565.1
10.2307/2404314
10.1029/2008G
10.1016/S0378-1127(00)00287-5
10.1111/j.1365-2699.2008.02023.x
10.1016/S0022-1694(00)00413-3
10.1016/S0169-5347(01)02338-2
10.1046/j.1461-0248.2000.00165.x
10.1579/0044-7447-29.7.371
10.1111/j.1365-2745.2008.01422.x
10.1016/j.quascirev.2004.06.002
10.4324/9780203416020
10.1023/A:1007933813251
10.1002/joc.740
10.1098/rsbl.2008.0476
10.1111/j.1461-0248.2009.01355.x
10.1111/j.1365-2486.2008.01766.x
10.1016/j.agrformet.2009.06.006
10.1890/04-1036
10.1029/2008JD009879
10.1002/joc.1322
10.1111/j.1365-2699.2008.02027.x
10.1046/j.1469-8137.2001.00057.x
10.1006/qres.2002.2374
10.1038/369448a0
10.1086/285186
10.1175/2008JAMC2084.1
10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2
10.1080/17550870802349146
10.1038/20859
10.1029/2005JD006150
10.1016/j.tree.2008.06.010
10.1175/1520-0450(1998)037<1547:TFADOI>2.0.CO;2
10.1111/j.1523-1739.2009.01409.x
10.1126/science.292.5517.673
10.1046/j.1523-1739.2001.015003578.x
10.1111/j.1469-8137.2009.03147.x
10.1111/j.1420-9101.2004.00734.x
10.1046/j.1365-2699.1998.00233.x
10.1111/j.1365-2486.2007.01527.x
10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2
10.1073/pnas.0606292104
10.1126/science.1156831
10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2
10.1029/2006JD007561
10.1111/j.1472-4642.2010.00636.x
10.1080/0028825X.1992.10412909
10.1016/j.jhydrol.2006.03.027
10.1016/S0168-1923(02)00196-X
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TG
7U6
KL.
SOI
DOI 10.1111/j.1365-2486.2010.02263.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage 1035
ExternalDocumentID 2229250891
23757714
10_1111_j_1365_2486_2010_02263_x
GCB2263
ark_67375_WNG_9FZQPGCZ_L
US201301931388
Genre article
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TG
7U6
KL.
SOI
ID FETCH-LOGICAL-c5633-d8e220237b78fbffd4f209c7bcc7e4eb40bc05fa77665f95ba2d79bdb637a0843
IEDL.DBID DRFUL
ISICitedReferencesCount 784
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285878000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Mon Oct 06 18:20:33 EDT 2025
Fri Jul 11 07:48:37 EDT 2025
Fri Jul 25 11:00:54 EDT 2025
Mon Jul 21 09:18:13 EDT 2025
Sat Nov 29 06:02:15 EST 2025
Tue Nov 18 20:31:51 EST 2025
Wed Aug 20 07:27:19 EDT 2025
Tue Nov 11 03:32:05 EST 2025
Thu Apr 03 09:45:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords species distributions
Climate
Landscape
Physiography
refugia
Cryptic
Dynamical climatology
Climatic condition
cryptic refugia
topoclimate
Climate change
Spatial distribution
Geographic distribution
Mountain
Topography
Paleoclimate
mountain climate
landscape physiography
Distribution range
microrefugia
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5633-d8e220237b78fbffd4f209c7bcc7e4eb40bc05fa77665f95ba2d79bdb637a0843
Notes http://dx.doi.org/10.1111/j.1365-2486.2010.02263.x
istex:D3EFD5A4569AB7BC4E719B5160F8F19E057893A7
ark:/67375/WNG-9FZQPGCZ-L
ArticleID:GCB2263
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 822240797
PQPubID 30327
PageCount 14
ParticipantIDs proquest_miscellaneous_853485676
proquest_miscellaneous_1663609179
proquest_journals_822240797
pascalfrancis_primary_23757714
crossref_primary_10_1111_j_1365_2486_2010_02263_x
crossref_citationtrail_10_1111_j_1365_2486_2010_02263_x
wiley_primary_10_1111_j_1365_2486_2010_02263_x_GCB2263
istex_primary_ark_67375_WNG_9FZQPGCZ_L
fao_agris_US201301931388
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature, 369, 369.
Davis FW, Dozier J (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology, 4, 69-80.
Randin CF, Engler R, Normand S et al. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569.
Chung U, Seo HH, Hwang KH, Hwang BS, Yun JI (2002) Minimum temperature mapping in complex terrain based on calculation of cold air accumulation. Korean Journal of Agriculture and Forest Meteorology, 4, 133-140.
Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany, 30, 303-314.
Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agricultural and Forest Meteorology, 102, 51-67.
Pepin L, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters, 35, L14701, doi: DOI: 10.1029/2008G.
Gong L, Xu C, Chen D, Halldin S, Chen YD (2006) Sensitivity of the penman-monteith reference evapotranspiration to key climatic variables in the Changjiang basin. Journal of Hydrology, 329, 620-629.
Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management, 135, 289-301.
Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography, 35, 464-482.
Brown DG (1994) Comparison of vegetation-topography relationships at the Alpine treeline ecotone. Physical Geography, 15, 125-145.
Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology, 48, 1033-1049.
Lookingbill TR, Urban DL (2003) Spatial estimation of air temparture differences for landscape scale studies in montane environments. Agricultural and Forest Meteorology, 114, 141-151.
Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. Journal of Geophysical Research, 112, D11124, doi: DOI: 10.1029/2006JD007561.
Svenning J, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modeling. Journal of Ecology, 96, 1117-1127.
Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems: upward shifting of mountain plants. World Resource Review, 8, 382-390.
Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292, 673-679.
Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608-613.
Muller H, Whiteman DC (1988) Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. Journal of Applied Meteorology, 27, 188-194.
Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change. Conservation Biology, 24, 51-62.
Geiger R (1965) The Climate Near the Ground. Harvard University Press, Cambridge, USA.
Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656-667.
Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration. Journal of Hydrology, 243, 192-204.
Lutz JA, Vanwagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemit National Park. Journal of Biogeography, 37, 936-950.
Daly C, Conklin DR, Unsworth MH (2009) Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology, doi: DOI: 10.1002/joc.2007.
Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913.
Whiteman DC (1982) Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270-289.
Dettinger MD, Cayan D (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623.
Pearson RG (2006) Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111-113.
Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3, 457-463.
Chung U, Yun JI (2004) Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain. Agricultural and Forest Meteorology, 126, 129-139.
Delcourt HR (2002) Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World. The MacDonald and Woodward Publishing Company, Blacksburg, VA.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
Iijima Y, Shinoda M (2000) Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. International Journal of Climatology, 20, 1471-1483.
Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110, D03104, doi: DOI: 10.1029/2004JD005047.
Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855-870.
Lenoir J, Gegout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771.
Lundquist JD, Pepin NC, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal of Geophysical Research, 113, D22107, doi: DOI: 10.1029/2008JD009879.
Barry RG (1992) Mountain Weather and Climate. Routledge, London.
Rull V (2009) Microrefugia. Journal of Biogeography, 36, 481-484.
Barron E, Pollard D (2002) High resolution climate simulations of oxygen isotope stage 3 in Europe. Quaternary Research, 58, 296-309.
Luckman B, Kavanagh T (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio, 29, 371-380.
Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology, 15, 578-590.
Stewart IT, Cayan D, Dettinger MD (2004) Changes toward earlier streamflow timing across western North America. Journal of Climate, 18, 1136-155.
Körner C, Ohsawa M (2005) Mountain Systems. Ecosystems and Human Well-Being I. Current State and Trends. Millennium Ecosystem Assessment, pp. 681-716. Island Press, Washington, DC.
Birks HJB, Willis KJ (2008) Alpine trees and refugia in Europe. Plant Ecology and Diversity, 1, 147-160.
Dobrowski SZ, Greenberg JA, Ramirez CM, Ustin SL (2006) Improving image derived vegetation maps with regression based distribution modeling. Ecological Modeling, 192, 126-142.
Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T, Williams JW, Hansen BCS (2000) Vegetation and environment in Eastern North America during the last glacial maximum. Quaternary Science Reviews, 19, 489-508.
McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088-2098.
Coughlan JC, Running SW (1997) Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain. Landscape Ecology, 12, 119-136.
Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytologist, 185, 1038-1049.
Colette A, Chow FK, Street RL (2003) A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys. Journal of Applied Meteorology, 42, 1255-1272.
Pepin NC, Norris JR (2005) An examination of the differences between surface and free air temperatur trend at high elevation sites: relationships with cloud cover, snow cover, and wind. Journal of Geophysical Research, 110, D24112, doi: DOI: 10.1029/2005JD006150.
Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography, 36, 476-480.
Mcvicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196-220.
Tenow O, Nilssen A (1990) Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia. Journal of applied Ecology, 27, 723-744.
Grotch SL, Maccracken MC (1991) The use of general circulation models to predict climatic change. Journal of Climate, 4, 283-303.
Bolstad PV, Swift L, Collins F, Regniere J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agricultural and Forest Meteorology, 91, 161-176.
Daly C (2006) Guidelines for assesing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707-721.
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
Clark JS, Fastie CL, Hurtt G et al. (1998) Reids paradox of rapid plant migration. Bioscience, 48, 13-24.
Dobrowski SZ, Abatzoglou J, Greenberg J
1998; 48
2007; 104
2002; 58
2010; 16
2004; 126
2000; 135
2000; 3
2004; 23
2002; 357
2010; 185
2008; 35
2008; 1
2003; 114
2009; 48
2005; 25
2001; 149
2009; 12
2006; 329
2007; 338
2000; 19
2010; 24
2000; 15
2001; 292
2006; 21
2000; 405
1982; 21
1997; 12
2006; 26
1987
2008; 23
2001; 15
1998; 91
2001; 16
2007; 3
2008; 113
2003; 42
1996; 8
2009; 15
1991; 4
2001; 243
2004; 43
2000; 29
2010; 37
2005; 110
2000; 26
2000; 20
2009
2008; 14
2007
2005; 86
2002; 4
1994; 49
2006; 192
2005
1992
2003
2008; 96
1991
2002
2008; 320
1995; 8
1998; 25
1953; 2
1992; 30
1998; 37
2009; 36
2007; 112
1994; 369
2000; 102
2004; 18
1990; 27
1988; 69
1986; 25
1988; 27
2002; 22
2008; 47
1965
1999; 399
1994; 15
2009; 5
2009; 149
1990; 4
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Delcourt HR (e_1_2_8_26_1) 2002
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Thornthwaite CW (e_1_2_8_80_1) 1953; 2
e_1_2_8_70_1
Körner C (e_1_2_8_46_1) 2005
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Geiger R (e_1_2_8_32_1) 1965
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
Pauli H (e_1_2_8_62_1) 1996; 8
Brown DG (e_1_2_8_14_1) 1991
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_90_1
IPCC (e_1_2_8_43_1) 2007
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Chung U (e_1_2_8_17_1) 2002; 4
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Grotch SL, Maccracken MC (1991) The use of general circulation models to predict climatic change. Journal of Climate, 4, 283-303.
– reference: Dettinger MD, Cayan D (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623.
– reference: McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088-2098.
– reference: Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608-613.
– reference: Mcvicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196-220.
– reference: Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biology Letters, 5, 39-43.
– reference: Dobrowski SZ, Abatzoglou J, Greenberg JA, Schladow G (2009) How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agricultural and Forest Meteorology, 149, 1751-1758.
– reference: Davis FW, Dozier J (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology, 4, 69-80.
– reference: IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
– reference: Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography, 35, 464-482.
– reference: Whiteman DC, Pospichal B, Eisenbach S et al. (2004) Inversion breakup in small Rocky Mountain and Alpine basins. Journal of Applied Meteorology, 43, 1069-1082.
– reference: Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. Journal of Geophysical Research, 112, D11124, doi: DOI: 10.1029/2006JD007561.
– reference: Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems: upward shifting of mountain plants. World Resource Review, 8, 382-390.
– reference: Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110, D03104, doi: DOI: 10.1029/2004JD005047.
– reference: Petit JR, Jouzel J, Raynaud D et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antartica. Nature, 399, 429-436.
– reference: Lenoir J, Gegout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771.
– reference: Muller H, Whiteman DC (1988) Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. Journal of Applied Meteorology, 27, 188-194.
– reference: Lutz JA, Vanwagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemit National Park. Journal of Biogeography, 37, 936-950.
– reference: Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany, 30, 303-314.
– reference: Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology, 48, 1033-1049.
– reference: Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
– reference: Thornthwaite CW (1953) A charter for climatology. World Meteorological Organization Bulletin, 2, 40-46.
– reference: Pepin L, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters, 35, L14701, doi: DOI: 10.1029/2008G.
– reference: Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913.
– reference: Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of National Academy of Science, 104, 5738-5742.
– reference: Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology, 15, 578-590.
– reference: Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agricultural and Forest Meteorology, 102, 51-67.
– reference: Coughlan JC, Running SW (1997) Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain. Landscape Ecology, 12, 119-136.
– reference: Pepin NC, Losleben M (2002) Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. International Journal of Climatology, 22, 311-329.
– reference: Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G (2001) Tansley review no 123: tree and forest functioning in response to global warming. New Phytologist, 149, 369-400.
– reference: Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change. Conservation Biology, 24, 51-62.
– reference: Delcourt HR (2002) Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World. The MacDonald and Woodward Publishing Company, Blacksburg, VA.
– reference: Körner C, Ohsawa M (2005) Mountain Systems. Ecosystems and Human Well-Being I. Current State and Trends. Millennium Ecosystem Assessment, pp. 681-716. Island Press, Washington, DC.
– reference: Colette A, Chow FK, Street RL (2003) A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys. Journal of Applied Meteorology, 42, 1255-1272.
– reference: Dobrowski SZ, Greenberg JA, Ramirez CM, Ustin SL (2006) Improving image derived vegetation maps with regression based distribution modeling. Ecological Modeling, 192, 126-142.
– reference: Daly C, Conklin DR, Unsworth MH (2009) Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology, doi: DOI: 10.1002/joc.2007.
– reference: Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656-667.
– reference: Gong L, Xu C, Chen D, Halldin S, Chen YD (2006) Sensitivity of the penman-monteith reference evapotranspiration to key climatic variables in the Changjiang basin. Journal of Hydrology, 329, 620-629.
– reference: Willis KJ, Van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the last glaciation. Quaternary Science Reviews, 23, 2369-2387.
– reference: Birks HJB, Willis KJ (2008) Alpine trees and refugia in Europe. Plant Ecology and Diversity, 1, 147-160.
– reference: Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855-870.
– reference: Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography, 36, 476-480.
– reference: Luckman B, Kavanagh T (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio, 29, 371-380.
– reference: Anquetin S, Guilbaud C, Chollet JP (1998) The formation and destruction of inversion layers within a deep valley. Journal of Applied Meteorology, 37, 1547-1560.
– reference: Barron E, Pollard D (2002) High resolution climate simulations of oxygen isotope stage 3 in Europe. Quaternary Research, 58, 296-309.
– reference: Daly C (2006) Guidelines for assesing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707-721.
– reference: Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature, 369, 369.
– reference: Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology, 15, 603-620.
– reference: Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society Biological Sciences, 357, 849-862.
– reference: Blandford TR, Humes KS, Harshburger BJ, Moore BC, Walden VP (2008) Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. Journal of Applied Meteorology and Climatology, 47, 249-261.
– reference: Lookingbill TR, Urban DL (2003) Spatial estimation of air temparture differences for landscape scale studies in montane environments. Agricultural and Forest Meteorology, 114, 141-151.
– reference: Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge.
– reference: Iijima Y, Shinoda M (2000) Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. International Journal of Climatology, 20, 1471-1483.
– reference: Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology, 26, 194-220.
– reference: Tenow O, Nilssen A (1990) Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia. Journal of applied Ecology, 27, 723-744.
– reference: Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate change in Switzerland. Theoretical and Applied Climatology, 49, 135-159.
– reference: Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytologist, 185, 1038-1049.
– reference: Rull V (2009) Microrefugia. Journal of Biogeography, 36, 481-484.
– reference: Svenning J, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modeling. Journal of Ecology, 96, 1117-1127.
– reference: Lundquist JD, Pepin NC, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal of Geophysical Research, 113, D22107, doi: DOI: 10.1029/2008JD009879.
– reference: Whiteman DC (1982) Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270-289.
– reference: Brown DG (1991) Topoclimatic Models of an Alpine Environment Using Digital Elevation Models within a GIS, pp. 835-844. GIS/LIS, Atlanta, GA.
– reference: Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for euphydryas editha bayensis. Ecology, 69, 1486-1496.
– reference: Barry RG (1992) Mountain Weather and Climate. Routledge, London.
– reference: Bolstad PV, Swift L, Collins F, Regniere J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agricultural and Forest Meteorology, 91, 161-176.
– reference: Provan J, Bennet KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23, 564-571.
– reference: Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292, 673-679.
– reference: Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3, 457-463.
– reference: Chung U, Yun JI (2004) Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain. Agricultural and Forest Meteorology, 126, 129-139.
– reference: Clark JS, Fastie CL, Hurtt G et al. (1998) Reids paradox of rapid plant migration. Bioscience, 48, 13-24.
– reference: Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration. Journal of Hydrology, 243, 192-204.
– reference: Geiger R (1965) The Climate Near the Ground. Harvard University Press, Cambridge, USA.
– reference: Pepin NC, Norris JR (2005) An examination of the differences between surface and free air temperatur trend at high elevation sites: relationships with cloud cover, snow cover, and wind. Journal of Geophysical Research, 110, D24112, doi: DOI: 10.1029/2005JD006150.
– reference: Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management, 135, 289-301.
– reference: Alba-Sanchez F, Lopez-Saez JA, Benito-De Pando B, Linares JC, Nieto-Lugilde D, Lopez-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Diversity and Distributions, 16, 214-228.
– reference: Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T, Williams JW, Hansen BCS (2000) Vegetation and environment in Eastern North America during the last glacial maximum. Quaternary Science Reviews, 19, 489-508.
– reference: Loehle C (2007) Predicting Pleistocene climate from vegetation in North America. Climate of the Past, 3, 109-118.
– reference: Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biology, 14, 483-494.
– reference: Randin CF, Engler R, Normand S et al. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569.
– reference: Chung U, Seo HH, Hwang KH, Hwang BS, Yun JI (2002) Minimum temperature mapping in complex terrain based on calculation of cold air accumulation. Korean Journal of Agriculture and Forest Meteorology, 4, 133-140.
– reference: Pearson RG (2006) Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111-113.
– reference: Stewart IT, Cayan D, Dettinger MD (2004) Changes toward earlier streamflow timing across western North America. Journal of Climate, 18, 1136-155.
– reference: Brown DG (1994) Comparison of vegetation-topography relationships at the Alpine treeline ecotone. Physical Geography, 15, 125-145.
– reference: Mccutchan MH, Fox DG (1986) Effect of elevation and aspect on wind, temperature, and humidity. Journal of Applied Meteorology, 25, 1996-2013.
– volume: 15
  start-page: 656
  year: 2009
  end-page: 667
  article-title: Climate change at the landscape scale
  publication-title: Global Change Biology
– volume: 149
  start-page: 369
  year: 2001
  end-page: 400
  article-title: Tansley review no 123
  publication-title: New Phytologist
– volume: 69
  start-page: 1486
  year: 1988
  end-page: 1496
  article-title: Sun, slope, and butterflies
  publication-title: Ecology
– volume: 37
  start-page: 1547
  year: 1998
  end-page: 1560
  article-title: The formation and destruction of inversion layers within a deep valley
  publication-title: Journal of Applied Meteorology
– volume: 15
  start-page: 1557
  year: 2009
  end-page: 1569
  article-title: Climate change and plant distribution
  publication-title: Global Change Biology
– volume: 24
  start-page: 51
  year: 2010
  end-page: 62
  article-title: Matching the multiple scales of conservation with the multiple scales of climate change
  publication-title: Conservation Biology
– volume: 16
  start-page: 608
  year: 2001
  end-page: 613
  article-title: Cryptic northern refugia and the origins of the modern biota
  publication-title: Trends in Ecology and Evolution
– volume: 86
  start-page: 2088
  year: 2005
  end-page: 2098
  article-title: Molecular indicators of tree migration capacity under rapid climate change
  publication-title: Ecology
– volume: 27
  start-page: 723
  year: 1990
  end-page: 744
  article-title: Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia
  publication-title: Journal of applied Ecology
– volume: 8
  start-page: 382
  year: 1996
  end-page: 390
  article-title: Effects of climate change on mountain ecosystems
  publication-title: World Resource Review
– volume: 26
  start-page: 707
  year: 2006
  end-page: 721
  article-title: Guidelines for assesing the suitability of spatial climate data sets
  publication-title: International Journal of Climatology
– volume: 369
  start-page: 369
  year: 1994
  article-title: Climate effects on mountain plants
  publication-title: Nature
– volume: 22
  start-page: 311
  year: 2002
  end-page: 329
  article-title: Climate change in the Colorado Rocky Mountains
  publication-title: International Journal of Climatology
– volume: 405
  start-page: 907
  year: 2000
  end-page: 913
  article-title: The genetic legacy of the quaternary ice ages
  publication-title: Nature
– volume: 2
  start-page: 40
  year: 1953
  end-page: 46
  article-title: A charter for climatology
  publication-title: World Meteorological Organization Bulletin
– start-page: 681
  year: 2005
  end-page: 716
– volume: 48
  start-page: 1033
  year: 2009
  end-page: 1049
  article-title: Downscaling climate over complex terrain
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 23
  start-page: 564
  year: 2008
  end-page: 571
  article-title: Phylogeographic insights into cryptic glacial refugia
  publication-title: Trends in Ecology and Evolution
– volume: 12
  start-page: 119
  year: 1997
  end-page: 136
  article-title: Regional ecosystem simulation
  publication-title: Landscape Ecology
– year: 2009
  article-title: Local atmospheric decoupling in complex topography alters climate change impacts
  publication-title: International Journal of Climatology
– volume: 35
  year: 2008
  article-title: Temperature trends at high elevations
  publication-title: Geophysical Research Letters
– volume: 58
  start-page: 296
  year: 2002
  end-page: 309
  article-title: High resolution climate simulations of oxygen isotope stage 3 in Europe
  publication-title: Quaternary Research
– volume: 3
  start-page: 109
  year: 2007
  end-page: 118
  article-title: Predicting Pleistocene climate from vegetation in North America
  publication-title: Climate of the Past
– volume: 4
  start-page: 69
  year: 1990
  end-page: 80
  article-title: Modeling vegetation pattern using digital terrain data
  publication-title: Landscape Ecology
– volume: 21
  start-page: 111
  year: 2006
  end-page: 113
  article-title: Climate change and the migration capacity of species
  publication-title: Trends in Ecology and Evolution
– volume: 27
  start-page: 188
  year: 1988
  end-page: 194
  article-title: Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS
  publication-title: Journal of Applied Meteorology
– volume: 5
  start-page: 39
  year: 2009
  end-page: 43
  article-title: Scale effects in species distribution models
  publication-title: Biology Letters
– volume: 23
  start-page: 2369
  year: 2004
  end-page: 2387
  article-title: Trees or no trees? The environments of central and eastern Europe during the last glaciation
  publication-title: Quaternary Science Reviews
– volume: 114
  start-page: 141
  year: 2003
  end-page: 151
  article-title: Spatial estimation of air temparture differences for landscape scale studies in montane environments
  publication-title: Agricultural and Forest Meteorology
– start-page: 835
  year: 1991
  end-page: 844
– year: 1965
– volume: 42
  start-page: 1255
  year: 2003
  end-page: 1272
  article-title: A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys
  publication-title: Journal of Applied Meteorology
– volume: 14
  start-page: 483
  year: 2008
  end-page: 494
  article-title: Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models
  publication-title: Global Change Biology
– volume: 43
  start-page: 1069
  year: 2004
  end-page: 1082
  article-title: Inversion breakup in small Rocky Mountain and Alpine basins
  publication-title: Journal of Applied Meteorology
– volume: 19
  start-page: 489
  year: 2000
  end-page: 508
  article-title: Vegetation and environment in Eastern North America during the last glacial maximum
  publication-title: Quaternary Science Reviews
– volume: 48
  start-page: 13
  year: 1998
  end-page: 24
  article-title: Reids paradox of rapid plant migration
  publication-title: Bioscience
– volume: 20
  start-page: 1471
  year: 2000
  end-page: 1483
  article-title: Seasonal changes in the cold‐air pool formation in a subalpine hollow, central Japan
  publication-title: International Journal of Climatology
– volume: 110
  start-page: D03104
  year: 2005
  article-title: A global comparison of surface and free‐air temperatures at high elevations
  publication-title: Journal of Geophysical Research
– volume: 185
  start-page: 1038
  year: 2010
  end-page: 1049
  article-title: An experimental test of well‐described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers
  publication-title: New Phytologist
– volume: 329
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Sensitivity of the penman‐monteith reference evapotranspiration to key climatic variables in the Changjiang basin
  publication-title: Journal of Hydrology
– volume: 399
  start-page: 429
  year: 1999
  end-page: 436
  article-title: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antartica
  publication-title: Nature
– volume: 47
  start-page: 249
  year: 2008
  end-page: 261
  article-title: Seasonal and synoptic variations in near‐surface air temperature lapse rates in a mountainous basin
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 91
  start-page: 161
  year: 1998
  end-page: 176
  article-title: Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains
  publication-title: Agricultural and Forest Meteorology
– volume: 104
  start-page: 5738
  year: 2007
  end-page: 5742
  article-title: Projected distributions of novel and disappearing climates by 2100 AD
  publication-title: Proceedings of National Academy of Science
– volume: 18
  start-page: 1136
  year: 2004
  end-page: 155
  article-title: Changes toward earlier streamflow timing across western North America
  publication-title: Journal of Climate
– volume: 135
  start-page: 289
  year: 2000
  end-page: 301
  article-title: Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality
  publication-title: Forest Ecology and Management
– volume: 25
  start-page: 1996
  year: 1986
  end-page: 2013
  article-title: Effect of elevation and aspect on wind, temperature, and humidity
  publication-title: Journal of Applied Meteorology
– volume: 35
  start-page: 464
  year: 2008
  end-page: 482
  article-title: Species persistence in northerly glacial refugia of Europe
  publication-title: Journal of Biogeography
– year: 2007
– volume: 102
  start-page: 51
  year: 2000
  end-page: 67
  article-title: A frost assessment method for mountainous areas
  publication-title: Agricultural and Forest Meteorology
– year: 1987
– year: 2003
– volume: 4
  start-page: 133
  year: 2002
  end-page: 140
  article-title: Minimum temperature mapping in complex terrain based on calculation of cold air accumulation
  publication-title: Korean Journal of Agriculture and Forest Meteorology
– volume: 357
  start-page: 849
  year: 2002
  end-page: 862
  article-title: Insects and low temperatures
  publication-title: Philosophical Transactions of the Royal Society Biological Sciences
– volume: 30
  start-page: 303
  year: 1992
  end-page: 314
  article-title: Evidence for rising upper limits of four native New Zealand forest trees
  publication-title: New Zealand Journal of Botany
– volume: 338
  start-page: 196
  year: 2007
  end-page: 220
  article-title: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences
  publication-title: Journal of Hydrology
– year: 1992
– volume: 243
  start-page: 192
  year: 2001
  end-page: 204
  article-title: Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration
  publication-title: Journal of Hydrology
– volume: 15
  start-page: 578
  year: 2001
  end-page: 590
  article-title: Beyond Kyoto
  publication-title: Conservation Biology
– volume: 12
  start-page: 1040
  year: 2009
  end-page: 1049
  article-title: Are treelines advancing? A global meta‐analysis of treeline response to climate warming
  publication-title: Ecology Letters
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 110
  year: 2005
  article-title: An examination of the differences between surface and free air temperatur trend at high elevation sites
  publication-title: Journal of Geophysical Research
– volume: 3
  start-page: 457
  year: 2000
  end-page: 463
  article-title: The ecological and evolutionary significance of frost in the context of climate change
  publication-title: Ecology Letters
– volume: 112
  year: 2007
  article-title: Surface temperature patterns in complex terrain
  publication-title: Journal of Geophysical Research
– volume: 26
  start-page: 194
  year: 2000
  end-page: 220
  article-title: Responses of plant populations and communities to environmental changes of the late quaternary
  publication-title: Paleobiology
– volume: 113
  year: 2008
  article-title: Automated algorithm for mapping regions of cold‐air pooling in complex terrain
  publication-title: Journal of Geophysical Research
– volume: 320
  start-page: 1768
  year: 2008
  end-page: 1771
  article-title: A significant upward shift in plant species optimum elevation during the 20th century
  publication-title: Science
– volume: 37
  start-page: 936
  year: 2010
  end-page: 950
  article-title: Climatic water deficit, tree species ranges, and climate change in Yosemit National Park
  publication-title: Journal of Biogeography
– volume: 1
  start-page: 147
  year: 2008
  end-page: 160
  article-title: Alpine trees and refugia in Europe
  publication-title: Plant Ecology and Diversity
– start-page: 423
  year: 2003
  end-page: 436
– volume: 126
  start-page: 129
  year: 2004
  end-page: 139
  article-title: Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain
  publication-title: Agricultural and Forest Meteorology
– volume: 96
  start-page: 1117
  year: 2008
  end-page: 1127
  article-title: Glacial refugia of temperate trees in Europe
  publication-title: Journal of Ecology
– volume: 8
  start-page: 606
  year: 1995
  end-page: 623
  article-title: Large‐scale atmospheric forcing of recent trends toward early snowmelt runoff in California
  publication-title: Journal of Climate
– volume: 49
  start-page: 135
  year: 1994
  end-page: 159
  article-title: An analysis of regional climate change in Switzerland
  publication-title: Theoretical and Applied Climatology
– year: 2002
– volume: 36
  start-page: 476
  year: 2009
  end-page: 480
  article-title: A discussion of different types of glacial refugia used in mountain biogeography and phylogeography
  publication-title: Journal of Biogeography
– volume: 29
  start-page: 371
  year: 2000
  end-page: 380
  article-title: Impact of climate fluctuations on mountain environments in the Canadian Rockies
  publication-title: Ambio
– volume: 4
  start-page: 283
  year: 1991
  end-page: 303
  article-title: The use of general circulation models to predict climatic change
  publication-title: Journal of Climate
– volume: 15
  start-page: 125
  year: 1994
  end-page: 145
  article-title: Comparison of vegetation‐topography relationships at the Alpine treeline ecotone
  publication-title: Physical Geography
– volume: 292
  start-page: 673
  year: 2001
  end-page: 679
  article-title: Range shifts and adaptive responses to quaternary climate change
  publication-title: Science
– volume: 16
  start-page: 214
  year: 2010
  end-page: 228
  article-title: Past and present potential distribution of the Iberian species
  publication-title: Diversity and Distributions
– volume: 36
  start-page: 481
  year: 2009
  end-page: 484
  article-title: Microrefugia
  publication-title: Journal of Biogeography
– volume: 149
  start-page: 1751
  year: 2009
  end-page: 1758
  article-title: How much influence does landscape‐scale physiography have on air temperature in a mountain environment?
  publication-title: Agricultural and Forest Meteorology
– volume: 192
  start-page: 126
  year: 2006
  end-page: 142
  article-title: Improving image derived vegetation maps with regression based distribution modeling
  publication-title: Ecological Modeling
– volume: 25
  start-page: 855
  year: 1998
  end-page: 870
  article-title: Actual evapotranspiration and deficit
  publication-title: Journal of Biogeography
– volume: 15
  start-page: 603
  year: 2000
  end-page: 620
  article-title: Forest gradient response in Sierran landscapes
  publication-title: Landscape Ecology
– volume: 21
  start-page: 270
  year: 1982
  end-page: 289
  article-title: Breakup of temperature inversions in deep mountain valleys
  publication-title: Journal of Applied Meteorology
– ident: e_1_2_8_13_1
  doi: 10.1016/S0168-1923(98)00076-8
– ident: e_1_2_8_19_1
  doi: 10.2307/1313224
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1365-2699.2009.02268.x
– ident: e_1_2_8_85_1
  doi: 10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ecolmodel.2005.09.006
– ident: e_1_2_8_63_1
  doi: 10.1016/j.tree.2005.11.022
– ident: e_1_2_8_84_1
  doi: 10.2307/1941646
– ident: e_1_2_8_59_1
  doi: 10.1007/978-3-642-18967-8_26
– ident: e_1_2_8_23_1
  doi: 10.1002/joc.2007
– ident: e_1_2_8_49_1
  doi: 10.5194/cp-3-109-2007
– ident: e_1_2_8_68_1
  doi: 10.1029/2004JD005047
– ident: e_1_2_8_5_1
  doi: 10.1098/rstb.2002.1074
– ident: e_1_2_8_76_1
  doi: 10.1175/JCLI3321.1
– ident: e_1_2_8_41_1
  doi: 10.1002/1097-0088(200010)20:12<1471::AID-JOC554>3.0.CO;2-6
– start-page: 681
  volume-title: Mountain Systems. Ecosystems and Human Well‐Being I. Current State and Trends. Millennium Ecosystem Assessment
  year: 2005
  ident: e_1_2_8_46_1
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1365-2486.2008.01762.x
– start-page: 835
  volume-title: Topoclimatic Models of an Alpine Environment Using Digital Elevation Models within a GIS
  year: 1991
  ident: e_1_2_8_14_1
– ident: e_1_2_8_66_1
– ident: e_1_2_8_24_1
  doi: 10.1007/BF02573952
– ident: e_1_2_8_44_1
  doi: 10.1017/S0094837300026932
– ident: e_1_2_8_35_1
  doi: 10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1365-2699.2007.01861.x
– volume: 4
  start-page: 133
  year: 2002
  ident: e_1_2_8_17_1
  article-title: Minimum temperature mapping in complex terrain based on calculation of cold air accumulation
  publication-title: Korean Journal of Agriculture and Forest Meteorology
– ident: e_1_2_8_37_1
  doi: 10.1038/35016000
– ident: e_1_2_8_56_1
  doi: 10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2
– ident: e_1_2_8_81_1
  doi: 10.1023/A:1008183331604
– ident: e_1_2_8_18_1
  doi: 10.1016/j.agrformet.2004.06.006
– volume-title: The Climate Near the Ground
  year: 1965
  ident: e_1_2_8_32_1
– volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change
  year: 2007
  ident: e_1_2_8_43_1
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jhydrol.2007.02.018
– ident: e_1_2_8_38_1
  doi: 10.1002/joc.1276
– ident: e_1_2_8_8_1
  doi: 10.1007/BF00865530
– ident: e_1_2_8_15_1
  doi: 10.1080/02723646.1994.10642509
– ident: e_1_2_8_20_1
  doi: 10.1175/1520-0450(2003)042<1255:ANSOIB>2.0.CO;2
– ident: e_1_2_8_48_1
  doi: 10.1016/S0168-1923(99)00087-8
– ident: e_1_2_8_11_1
  doi: 10.1175/2007JAMC1565.1
– ident: e_1_2_8_79_1
  doi: 10.2307/2404314
– ident: e_1_2_8_64_1
  doi: 10.1029/2008G
– ident: e_1_2_8_12_1
  doi: 10.1016/S0378-1127(00)00287-5
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1365-2699.2008.02023.x
– ident: e_1_2_8_40_1
  doi: 10.1016/S0022-1694(00)00413-3
– ident: e_1_2_8_77_1
  doi: 10.1016/S0169-5347(01)02338-2
– ident: e_1_2_8_42_1
  doi: 10.1046/j.1461-0248.2000.00165.x
– ident: e_1_2_8_51_1
  doi: 10.1579/0044-7447-29.7.371
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1365-2745.2008.01422.x
– volume: 8
  start-page: 382
  year: 1996
  ident: e_1_2_8_62_1
  article-title: Effects of climate change on mountain ecosystems
  publication-title: World Resource Review
– ident: e_1_2_8_89_1
  doi: 10.1016/j.quascirev.2004.06.002
– ident: e_1_2_8_7_1
  doi: 10.4324/9780203416020
– ident: e_1_2_8_21_1
  doi: 10.1023/A:1007933813251
– ident: e_1_2_8_65_1
  doi: 10.1002/joc.740
– ident: e_1_2_8_74_1
  doi: 10.1098/rsbl.2008.0476
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1461-0248.2009.01355.x
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1365-2486.2008.01766.x
– ident: e_1_2_8_28_1
  doi: 10.1016/j.agrformet.2009.06.006
– ident: e_1_2_8_57_1
  doi: 10.1890/04-1036
– ident: e_1_2_8_53_1
  doi: 10.1029/2008JD009879
– ident: e_1_2_8_22_1
  doi: 10.1002/joc.1322
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1365-2699.2008.02027.x
– ident: e_1_2_8_73_1
  doi: 10.1046/j.1469-8137.2001.00057.x
– volume-title: Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World
  year: 2002
  ident: e_1_2_8_26_1
– ident: e_1_2_8_6_1
  doi: 10.1006/qres.2002.2374
– ident: e_1_2_8_34_1
  doi: 10.1038/369448a0
– ident: e_1_2_8_90_1
  doi: 10.1086/285186
– volume: 2
  start-page: 40
  year: 1953
  ident: e_1_2_8_80_1
  article-title: A charter for climatology
  publication-title: World Meteorological Organization Bulletin
– ident: e_1_2_8_31_1
  doi: 10.1175/2008JAMC2084.1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_86_1
  doi: 10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2
– ident: e_1_2_8_10_1
  doi: 10.1080/17550870802349146
– ident: e_1_2_8_69_1
  doi: 10.1038/20859
– ident: e_1_2_8_67_1
  doi: 10.1029/2005JD006150
– ident: e_1_2_8_70_1
  doi: 10.1016/j.tree.2008.06.010
– ident: e_1_2_8_3_1
  doi: 10.1175/1520-0450(1998)037<1547:TFADOI>2.0.CO;2
– ident: e_1_2_8_87_1
  doi: 10.1111/j.1523-1739.2009.01409.x
– ident: e_1_2_8_25_1
  doi: 10.1126/science.292.5517.673
– ident: e_1_2_8_61_1
  doi: 10.1046/j.1523-1739.2001.015003578.x
– ident: e_1_2_8_83_1
  doi: 10.1111/j.1469-8137.2009.03147.x
– ident: e_1_2_8_30_1
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1420-9101.2004.00734.x
– ident: e_1_2_8_75_1
  doi: 10.1046/j.1365-2699.1998.00233.x
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2486.2007.01527.x
– ident: e_1_2_8_60_1
  doi: 10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2
– ident: e_1_2_8_88_1
  doi: 10.1073/pnas.0606292104
– ident: e_1_2_8_47_1
  doi: 10.1126/science.1156831
– ident: e_1_2_8_27_1
  doi: 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2
– ident: e_1_2_8_52_1
  doi: 10.1029/2006JD007561
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1472-4642.2010.00636.x
– ident: e_1_2_8_82_1
  doi: 10.1080/0028825X.1992.10412909
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jhydrol.2006.03.027
– ident: e_1_2_8_50_1
  doi: 10.1016/S0168-1923(02)00196-X
SSID ssj0003206
Score 2.5658622
SecondaryResourceType review_article
Snippet There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1022
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biogeography
Biological and medical sciences
Biota
climate
Climate change
Climate change research
Climatology. Bioclimatology. Climate change
cryptic refugia
Dispersal
Earth, ocean, space
Ecology
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
Genetic diversity
genetic variation
Glaciers
Interglacial periods
landscape physiography
landscape position
landscapes
Meteorology
microrefugia
mountain climate
paleoclimate
Quaternary
refugia
Spatial distribution
species distributions
topoclimate
Title climatic basis for microrefugia: the influence of terrain on climate
URI https://api.istex.fr/ark:/67375/WNG-9FZQPGCZ-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2010.02263.x
https://www.proquest.com/docview/822240797
https://www.proquest.com/docview/1663609179
https://www.proquest.com/docview/853485676
Volume 17
WOSCitedRecordID wos000285878000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiQuPBaqhkJlJNRbUBK_Em5l6S6HsiqPiqoXy3bsKqJs0KaLyr9nnGRDVwKpQtxixRPF45nxZ3vsD-Al_pzlOA2ImWEiZqWlce4TH1NuqM01N6XxLdmEnM_z09PiuM9_CmdhuvshhgW34BltvA4Ork2z6eRthhbLRZ-hhUiCvkI8uZWhGfMRbL39OD05GuIyzVqmzZRyhsEnpZt5PX_81sZgddvrGiFs0P5VSKHUDWrRd_QXG_j0Ospth6npg__ZwIdwvwer5KCzrkdwyy3GcLejr_w5hu3D36fksFofJpoxRO8RitfLthrZJ5OLCnFxW3oM0wNi23JlCQ6hVUMQNpNvIS8Q2786r_RrgqCUVGv2FFJ7gp0fqCxIveiF3RM4mR5-nryLezKH2HJBaVzmLgtU7dLI3BvvS-azpLDSWCsdc4YlxibcaymF4L7gRmelLNBUBJU6yRndhtGiXrgdIMI5HEO996nLGSsTrJmkVjKOwVsXzkcg172mbH_TeSDcuFDXZjyoWhVUq4JqVatadRVBOkh-7277uIHMDhqG0ucYlNXJpyxsBSMqTmmeR7DfWsvwLb38GhLpJFdf5jNVTM8-HM8mZ-oogr0NcxoEUF9cypRFsLu2L9UHmUYFbIfz8UJG8GJ4i9EhbPnohatXjUpFuA8OfbGIgPylDgI2lnMhRQSitccbN13NJm_C09N_FdyFe90afUgPegajy-XKPYc79sdl1Sz3egf-BfINQCQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BBoIXfpRNC4NhJLS3oKS2Y4e3UdYO0VUDVjHtxUoce4rYmqlZ0fjvOTtpWCWQJsRbovii-PLd-bNz8QfwBh9Oc5wGhCxnScgKTUNpIxtSnlMtM54XufViE2IykScn6VErB-T-hWn2h-gW3Fxk-HztAtwtSK9GuS_RYjJpS7SQStC3SCjXGaIK4b7-4ctwOu4SM-17qc2YcobZJ6arhT1_vNfKaHXXZhVyWOf-a1dDmdXoRtvoX6wQ1Js0149Tw8f_tYdP4FFLV8leg6-ncMfMenC_EbD82YPN_d__yWGzNlHUPQgOkYxXc9-M7JLBeYnM2J89g-Ee0f681AQH0bImSJzJhasMRAcszsrsHUFaSsqlfgqpLMHX78QsSDVrjc0GTIf7x4ODsJVzCDVPKA0LafpOrF3kQtrc2oLZfpRqkWstDDM5i3IdcZsJkSTcpjzP-oVIESwJFVkkGd2EtVk1M1tAEmNwFLXWxkYyVkTYMoq1YBzTd5YaG4BYvjal273OneTGubox50HXKuda5VyrvGvVdQBxZ3nZ7PdxC5stRIbKzjAtq-nXvvsYjLw4plIGsOvh0t0rm393pXSCq2-TkUqHp5-PRoNTNQ5gZwVPnQH6iwsRswC2lwBTbZqplWN3OCNPRQCvu6uYH9xHn2xmqkWt4sTtCIfRmAZA_tIGKRuTPBFJAIkH5K27rkaD9-7o-b8avoIHB8eHYzX-OPm0DQ-bFXtXLPQC1q7mC_MS7ukfV2U932mj-RcmtUQU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4gXPgrTwmAYCe0tKIm_Et5GtxREqcpHxbQXK3HsKWI0U7Oi8d9zTtKwSiBNiLdY8UXx-e78s332D-Al_pzmOA3wWc6EzwpN_dgG1qc8pzrOeF7ktiGbkNNpfHyczDo6IHcWpr0fol9wc57RxGvn4Oa8sJte3qRosVh0KVoIJegrBJRbzHHKDGDr8FM6n_SBmUYN1WZIOcPoE9LNxJ4_fmtjtLppswoxrFP_pcuhzGpUo235LzYA6lWY24xT6f3_2sIHcK-Dq-Sgta-HcMMshnC7JbD8OYTto9_n5LBaFyjqIXgfEIxXy6Ya2SejsxKRcVN6BOkB0U251AQH0bImCJzJd5cZiApYnZbZa4KwlJRr_hRSWYLd78gsSLXohM1jmKdHX0Zv_Y7OwddcUOoXsYkcWbvMZWxzawtmoyDRMtdaGmZyFuQ64DaTUghuE55nUSETNBZBZRbEjG7DYFEtzA4QYQyOotba0MSMFQHWDEItGcfwnSXGeiDX3aZ0d9e5o9w4U1fmPKha5VSrnGpVo1p16UHYS563931cQ2YHLUNlpxiW1fxz5DaDEReHNI492G_Mpf9WtvzmUukkV1-nY5WkJx9n49GJmniwt2FPvQDqi0sZMg921wamujBTK4fucEaeSA9e9G8xPrhNn2xhqlWtQuFuhENvTDwgf6mDkI3FXEjhgWgM8tpNV-PRG_f05F8Fn8Od2WGqJu-m73fhbrtg73KFnsLgYrkyz-CW_nFR1su9zpl_AUq_Q48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+climatic+basis+for+microrefugia%3A+the+influence+of+terrain+on+climate&rft.jtitle=Global+change+biology&rft.au=DOBROWSKI%2C+SOLOMON+Z.&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=2&rft.spage=1022&rft.epage=1035&rft_id=info:doi/10.1111%2Fj.1365-2486.2010.02263.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9FZQPGCZ_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon