climatic basis for microrefugia: the influence of terrain on climate
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributi...
Saved in:
| Published in: | Global change biology Vol. 17; no. 2; pp. 1022 - 1035 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Blackwell Publishing Ltd
01.02.2011
Wiley-Blackwell |
| Subjects: | |
| ISSN: | 1354-1013, 1365-2486 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change. |
|---|---|
| AbstractList | There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change. [PUBLICATION ABSTRACT] There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change. |
| Author | DOBROWSKI, SOLOMON Z. |
| Author_xml | – sequence: 1 fullname: DOBROWSKI, SOLOMON Z |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757714$$DView record in Pascal Francis |
| BookMark | eNqNkV1rFDEUhoNUsK3-BoMgejNrPiYfIyjoaldh8QMtQm9Ckk1q1tmkJjO4_fdmnLIXvZDmJofked_knPcEHMUUHQAQowWu68V2gSlnDWklXxBUTxEhnC7298Dx4eJoqlnbYITpA3BSyhYhRAnix-Cd7cNOD8FCo0so0KcMd8HmlJ0fL4N-CYefDobo-9FF62DycHA56xBhinAWu4fgvtd9cY9u9lNwfvb--_JDs_68-rh8s24s45Q2G-kIQYQKI6Q33m9aT1BnhbFWuNaZFhmLmNdCcM58x4wmG9GZjeFUaCRbegqezb5XOf0eXRnULhTr-l5Hl8aiJKOtZFzwSj7_L4k5pxx1WHQVfXIL3aYxx9qHkoSQFolOVOjpDaSL1b3POtpQ1FWu_edrVXtiQuDph3Lm6gRLqTM8IBipKS-1VVMsaopFTXmpf3mpfZW-viW1YajJpDjUcfd3MXg1G_wJvbu-88NqtXw7VVXfzPpQBrc_6HX-pbioDaofn1aqO7v4-mW1vFDryj-eea-T0pe5zuP8W3WmCHcUUynpX-Swx7o |
| CitedBy_id | crossref_primary_10_1111_gcb_13679 crossref_primary_10_1111_csp2_70093 crossref_primary_10_1007_s10584_016_1789_8 crossref_primary_10_1111_ecog_03836 crossref_primary_10_1002_fee_1516 crossref_primary_10_1016_j_bse_2013_12_019 crossref_primary_10_1111_jbi_12254 crossref_primary_10_3390_f12101366 crossref_primary_10_1016_j_rse_2017_08_005 crossref_primary_10_1038_nclimate1667 crossref_primary_10_1038_ncomms12349 crossref_primary_10_1016_j_ppees_2015_06_004 crossref_primary_10_1016_j_gecco_2025_e03541 crossref_primary_10_1111_ivb_12315 crossref_primary_10_1111_jse_13150 crossref_primary_10_1016_j_foreco_2023_121478 crossref_primary_10_3354_cr01306 crossref_primary_10_1016_j_tree_2025_06_009 crossref_primary_10_1007_s11356_022_19631_y crossref_primary_10_1088_2752_664X_adfa9e crossref_primary_10_1111_cobi_13130 crossref_primary_10_1111_gcb_14874 crossref_primary_10_1111_ecog_03947 crossref_primary_10_1111_gcb_13544 crossref_primary_10_1111_gcb_14755 crossref_primary_10_1038_s41467_023_41063_6 crossref_primary_10_3390_jof9030341 crossref_primary_10_1007_s10980_023_01596_z crossref_primary_10_1002_fee_2831 crossref_primary_10_1111_jbi_13569 crossref_primary_10_17221_85_2019_HORTSCI crossref_primary_10_3354_cr01440 crossref_primary_10_1002_ece3_426 crossref_primary_10_1016_j_agrformet_2019_02_015 crossref_primary_10_1007_s10980_021_01394_5 crossref_primary_10_1016_j_geomorph_2024_109241 crossref_primary_10_1016_j_gecco_2024_e03157 crossref_primary_10_1016_j_sajb_2015_01_014 crossref_primary_10_3390_rs12223690 crossref_primary_10_1186_s42408_025_00353_8 crossref_primary_10_1002_joc_4390 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_1111_gcb_12129 crossref_primary_10_1111_gcb_15514 crossref_primary_10_1186_1471_2148_14_9 crossref_primary_10_1111_ecog_02647 crossref_primary_10_1007_s13280_014_0599_3 crossref_primary_10_1894_0038_4909_68_3_157 crossref_primary_10_1111_gcb_70253 crossref_primary_10_1371_journal_pone_0159909 crossref_primary_10_1016_j_foreco_2020_118006 crossref_primary_10_1111_jbi_13689 crossref_primary_10_1088_1748_9326_ac9dae crossref_primary_10_1002_ecs2_4172 crossref_primary_10_1890_ES14_00313_1 crossref_primary_10_1093_aob_mcab041 crossref_primary_10_1111_bor_12219 crossref_primary_10_1016_j_rse_2023_113521 crossref_primary_10_1111_2041_210X_12488 crossref_primary_10_1007_s10531_019_01734_7 crossref_primary_10_1111_gcb_15510 crossref_primary_10_1016_j_ppees_2013_11_001 crossref_primary_10_1088_1755_1315_179_1_012001 crossref_primary_10_1111_gcb_14415 crossref_primary_10_1111_nph_14042 crossref_primary_10_3390_su132011275 crossref_primary_10_1016_j_fecs_2025_100345 crossref_primary_10_1002_joc_5135 crossref_primary_10_1111_gcb_12476 crossref_primary_10_1371_journal_pone_0135732 crossref_primary_10_1111_nph_15499 crossref_primary_10_1038_s41558_023_01650_3 crossref_primary_10_1111_gcb_14897 crossref_primary_10_1371_journal_pone_0055735 crossref_primary_10_1038_s41559_024_02372_1 crossref_primary_10_1111_jbi_12219 crossref_primary_10_1080_23766808_2021_1957652 crossref_primary_10_3389_fpls_2022_947166 crossref_primary_10_1111_jbi_13426 crossref_primary_10_1007_s40333_024_0102_3 crossref_primary_10_1016_j_foreco_2020_118234 crossref_primary_10_1016_j_jenvman_2025_125374 crossref_primary_10_1111_ecog_02990 crossref_primary_10_1080_13658816_2013_846472 crossref_primary_10_1111_csp2_13183 crossref_primary_10_1038_s41598_019_43603_x crossref_primary_10_1111_jse_12171 crossref_primary_10_1890_ES13_00403_1 crossref_primary_10_1111_gcb_13320 crossref_primary_10_1016_j_agrformet_2025_110434 crossref_primary_10_1111_jbi_70010 crossref_primary_10_1016_j_foreco_2015_06_032 crossref_primary_10_3389_ffgc_2020_00025 crossref_primary_10_1088_1748_9326_ac0b67 crossref_primary_10_1007_s10980_015_0167_7 crossref_primary_10_1371_journal_pone_0304756 crossref_primary_10_1111_ecog_02788 crossref_primary_10_1002_ece3_4432 crossref_primary_10_1186_s12870_025_07127_z crossref_primary_10_1088_1748_9326_aa6da8 crossref_primary_10_1007_s10980_025_02146_5 crossref_primary_10_1088_1748_9326_acd4d3 crossref_primary_10_1029_2021JD036042 crossref_primary_10_1093_condor_duz057 crossref_primary_10_1111_jbi_13660 crossref_primary_10_12688_f1000research_2_187_v3 crossref_primary_10_1016_j_palaeo_2024_112298 crossref_primary_10_1111_jvs_13119 crossref_primary_10_12688_f1000research_2_187_v2 crossref_primary_10_1038_s41598_020_58638_8 crossref_primary_10_1016_j_biocon_2025_111473 crossref_primary_10_1111_ele_12070 crossref_primary_10_1016_j_agrformet_2025_110723 crossref_primary_10_12688_f1000research_2_187_v1 crossref_primary_10_1016_j_jenvman_2024_120995 crossref_primary_10_1007_s10584_017_2010_4 crossref_primary_10_1002_ece3_1295 crossref_primary_10_1186_s40665_017_0030_y crossref_primary_10_1111_gcb_13629 crossref_primary_10_1111_jbi_14858 crossref_primary_10_1007_s10113_012_0385_3 crossref_primary_10_1016_j_tree_2024_05_002 crossref_primary_10_1093_aob_mcw233 crossref_primary_10_1002_ece3_5659 crossref_primary_10_1371_journal_pone_0301109 crossref_primary_10_1111_nph_12929 crossref_primary_10_1007_s10584_021_03140_x crossref_primary_10_1111_gcb_12770 crossref_primary_10_1007_s11356_020_07692_w crossref_primary_10_1016_j_indcrop_2020_113144 crossref_primary_10_1111_csp2_70069 crossref_primary_10_1111_gcb_12204 crossref_primary_10_1002_evan_21443 crossref_primary_10_1371_journal_pone_0300378 crossref_primary_10_1111_gcb_12203 crossref_primary_10_1111_j_1466_8238_2011_00686_x crossref_primary_10_1080_02723646_2021_1938923 crossref_primary_10_1016_j_quascirev_2019_01_002 crossref_primary_10_1038_s42003_024_07239_6 crossref_primary_10_1080_09670874_2020_1752956 crossref_primary_10_1111_1365_2745_14132 crossref_primary_10_3398_064_080_0303 crossref_primary_10_1002_ecs2_2195 crossref_primary_10_1093_aob_mcw248 crossref_primary_10_1556_ComEc_15_2014_2_6 crossref_primary_10_3389_ffgc_2020_596256 crossref_primary_10_3390_biology13110937 crossref_primary_10_1038_s41598_022_05440_3 crossref_primary_10_1007_s00704_019_02855_3 crossref_primary_10_1007_s10841_021_00357_0 crossref_primary_10_1111_csp2_70079 crossref_primary_10_1111_ddi_12673 crossref_primary_10_1007_s10980_020_01071_z crossref_primary_10_1126_science_1237190 crossref_primary_10_1111_cobi_14246 crossref_primary_10_1088_1748_9326_ad3461 crossref_primary_10_1016_j_ecolind_2022_108941 crossref_primary_10_1016_j_dendro_2022_125939 crossref_primary_10_1111_jbi_13994 crossref_primary_10_1111_1440_1703_12541 crossref_primary_10_1002_eco_1994 crossref_primary_10_1017_S0266467423000111 crossref_primary_10_1111_ecog_02551 crossref_primary_10_1111_oik_10248 crossref_primary_10_1007_s11258_022_01233_w crossref_primary_10_1016_j_biocon_2025_111464 crossref_primary_10_1002_pei3_10153 crossref_primary_10_1016_j_gecco_2025_e03596 crossref_primary_10_1073_pnas_2204434119 crossref_primary_10_1002_eap_2280 crossref_primary_10_1029_2019GL085546 crossref_primary_10_1111_ibi_12721 crossref_primary_10_1111_j_1600_0706_2011_19694_x crossref_primary_10_1007_s10661_023_11553_7 crossref_primary_10_1002_2017JG004108 crossref_primary_10_1371_journal_pone_0112943 crossref_primary_10_1111_conl_12712 crossref_primary_10_1111_geb_13834 crossref_primary_10_1111_ddi_12688 crossref_primary_10_1111_geb_13830 crossref_primary_10_1111_mec_13692 crossref_primary_10_1111_oik_09171 crossref_primary_10_1016_j_foreco_2021_119680 crossref_primary_10_1016_j_foreco_2016_08_004 crossref_primary_10_1016_j_jenvman_2025_126947 crossref_primary_10_1080_17550874_2014_987330 crossref_primary_10_1002_ecm_1390 crossref_primary_10_1111_aec_12758 crossref_primary_10_1371_journal_pone_0065008 crossref_primary_10_1177_1940082917722027 crossref_primary_10_1002_ecy_4257 crossref_primary_10_1111_cobi_12799 crossref_primary_10_1111_gcb_14000 crossref_primary_10_1016_j_foreco_2016_01_017 crossref_primary_10_1016_j_ufug_2024_128586 crossref_primary_10_1111_cobi_12556 crossref_primary_10_1371_journal_pone_0218168 crossref_primary_10_1111_geb_12974 crossref_primary_10_1111_ddi_12456 crossref_primary_10_1111_cobi_13531 crossref_primary_10_1111_geb_12731 crossref_primary_10_1002_ecs2_70315 crossref_primary_10_1093_biosci_biy020 crossref_primary_10_1111_ele_12272 crossref_primary_10_1007_s10980_015_0160_1 crossref_primary_10_1016_j_foreco_2021_119446 crossref_primary_10_1016_j_apgeog_2017_05_011 crossref_primary_10_1007_s00442_015_3514_0 crossref_primary_10_1007_s00035_014_0144_9 crossref_primary_10_1038_s41598_023_39772_5 crossref_primary_10_1111_1365_2664_13008 crossref_primary_10_1111_gcb_12051 crossref_primary_10_1111_cobi_13777 crossref_primary_10_3390_rs11202385 crossref_primary_10_1016_j_foreco_2023_120794 crossref_primary_10_1111_gcb_14597 crossref_primary_10_1002_ecs2_3137 crossref_primary_10_1016_j_foreco_2018_12_006 crossref_primary_10_1007_s10980_019_00907_7 crossref_primary_10_1111_j_1365_2486_2012_02679_x crossref_primary_10_1002_ece3_7 crossref_primary_10_1016_j_biocon_2022_109768 crossref_primary_10_1016_j_fecs_2024_100278 crossref_primary_10_1016_j_quascirev_2021_107005 crossref_primary_10_1890_15_1129_1 crossref_primary_10_1111_nph_12833 crossref_primary_10_1093_biosci_biy103 crossref_primary_10_1016_j_jenvman_2021_112871 crossref_primary_10_1016_j_scitotenv_2023_165542 crossref_primary_10_1111_csp2_70153 crossref_primary_10_1111_ecog_07131 crossref_primary_10_3390_land14030570 crossref_primary_10_1002_ecs2_2155 crossref_primary_10_1016_j_foreco_2022_120487 crossref_primary_10_1016_j_ppees_2018_02_003 crossref_primary_10_1371_journal_pone_0130566 crossref_primary_10_1016_j_biocon_2024_110963 crossref_primary_10_1002_ecs2_2279 crossref_primary_10_1111_gcb_13174 crossref_primary_10_3390_su13063147 crossref_primary_10_1016_j_isci_2023_108202 crossref_primary_10_1111_ddi_12356 crossref_primary_10_1111_1365_2656_13491 crossref_primary_10_2478_s11756_014_0430_4 crossref_primary_10_3389_fevo_2022_980660 crossref_primary_10_1016_j_foreco_2021_119596 crossref_primary_10_1111_jbi_13822 crossref_primary_10_1146_annurev_marine_121916_063304 crossref_primary_10_1002_ece3_2763 crossref_primary_10_1111_2041_210X_12539 crossref_primary_10_1016_j_srs_2025_100269 crossref_primary_10_1111_plb_12578 crossref_primary_10_1016_j_ttbdis_2022_102035 crossref_primary_10_1111_jbi_12621 crossref_primary_10_1002_ece3_1319 crossref_primary_10_1371_journal_pone_0256586 crossref_primary_10_1080_14888386_2015_1116407 crossref_primary_10_1186_s13071_020_04336_3 crossref_primary_10_1029_2020JG005986 crossref_primary_10_1016_j_tree_2014_04_006 crossref_primary_10_1111_gcb_13045 crossref_primary_10_1029_2020RG000730 crossref_primary_10_3390_cli13020026 crossref_primary_10_1111_gcb_12026 crossref_primary_10_1002_joc_5020 crossref_primary_10_1007_s12145_024_01646_3 crossref_primary_10_1016_j_jafrearsci_2020_103996 crossref_primary_10_1016_j_ecolmodel_2018_06_004 crossref_primary_10_1111_geb_12302 crossref_primary_10_1016_j_agrformet_2023_109698 crossref_primary_10_3390_f13081311 crossref_primary_10_1177_0959683620950452 crossref_primary_10_3390_f14050908 crossref_primary_10_3389_ffgc_2019_00094 crossref_primary_10_1007_s10980_015_0318_x crossref_primary_10_1016_j_quascirev_2015_03_028 crossref_primary_10_1175_MWR_D_19_0196_1 crossref_primary_10_1111_j_1756_1051_2013_00082_x crossref_primary_10_1146_annurev_ecolsys_102710_145015 crossref_primary_10_3389_fevo_2023_1008594 crossref_primary_10_1111_2041_210X_12427 crossref_primary_10_1016_j_biocon_2022_109781 crossref_primary_10_1139_cjfr_2017_0374 crossref_primary_10_1016_j_foreco_2022_120101 crossref_primary_10_3390_d14121037 crossref_primary_10_1093_aob_mcw182 crossref_primary_10_1111_gcb_12382 crossref_primary_10_1002_ece3_72160 crossref_primary_10_1016_j_isci_2024_109734 crossref_primary_10_1016_j_tree_2013_04_003 crossref_primary_10_1016_j_foreco_2021_119491 crossref_primary_10_1111_gcb_15645 crossref_primary_10_1016_j_foreco_2012_11_047 crossref_primary_10_1016_j_agrformet_2023_109586 crossref_primary_10_1111_oik_04508 crossref_primary_10_1111_jvs_13084 crossref_primary_10_1111_mec_12317 crossref_primary_10_3390_d11040054 crossref_primary_10_3390_f9110715 crossref_primary_10_1016_j_ecolmodel_2015_01_019 crossref_primary_10_1111_ele_12110 crossref_primary_10_1016_j_agrformet_2013_03_008 crossref_primary_10_3390_land12112051 crossref_primary_10_1007_s00035_016_0169_3 crossref_primary_10_1016_j_agrformet_2014_11_010 crossref_primary_10_1111_ens_12340 crossref_primary_10_1016_j_foreco_2013_12_012 crossref_primary_10_1111_gcb_13343 crossref_primary_10_1111_gcb_13585 crossref_primary_10_1111_ecog_05080 crossref_primary_10_3390_f9120756 crossref_primary_10_1093_jpe_rtae050 crossref_primary_10_3389_fevo_2021_605951 crossref_primary_10_3390_w8080321 crossref_primary_10_1111_cobi_12212 crossref_primary_10_1371_journal_pone_0183106 crossref_primary_10_1016_j_ecoinf_2024_102674 crossref_primary_10_1093_jofore_fvaa005 crossref_primary_10_1016_j_agrformet_2022_109037 crossref_primary_10_1080_24694452_2016_1232617 crossref_primary_10_1088_1748_9326_acbb90 crossref_primary_10_1111_geb_13618 crossref_primary_10_1016_j_ecocom_2017_09_004 crossref_primary_10_1002_ecy_2134 crossref_primary_10_3390_plants12193399 crossref_primary_10_1016_j_atmosres_2016_05_020 crossref_primary_10_5194_bg_21_605_2024 crossref_primary_10_1111_gcb_12286 crossref_primary_10_1111_gcb_13255 crossref_primary_10_1371_journal_pone_0126274 crossref_primary_10_1007_s10531_017_1354_4 crossref_primary_10_1017_S0024282920000523 crossref_primary_10_3390_f10100834 crossref_primary_10_1007_s10980_015_0173_9 crossref_primary_10_3389_frsus_2024_1398130 crossref_primary_10_1139_cjfas_2022_0302 crossref_primary_10_1088_1748_9326_abb9df crossref_primary_10_4000_physio_geo_4923 crossref_primary_10_1111_gcb_13243 crossref_primary_10_1111_geb_12991 crossref_primary_10_1007_s00442_012_2349_1 crossref_primary_10_1007_s10531_020_01957_z crossref_primary_10_1093_biolinnean_bly055 crossref_primary_10_3390_f13050711 crossref_primary_10_24072_pcjournal_519 crossref_primary_10_1016_j_ocecoaman_2021_105747 crossref_primary_10_1029_2020WR027630 crossref_primary_10_1890_ES11_00044_1 crossref_primary_10_1111_mec_12085 crossref_primary_10_1002_ece3_4198 crossref_primary_10_1007_s00035_013_0117_4 crossref_primary_10_1029_2018WR023302 crossref_primary_10_1016_j_quaint_2020_10_007 crossref_primary_10_1093_aobpla_plaa005 crossref_primary_10_1007_s11629_024_8851_1 crossref_primary_10_1080_14702541_2018_1526315 crossref_primary_10_1016_j_scitotenv_2023_162697 crossref_primary_10_1111_ecog_04243 crossref_primary_10_1111_oik_04203 crossref_primary_10_1007_s40333_017_0076_5 crossref_primary_10_1016_j_quaint_2020_11_046 crossref_primary_10_1016_j_agrformet_2023_109662 crossref_primary_10_1371_journal_pone_0072855 crossref_primary_10_3390_rs14071708 crossref_primary_10_1017_S0024282917000731 crossref_primary_10_1002_ecs2_2451 crossref_primary_10_1016_j_scitotenv_2024_171696 crossref_primary_10_1111_ddi_13146 crossref_primary_10_1080_08111146_2018_1551205 crossref_primary_10_1038_s41558_019_0530_9 crossref_primary_10_3390_fishes9110465 crossref_primary_10_1002_2015WR017037 crossref_primary_10_7717_peerj_8980 crossref_primary_10_1093_aobpla_plw049 crossref_primary_10_1111_risa_70034 crossref_primary_10_1007_s00484_022_02240_2 crossref_primary_10_1007_s00442_019_04519_5 crossref_primary_10_1029_2022EF003338 crossref_primary_10_1111_gcb_15169 crossref_primary_10_1111_cobi_12847 crossref_primary_10_1093_aob_mcy173 crossref_primary_10_1111_ddi_13398 crossref_primary_10_3390_land6010019 crossref_primary_10_1007_s10980_023_01776_x crossref_primary_10_5194_hess_28_2683_2024 crossref_primary_10_1002_jwmg_22667 crossref_primary_10_1007_s00484_015_1058_y crossref_primary_10_1186_s13595_023_01183_x crossref_primary_10_1007_s11027_017_9738_z crossref_primary_10_3390_su11010048 crossref_primary_10_1002_ecy_2571 crossref_primary_10_1111_cobi_12938 crossref_primary_10_1016_j_foreco_2022_120524 crossref_primary_10_3390_biom14081010 crossref_primary_10_1038_s41559_019_0842_1 crossref_primary_10_1016_j_foreco_2016_03_030 crossref_primary_10_3390_f15101743 crossref_primary_10_3389_fevo_2021_633697 crossref_primary_10_1002_ece3_7253 crossref_primary_10_1016_j_ecolmodel_2020_109354 crossref_primary_10_1111_1365_2745_12826 crossref_primary_10_1371_journal_pone_0105541 crossref_primary_10_1080_17550874_2016_1211192 crossref_primary_10_1093_isd_ixz022 crossref_primary_10_1002_ajb2_1248 crossref_primary_10_1038_s41467_024_44734_0 crossref_primary_10_1016_j_marenvres_2019_03_015 crossref_primary_10_1890_11_1269_1 crossref_primary_10_1002_joc_2428 crossref_primary_10_1007_s10531_017_1477_7 crossref_primary_10_1002_ecs2_1573 crossref_primary_10_1007_s11258_020_01001_8 crossref_primary_10_1016_j_foreco_2015_10_043 crossref_primary_10_1038_s41598_025_10296_4 crossref_primary_10_1016_j_rse_2024_114587 crossref_primary_10_1016_j_ecolmodel_2017_01_024 crossref_primary_10_1111_nyas_12104 crossref_primary_10_1016_j_scitotenv_2022_153377 crossref_primary_10_1111_cobi_12510 crossref_primary_10_1111_ecog_00802 crossref_primary_10_1016_j_jaridenv_2020_104139 crossref_primary_10_1016_j_tree_2018_12_012 crossref_primary_10_1007_s00300_016_1973_3 crossref_primary_10_1111_ecog_07556 crossref_primary_10_1590_0102_33062014abb3731 crossref_primary_10_1016_j_ecocom_2014_11_006 crossref_primary_10_1038_s41586_018_0715_9 crossref_primary_10_1088_1748_9326_aac83e crossref_primary_10_1525_elementa_2023_00107 crossref_primary_10_1111_csp2_12680 crossref_primary_10_1002_ece3_7392 crossref_primary_10_1111_ddi_12098 crossref_primary_10_1017_qua_2018_68 crossref_primary_10_1175_JAMC_D_12_0115_1 crossref_primary_10_5194_essd_11_1083_2019 crossref_primary_10_1029_2020JD032686 crossref_primary_10_1093_jmammal_gyw128 crossref_primary_10_1007_s11295_017_1201_5 crossref_primary_10_1002_ece3_2940 crossref_primary_10_1016_j_ecolmodel_2017_01_018 crossref_primary_10_3390_f16010084 crossref_primary_10_1111_rec_13573 crossref_primary_10_1002_ecy_2686 crossref_primary_10_1016_j_scitotenv_2025_180498 crossref_primary_10_3390_rs17152553 crossref_primary_10_1086_737022 crossref_primary_10_1017_qua_2018_120 crossref_primary_10_1371_journal_pone_0097601 crossref_primary_10_3390_w17182659 crossref_primary_10_1016_j_scitotenv_2023_162120 crossref_primary_10_1371_journal_pone_0145060 crossref_primary_10_1007_s00442_019_04345_9 crossref_primary_10_1002_ecs2_1673 crossref_primary_10_1002_ecs2_2763 crossref_primary_10_1111_cobi_13857 crossref_primary_10_1016_j_foreco_2024_122232 crossref_primary_10_3390_fire8030091 crossref_primary_10_1371_journal_pbio_2001104 crossref_primary_10_1371_journal_pone_0069393 crossref_primary_10_1002_fee_2189 crossref_primary_10_1002_ajb2_1459 crossref_primary_10_1111_mec_15650 crossref_primary_10_1016_j_ympev_2013_04_014 crossref_primary_10_1007_s00484_024_02702_9 crossref_primary_10_1016_j_atmosres_2015_01_003 crossref_primary_10_3390_d13020067 crossref_primary_10_1007_s10021_011_9418_x crossref_primary_10_1016_j_biocon_2024_110763 crossref_primary_10_3390_d12020056 crossref_primary_10_1111_ecog_03096 crossref_primary_10_1111_geb_12240 crossref_primary_10_1007_s10980_014_0112_1 crossref_primary_10_1002_fee_2190 crossref_primary_10_1016_j_rse_2020_112233 crossref_primary_10_1186_2192_1709_2_30 crossref_primary_10_1016_j_scitotenv_2024_174622 crossref_primary_10_1002_met_1630 crossref_primary_10_1111_geb_13447 crossref_primary_10_1111_geb_12359 crossref_primary_10_3389_fevo_2017_00114 crossref_primary_10_3390_rs16224310 crossref_primary_10_1002_ece3_6087 crossref_primary_10_1016_j_ecolind_2015_07_017 crossref_primary_10_1111_jse_12649 crossref_primary_10_1657_1938_4246_44_2_197 crossref_primary_10_1016_j_jaridenv_2024_105284 crossref_primary_10_1111_avsc_12628 crossref_primary_10_1111_ele_70014 crossref_primary_10_1007_s00484_015_1089_4 crossref_primary_10_1016_j_agrformet_2023_109722 crossref_primary_10_1016_j_biocon_2014_08_001 crossref_primary_10_1371_journal_pone_0104648 crossref_primary_10_1371_journal_pone_0205156 crossref_primary_10_1111_cobi_12508 crossref_primary_10_1111_cobi_12509 crossref_primary_10_1186_s41936_021_00221_2 crossref_primary_10_1002_fee_2188 crossref_primary_10_1080_17550874_2017_1302997 crossref_primary_10_1002_ecm_1566 crossref_primary_10_1016_j_tree_2020_10_018 crossref_primary_10_1139_cjfr_2020_0539 crossref_primary_10_1111_cobi_12504 crossref_primary_10_1111_cobi_12505 crossref_primary_10_7717_peerj_3479 crossref_primary_10_1007_s11252_018_0777_3 crossref_primary_10_1002_ecs2_2844 crossref_primary_10_1111_nph_15565 crossref_primary_10_1002_joc_4413 crossref_primary_10_1016_j_rama_2023_10_006 crossref_primary_10_1111_nyas_13597 crossref_primary_10_3389_ffgc_2022_946728 crossref_primary_10_1002_fee_2204 crossref_primary_10_1002_fee_2207 crossref_primary_10_1007_s10750_012_1371_y crossref_primary_10_1111_ecog_05973 crossref_primary_10_1007_s10530_016_1334_8 crossref_primary_10_1016_j_jag_2016_11_005 crossref_primary_10_1111_nph_12059 crossref_primary_10_1016_j_foreco_2014_05_030 crossref_primary_10_3120_0024_9637_60_3_193 crossref_primary_10_1016_j_scitotenv_2024_170749 crossref_primary_10_3390_f7030054 crossref_primary_10_1111_geb_13277 crossref_primary_10_1002_ecs2_3820 crossref_primary_10_1016_j_envexpbot_2019_103886 crossref_primary_10_1111_geb_13151 crossref_primary_10_1111_geb_13272 crossref_primary_10_1659_MRD_JOURNAL_D_16_00028_1 crossref_primary_10_1007_s10980_021_01325_4 crossref_primary_10_1111_gcb_13942 crossref_primary_10_1016_j_agrformet_2023_109828 crossref_primary_10_1002_joc_3573 crossref_primary_10_1656_045_028_s1106 crossref_primary_10_1002_eap_2468 crossref_primary_10_1016_j_ecolmodel_2016_07_018 crossref_primary_10_1371_journal_pone_0022873 crossref_primary_10_1007_s00704_021_03712_y crossref_primary_10_1016_j_jinsphys_2025_104866 crossref_primary_10_1016_j_jtbi_2021_110940 crossref_primary_10_1016_j_sajb_2021_04_024 crossref_primary_10_1111_jvs_12474 crossref_primary_10_1007_s41745_021_00237_1 crossref_primary_10_1093_icesjms_fsx124 crossref_primary_10_1111_jvs_12597 crossref_primary_10_1038_s41598_017_17105_7 crossref_primary_10_1111_jbi_13057 crossref_primary_10_1016_j_biocon_2023_110352 crossref_primary_10_1139_cjfr_2018_0284 crossref_primary_10_1007_s00484_021_02226_6 crossref_primary_10_1016_j_envexpbot_2019_103899 crossref_primary_10_1126_science_1247579 crossref_primary_10_1002_aps3_1237 crossref_primary_10_1525_elementa_2021_00084 crossref_primary_10_3390_su12072671 crossref_primary_10_1002_ecs2_1632 crossref_primary_10_3389_fevo_2020_613738 crossref_primary_10_1016_j_ecolmodel_2015_06_023 crossref_primary_10_1016_j_foreco_2014_10_038 crossref_primary_10_1016_j_foreco_2025_122993 crossref_primary_10_1111_eva_12440 crossref_primary_10_1016_j_ppees_2024_125792 crossref_primary_10_1111_gcb_12883 crossref_primary_10_1111_gcb_12642 crossref_primary_10_1111_j_1095_8312_2011_01819_x crossref_primary_10_1186_s13071_019_3744_9 crossref_primary_10_1111_1365_2745_13527 crossref_primary_10_1002_joc_7700 crossref_primary_10_1016_j_agrformet_2021_108741 crossref_primary_10_1016_j_biocon_2020_108759 crossref_primary_10_1007_s10526_014_9622_7 crossref_primary_10_1007_s10661_022_10530_w crossref_primary_10_1111_mec_17593 crossref_primary_10_1007_s10584_020_02801_7 crossref_primary_10_1007_s10021_022_00762_9 crossref_primary_10_1073_pnas_1602817113 crossref_primary_10_1016_j_ecolmodel_2015_06_028 crossref_primary_10_1080_03235408_2019_1580177 crossref_primary_10_1080_2150704X_2015_1088671 crossref_primary_10_1073_pnas_1403053111 crossref_primary_10_1088_1748_9326_ad11bf crossref_primary_10_3389_ffgc_2020_00017 crossref_primary_10_1111_gcb_12515 crossref_primary_10_1016_j_foreco_2023_121190 crossref_primary_10_1111_aec_12184 crossref_primary_10_1016_j_gecadv_2025_100017 crossref_primary_10_1002_ecy_3717 crossref_primary_10_1016_j_flora_2022_152034 crossref_primary_10_1111_1365_2745_12426 crossref_primary_10_1016_j_agrformet_2017_12_252 crossref_primary_10_3390_rs14174227 crossref_primary_10_5194_tc_18_5803_2024 crossref_primary_10_1111_acv_12836 crossref_primary_10_1111_1365_2745_13750 crossref_primary_10_1016_j_biocon_2023_110132 crossref_primary_10_3390_f6010001 crossref_primary_10_1111_1440_1703_12227 crossref_primary_10_1002_ecs2_1610 crossref_primary_10_1016_j_apgeog_2023_102953 crossref_primary_10_1016_j_agrformet_2014_09_026 crossref_primary_10_1016_j_chemgeo_2024_122158 crossref_primary_10_1016_j_rse_2022_113427 crossref_primary_10_1890_140055 crossref_primary_10_1016_j_agrformet_2021_108520 crossref_primary_10_1029_2023GL105879 crossref_primary_10_1038_s43247_021_00326_0 crossref_primary_10_1007_s10531_016_1071_4 crossref_primary_10_1111_jbi_12298 crossref_primary_10_1080_17550874_2022_2143731 crossref_primary_10_1002_ajb2_1042 crossref_primary_10_1111_ddi_12917 crossref_primary_10_1038_s41467_024_49181_5 crossref_primary_10_1186_s42408_025_00381_4 crossref_primary_10_1007_s00484_022_02276_4 crossref_primary_10_1111_brv_12247 crossref_primary_10_1111_brv_12130 crossref_primary_10_1111_j_1365_2486_2012_02729_x crossref_primary_10_1111_j_1365_2486_2012_02661_x crossref_primary_10_1016_j_biocon_2017_06_019 crossref_primary_10_1016_j_scitotenv_2023_167091 crossref_primary_10_1111_aec_12163 crossref_primary_10_1007_s11284_016_1429_9 crossref_primary_10_1002_eap_1575 crossref_primary_10_1371_journal_pone_0126918 crossref_primary_10_1007_s13127_014_0181_7 crossref_primary_10_1111_njb_04062 crossref_primary_10_1111_nyas_12172 crossref_primary_10_3390_f7040077 crossref_primary_10_1088_1748_9326_11_5_054023 crossref_primary_10_1016_j_biocon_2016_06_031 crossref_primary_10_1016_j_scitotenv_2023_161789 crossref_primary_10_1016_j_foreco_2017_07_011 crossref_primary_10_1111_geb_13061 crossref_primary_10_1186_s40665_018_0039_x crossref_primary_10_1111_ecog_02494 crossref_primary_10_1016_j_eiar_2025_108091 crossref_primary_10_1080_04353676_2016_1256746 crossref_primary_10_1016_j_foreco_2020_118658 crossref_primary_10_1038_s41598_019_38720_6 crossref_primary_10_1890_ES14_00296_1 crossref_primary_10_1016_j_dendro_2023_126145 crossref_primary_10_1038_s41598_019_55989_9 crossref_primary_10_1016_j_scitotenv_2024_171741 crossref_primary_10_1007_s10531_016_1094_x crossref_primary_10_1016_j_quascirev_2024_108650 crossref_primary_10_1111_j_1469_8137_2012_04170_x crossref_primary_10_1890_140275 crossref_primary_10_1016_j_biocon_2017_06_006 crossref_primary_10_1111_j_1365_2486_2011_02630_x crossref_primary_10_1016_j_foreco_2025_122839 crossref_primary_10_1890_ES13_00340_1 crossref_primary_10_1007_s10722_021_01282_6 crossref_primary_10_1016_j_agrformet_2021_108667 crossref_primary_10_1073_pnas_2503670122 crossref_primary_10_1007_s10980_019_00924_6 crossref_primary_10_1111_evo_14460 crossref_primary_10_1016_j_jenvman_2025_127067 crossref_primary_10_1002_ece3_71629 crossref_primary_10_1016_j_jaa_2016_08_004 crossref_primary_10_1016_j_agee_2019_04_035 crossref_primary_10_1007_s10531_019_01896_4 crossref_primary_10_1016_j_actao_2016_08_002 crossref_primary_10_1002_ece3_11126 crossref_primary_10_1007_s10980_016_0369_7 crossref_primary_10_1080_14888386_2015_1117022 crossref_primary_10_1016_j_quascirev_2014_05_026 crossref_primary_10_1016_j_catena_2020_104626 crossref_primary_10_1111_j_1365_2699_2012_02766_x crossref_primary_10_3390_d12060210 crossref_primary_10_1002_joc_5854 crossref_primary_10_1093_beheco_arab154 crossref_primary_10_1371_journal_pone_0220927 crossref_primary_10_1080_15230430_2017_1415624 crossref_primary_10_1016_j_agrformet_2021_108432 crossref_primary_10_1111_aec_12146 crossref_primary_10_15835_nbha49112218 crossref_primary_10_1016_j_agrformet_2017_05_019 crossref_primary_10_1890_11_1479_1 crossref_primary_10_1111_mec_70043 crossref_primary_10_1007_s00035_022_00283_0 crossref_primary_10_1016_j_baae_2024_04_003 crossref_primary_10_3390_plants12061248 crossref_primary_10_1111_jbi_13596 crossref_primary_10_1186_s42408_024_00264_0 crossref_primary_10_1016_j_biocon_2016_05_028 crossref_primary_10_4000_geomorphologie_14564 crossref_primary_10_1073_pnas_1311190110 crossref_primary_10_1371_journal_pone_0205677 |
| Cites_doi | 10.1016/S0168-1923(98)00076-8 10.2307/1313224 10.1111/j.1365-2699.2009.02268.x 10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2 10.1016/j.ecolmodel.2005.09.006 10.1016/j.tree.2005.11.022 10.2307/1941646 10.1007/978-3-642-18967-8_26 10.1002/joc.2007 10.5194/cp-3-109-2007 10.1029/2004JD005047 10.1098/rstb.2002.1074 10.1175/JCLI3321.1 10.1002/1097-0088(200010)20:12<1471::AID-JOC554>3.0.CO;2-6 10.1111/j.1365-2486.2008.01762.x 10.1007/BF02573952 10.1017/S0094837300026932 10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2 10.1111/j.1365-2699.2007.01861.x 10.1038/35016000 10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2 10.1023/A:1008183331604 10.1016/j.agrformet.2004.06.006 10.1016/j.jhydrol.2007.02.018 10.1002/joc.1276 10.1007/BF00865530 10.1080/02723646.1994.10642509 10.1175/1520-0450(2003)042<1255:ANSOIB>2.0.CO;2 10.1016/S0168-1923(99)00087-8 10.1175/2007JAMC1565.1 10.2307/2404314 10.1029/2008G 10.1016/S0378-1127(00)00287-5 10.1111/j.1365-2699.2008.02023.x 10.1016/S0022-1694(00)00413-3 10.1016/S0169-5347(01)02338-2 10.1046/j.1461-0248.2000.00165.x 10.1579/0044-7447-29.7.371 10.1111/j.1365-2745.2008.01422.x 10.1016/j.quascirev.2004.06.002 10.4324/9780203416020 10.1023/A:1007933813251 10.1002/joc.740 10.1098/rsbl.2008.0476 10.1111/j.1461-0248.2009.01355.x 10.1111/j.1365-2486.2008.01766.x 10.1016/j.agrformet.2009.06.006 10.1890/04-1036 10.1029/2008JD009879 10.1002/joc.1322 10.1111/j.1365-2699.2008.02027.x 10.1046/j.1469-8137.2001.00057.x 10.1006/qres.2002.2374 10.1038/369448a0 10.1086/285186 10.1175/2008JAMC2084.1 10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2 10.1080/17550870802349146 10.1038/20859 10.1029/2005JD006150 10.1016/j.tree.2008.06.010 10.1175/1520-0450(1998)037<1547:TFADOI>2.0.CO;2 10.1111/j.1523-1739.2009.01409.x 10.1126/science.292.5517.673 10.1046/j.1523-1739.2001.015003578.x 10.1111/j.1469-8137.2009.03147.x 10.1111/j.1420-9101.2004.00734.x 10.1046/j.1365-2699.1998.00233.x 10.1111/j.1365-2486.2007.01527.x 10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2 10.1073/pnas.0606292104 10.1126/science.1156831 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2 10.1029/2006JD007561 10.1111/j.1472-4642.2010.00636.x 10.1080/0028825X.1992.10412909 10.1016/j.jhydrol.2006.03.027 10.1016/S0168-1923(02)00196-X |
| ContentType | Journal Article |
| Copyright | 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
| DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TG 7U6 KL. SOI |
| DOI | 10.1111/j.1365-2486.2010.02263.x |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences Ecology |
| EISSN | 1365-2486 |
| EndPage | 1035 |
| ExternalDocumentID | 2229250891 23757714 10_1111_j_1365_2486_2010_02263_x GCB2263 ark_67375_WNG_9FZQPGCZ_L US201301931388 |
| Genre | article |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TG 7U6 KL. SOI |
| ID | FETCH-LOGICAL-c5633-d8e220237b78fbffd4f209c7bcc7e4eb40bc05fa77665f95ba2d79bdb637a0843 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 784 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285878000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Mon Oct 06 18:20:33 EDT 2025 Fri Jul 11 07:48:37 EDT 2025 Fri Jul 25 11:00:54 EDT 2025 Mon Jul 21 09:18:13 EDT 2025 Sat Nov 29 06:02:15 EST 2025 Tue Nov 18 20:31:51 EST 2025 Wed Aug 20 07:27:19 EDT 2025 Tue Nov 11 03:32:05 EST 2025 Thu Apr 03 09:45:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | species distributions Climate Landscape Physiography refugia Cryptic Dynamical climatology Climatic condition cryptic refugia topoclimate Climate change Spatial distribution Geographic distribution Mountain Topography Paleoclimate mountain climate landscape physiography Distribution range microrefugia |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5633-d8e220237b78fbffd4f209c7bcc7e4eb40bc05fa77665f95ba2d79bdb637a0843 |
| Notes | http://dx.doi.org/10.1111/j.1365-2486.2010.02263.x istex:D3EFD5A4569AB7BC4E719B5160F8F19E057893A7 ark:/67375/WNG-9FZQPGCZ-L ArticleID:GCB2263 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 822240797 |
| PQPubID | 30327 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_853485676 proquest_miscellaneous_1663609179 proquest_journals_822240797 pascalfrancis_primary_23757714 crossref_primary_10_1111_j_1365_2486_2010_02263_x crossref_citationtrail_10_1111_j_1365_2486_2010_02263_x wiley_primary_10_1111_j_1365_2486_2010_02263_x_GCB2263 istex_primary_ark_67375_WNG_9FZQPGCZ_L fao_agris_US201301931388 |
| PublicationCentury | 2000 |
| PublicationDate | February 2011 |
| PublicationDateYYYYMMDD | 2011-02-01 |
| PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature, 369, 369. Davis FW, Dozier J (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology, 4, 69-80. Randin CF, Engler R, Normand S et al. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569. Chung U, Seo HH, Hwang KH, Hwang BS, Yun JI (2002) Minimum temperature mapping in complex terrain based on calculation of cold air accumulation. Korean Journal of Agriculture and Forest Meteorology, 4, 133-140. Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany, 30, 303-314. Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agricultural and Forest Meteorology, 102, 51-67. Pepin L, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters, 35, L14701, doi: DOI: 10.1029/2008G. Gong L, Xu C, Chen D, Halldin S, Chen YD (2006) Sensitivity of the penman-monteith reference evapotranspiration to key climatic variables in the Changjiang basin. Journal of Hydrology, 329, 620-629. Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management, 135, 289-301. Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography, 35, 464-482. Brown DG (1994) Comparison of vegetation-topography relationships at the Alpine treeline ecotone. Physical Geography, 15, 125-145. Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology, 48, 1033-1049. Lookingbill TR, Urban DL (2003) Spatial estimation of air temparture differences for landscape scale studies in montane environments. Agricultural and Forest Meteorology, 114, 141-151. Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. Journal of Geophysical Research, 112, D11124, doi: DOI: 10.1029/2006JD007561. Svenning J, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modeling. Journal of Ecology, 96, 1117-1127. Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems: upward shifting of mountain plants. World Resource Review, 8, 382-390. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292, 673-679. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608-613. Muller H, Whiteman DC (1988) Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. Journal of Applied Meteorology, 27, 188-194. Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change. Conservation Biology, 24, 51-62. Geiger R (1965) The Climate Near the Ground. Harvard University Press, Cambridge, USA. Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656-667. Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration. Journal of Hydrology, 243, 192-204. Lutz JA, Vanwagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemit National Park. Journal of Biogeography, 37, 936-950. Daly C, Conklin DR, Unsworth MH (2009) Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology, doi: DOI: 10.1002/joc.2007. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913. Whiteman DC (1982) Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270-289. Dettinger MD, Cayan D (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623. Pearson RG (2006) Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111-113. Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3, 457-463. Chung U, Yun JI (2004) Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain. Agricultural and Forest Meteorology, 126, 129-139. Delcourt HR (2002) Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World. The MacDonald and Woodward Publishing Company, Blacksburg, VA. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Iijima Y, Shinoda M (2000) Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. International Journal of Climatology, 20, 1471-1483. Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110, D03104, doi: DOI: 10.1029/2004JD005047. Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855-870. Lenoir J, Gegout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771. Lundquist JD, Pepin NC, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal of Geophysical Research, 113, D22107, doi: DOI: 10.1029/2008JD009879. Barry RG (1992) Mountain Weather and Climate. Routledge, London. Rull V (2009) Microrefugia. Journal of Biogeography, 36, 481-484. Barron E, Pollard D (2002) High resolution climate simulations of oxygen isotope stage 3 in Europe. Quaternary Research, 58, 296-309. Luckman B, Kavanagh T (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio, 29, 371-380. Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology, 15, 578-590. Stewart IT, Cayan D, Dettinger MD (2004) Changes toward earlier streamflow timing across western North America. Journal of Climate, 18, 1136-155. Körner C, Ohsawa M (2005) Mountain Systems. Ecosystems and Human Well-Being I. Current State and Trends. Millennium Ecosystem Assessment, pp. 681-716. Island Press, Washington, DC. Birks HJB, Willis KJ (2008) Alpine trees and refugia in Europe. Plant Ecology and Diversity, 1, 147-160. Dobrowski SZ, Greenberg JA, Ramirez CM, Ustin SL (2006) Improving image derived vegetation maps with regression based distribution modeling. Ecological Modeling, 192, 126-142. Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T, Williams JW, Hansen BCS (2000) Vegetation and environment in Eastern North America during the last glacial maximum. Quaternary Science Reviews, 19, 489-508. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088-2098. Coughlan JC, Running SW (1997) Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain. Landscape Ecology, 12, 119-136. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049. Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytologist, 185, 1038-1049. Colette A, Chow FK, Street RL (2003) A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys. Journal of Applied Meteorology, 42, 1255-1272. Pepin NC, Norris JR (2005) An examination of the differences between surface and free air temperatur trend at high elevation sites: relationships with cloud cover, snow cover, and wind. Journal of Geophysical Research, 110, D24112, doi: DOI: 10.1029/2005JD006150. Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography, 36, 476-480. Mcvicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196-220. Tenow O, Nilssen A (1990) Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia. Journal of applied Ecology, 27, 723-744. Grotch SL, Maccracken MC (1991) The use of general circulation models to predict climatic change. Journal of Climate, 4, 283-303. Bolstad PV, Swift L, Collins F, Regniere J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agricultural and Forest Meteorology, 91, 161-176. Daly C (2006) Guidelines for assesing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707-721. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Clark JS, Fastie CL, Hurtt G et al. (1998) Reids paradox of rapid plant migration. Bioscience, 48, 13-24. Dobrowski SZ, Abatzoglou J, Greenberg J 1998; 48 2007; 104 2002; 58 2010; 16 2004; 126 2000; 135 2000; 3 2004; 23 2002; 357 2010; 185 2008; 35 2008; 1 2003; 114 2009; 48 2005; 25 2001; 149 2009; 12 2006; 329 2007; 338 2000; 19 2010; 24 2000; 15 2001; 292 2006; 21 2000; 405 1982; 21 1997; 12 2006; 26 1987 2008; 23 2001; 15 1998; 91 2001; 16 2007; 3 2008; 113 2003; 42 1996; 8 2009; 15 1991; 4 2001; 243 2004; 43 2000; 29 2010; 37 2005; 110 2000; 26 2000; 20 2009 2008; 14 2007 2005; 86 2002; 4 1994; 49 2006; 192 2005 1992 2003 2008; 96 1991 2002 2008; 320 1995; 8 1998; 25 1953; 2 1992; 30 1998; 37 2009; 36 2007; 112 1994; 369 2000; 102 2004; 18 1990; 27 1988; 69 1986; 25 1988; 27 2002; 22 2008; 47 1965 1999; 399 1994; 15 2009; 5 2009; 149 1990; 4 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Delcourt HR (e_1_2_8_26_1) 2002 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Thornthwaite CW (e_1_2_8_80_1) 1953; 2 e_1_2_8_70_1 Körner C (e_1_2_8_46_1) 2005 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Geiger R (e_1_2_8_32_1) 1965 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 Pauli H (e_1_2_8_62_1) 1996; 8 Brown DG (e_1_2_8_14_1) 1991 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_90_1 IPCC (e_1_2_8_43_1) 2007 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 Chung U (e_1_2_8_17_1) 2002; 4 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – reference: Grotch SL, Maccracken MC (1991) The use of general circulation models to predict climatic change. Journal of Climate, 4, 283-303. – reference: Dettinger MD, Cayan D (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623. – reference: McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86, 2088-2098. – reference: Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608-613. – reference: Mcvicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196-220. – reference: Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biology Letters, 5, 39-43. – reference: Dobrowski SZ, Abatzoglou J, Greenberg JA, Schladow G (2009) How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agricultural and Forest Meteorology, 149, 1751-1758. – reference: Davis FW, Dozier J (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology, 4, 69-80. – reference: IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change. Cambridge University Press, Cambridge, UK. – reference: Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography, 35, 464-482. – reference: Whiteman DC, Pospichal B, Eisenbach S et al. (2004) Inversion breakup in small Rocky Mountain and Alpine basins. Journal of Applied Meteorology, 43, 1069-1082. – reference: Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. Journal of Geophysical Research, 112, D11124, doi: DOI: 10.1029/2006JD007561. – reference: Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems: upward shifting of mountain plants. World Resource Review, 8, 382-390. – reference: Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 110, D03104, doi: DOI: 10.1029/2004JD005047. – reference: Petit JR, Jouzel J, Raynaud D et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antartica. Nature, 399, 429-436. – reference: Lenoir J, Gegout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771. – reference: Muller H, Whiteman DC (1988) Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. Journal of Applied Meteorology, 27, 188-194. – reference: Lutz JA, Vanwagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemit National Park. Journal of Biogeography, 37, 936-950. – reference: Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany, 30, 303-314. – reference: Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology, 48, 1033-1049. – reference: Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049. – reference: Thornthwaite CW (1953) A charter for climatology. World Meteorological Organization Bulletin, 2, 40-46. – reference: Pepin L, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters, 35, L14701, doi: DOI: 10.1029/2008G. – reference: Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature, 405, 907-913. – reference: Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of National Academy of Science, 104, 5738-5742. – reference: Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology, 15, 578-590. – reference: Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agricultural and Forest Meteorology, 102, 51-67. – reference: Coughlan JC, Running SW (1997) Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain. Landscape Ecology, 12, 119-136. – reference: Pepin NC, Losleben M (2002) Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. International Journal of Climatology, 22, 311-329. – reference: Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G (2001) Tansley review no 123: tree and forest functioning in response to global warming. New Phytologist, 149, 369-400. – reference: Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change. Conservation Biology, 24, 51-62. – reference: Delcourt HR (2002) Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World. The MacDonald and Woodward Publishing Company, Blacksburg, VA. – reference: Körner C, Ohsawa M (2005) Mountain Systems. Ecosystems and Human Well-Being I. Current State and Trends. Millennium Ecosystem Assessment, pp. 681-716. Island Press, Washington, DC. – reference: Colette A, Chow FK, Street RL (2003) A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys. Journal of Applied Meteorology, 42, 1255-1272. – reference: Dobrowski SZ, Greenberg JA, Ramirez CM, Ustin SL (2006) Improving image derived vegetation maps with regression based distribution modeling. Ecological Modeling, 192, 126-142. – reference: Daly C, Conklin DR, Unsworth MH (2009) Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology, doi: DOI: 10.1002/joc.2007. – reference: Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656-667. – reference: Gong L, Xu C, Chen D, Halldin S, Chen YD (2006) Sensitivity of the penman-monteith reference evapotranspiration to key climatic variables in the Changjiang basin. Journal of Hydrology, 329, 620-629. – reference: Willis KJ, Van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the last glaciation. Quaternary Science Reviews, 23, 2369-2387. – reference: Birks HJB, Willis KJ (2008) Alpine trees and refugia in Europe. Plant Ecology and Diversity, 1, 147-160. – reference: Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855-870. – reference: Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography, 36, 476-480. – reference: Luckman B, Kavanagh T (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio, 29, 371-380. – reference: Anquetin S, Guilbaud C, Chollet JP (1998) The formation and destruction of inversion layers within a deep valley. Journal of Applied Meteorology, 37, 1547-1560. – reference: Barron E, Pollard D (2002) High resolution climate simulations of oxygen isotope stage 3 in Europe. Quaternary Research, 58, 296-309. – reference: Daly C (2006) Guidelines for assesing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707-721. – reference: Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature, 369, 369. – reference: Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology, 15, 603-620. – reference: Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society Biological Sciences, 357, 849-862. – reference: Blandford TR, Humes KS, Harshburger BJ, Moore BC, Walden VP (2008) Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. Journal of Applied Meteorology and Climatology, 47, 249-261. – reference: Lookingbill TR, Urban DL (2003) Spatial estimation of air temparture differences for landscape scale studies in montane environments. Agricultural and Forest Meteorology, 114, 141-151. – reference: Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge. – reference: Iijima Y, Shinoda M (2000) Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. International Journal of Climatology, 20, 1471-1483. – reference: Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology, 26, 194-220. – reference: Tenow O, Nilssen A (1990) Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia. Journal of applied Ecology, 27, 723-744. – reference: Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate change in Switzerland. Theoretical and Applied Climatology, 49, 135-159. – reference: Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytologist, 185, 1038-1049. – reference: Rull V (2009) Microrefugia. Journal of Biogeography, 36, 481-484. – reference: Svenning J, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modeling. Journal of Ecology, 96, 1117-1127. – reference: Lundquist JD, Pepin NC, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal of Geophysical Research, 113, D22107, doi: DOI: 10.1029/2008JD009879. – reference: Whiteman DC (1982) Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270-289. – reference: Brown DG (1991) Topoclimatic Models of an Alpine Environment Using Digital Elevation Models within a GIS, pp. 835-844. GIS/LIS, Atlanta, GA. – reference: Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for euphydryas editha bayensis. Ecology, 69, 1486-1496. – reference: Barry RG (1992) Mountain Weather and Climate. Routledge, London. – reference: Bolstad PV, Swift L, Collins F, Regniere J (1998) Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agricultural and Forest Meteorology, 91, 161-176. – reference: Provan J, Bennet KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23, 564-571. – reference: Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292, 673-679. – reference: Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3, 457-463. – reference: Chung U, Yun JI (2004) Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain. Agricultural and Forest Meteorology, 126, 129-139. – reference: Clark JS, Fastie CL, Hurtt G et al. (1998) Reids paradox of rapid plant migration. Bioscience, 48, 13-24. – reference: Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration. Journal of Hydrology, 243, 192-204. – reference: Geiger R (1965) The Climate Near the Ground. Harvard University Press, Cambridge, USA. – reference: Pepin NC, Norris JR (2005) An examination of the differences between surface and free air temperatur trend at high elevation sites: relationships with cloud cover, snow cover, and wind. Journal of Geophysical Research, 110, D24112, doi: DOI: 10.1029/2005JD006150. – reference: Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management, 135, 289-301. – reference: Alba-Sanchez F, Lopez-Saez JA, Benito-De Pando B, Linares JC, Nieto-Lugilde D, Lopez-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Diversity and Distributions, 16, 214-228. – reference: Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T, Williams JW, Hansen BCS (2000) Vegetation and environment in Eastern North America during the last glacial maximum. Quaternary Science Reviews, 19, 489-508. – reference: Loehle C (2007) Predicting Pleistocene climate from vegetation in North America. Climate of the Past, 3, 109-118. – reference: Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biology, 14, 483-494. – reference: Randin CF, Engler R, Normand S et al. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569. – reference: Chung U, Seo HH, Hwang KH, Hwang BS, Yun JI (2002) Minimum temperature mapping in complex terrain based on calculation of cold air accumulation. Korean Journal of Agriculture and Forest Meteorology, 4, 133-140. – reference: Pearson RG (2006) Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111-113. – reference: Stewart IT, Cayan D, Dettinger MD (2004) Changes toward earlier streamflow timing across western North America. Journal of Climate, 18, 1136-155. – reference: Brown DG (1994) Comparison of vegetation-topography relationships at the Alpine treeline ecotone. Physical Geography, 15, 125-145. – reference: Mccutchan MH, Fox DG (1986) Effect of elevation and aspect on wind, temperature, and humidity. Journal of Applied Meteorology, 25, 1996-2013. – volume: 15 start-page: 656 year: 2009 end-page: 667 article-title: Climate change at the landscape scale publication-title: Global Change Biology – volume: 149 start-page: 369 year: 2001 end-page: 400 article-title: Tansley review no 123 publication-title: New Phytologist – volume: 69 start-page: 1486 year: 1988 end-page: 1496 article-title: Sun, slope, and butterflies publication-title: Ecology – volume: 37 start-page: 1547 year: 1998 end-page: 1560 article-title: The formation and destruction of inversion layers within a deep valley publication-title: Journal of Applied Meteorology – volume: 15 start-page: 1557 year: 2009 end-page: 1569 article-title: Climate change and plant distribution publication-title: Global Change Biology – volume: 24 start-page: 51 year: 2010 end-page: 62 article-title: Matching the multiple scales of conservation with the multiple scales of climate change publication-title: Conservation Biology – volume: 16 start-page: 608 year: 2001 end-page: 613 article-title: Cryptic northern refugia and the origins of the modern biota publication-title: Trends in Ecology and Evolution – volume: 86 start-page: 2088 year: 2005 end-page: 2098 article-title: Molecular indicators of tree migration capacity under rapid climate change publication-title: Ecology – volume: 27 start-page: 723 year: 1990 end-page: 744 article-title: Egg cold hardiness and topoclimatic limitations to outbreaks of Epirrita autumnata in Northern fennoscandia publication-title: Journal of applied Ecology – volume: 8 start-page: 382 year: 1996 end-page: 390 article-title: Effects of climate change on mountain ecosystems publication-title: World Resource Review – volume: 26 start-page: 707 year: 2006 end-page: 721 article-title: Guidelines for assesing the suitability of spatial climate data sets publication-title: International Journal of Climatology – volume: 369 start-page: 369 year: 1994 article-title: Climate effects on mountain plants publication-title: Nature – volume: 22 start-page: 311 year: 2002 end-page: 329 article-title: Climate change in the Colorado Rocky Mountains publication-title: International Journal of Climatology – volume: 405 start-page: 907 year: 2000 end-page: 913 article-title: The genetic legacy of the quaternary ice ages publication-title: Nature – volume: 2 start-page: 40 year: 1953 end-page: 46 article-title: A charter for climatology publication-title: World Meteorological Organization Bulletin – start-page: 681 year: 2005 end-page: 716 – volume: 48 start-page: 1033 year: 2009 end-page: 1049 article-title: Downscaling climate over complex terrain publication-title: Journal of Applied Meteorology and Climatology – volume: 23 start-page: 564 year: 2008 end-page: 571 article-title: Phylogeographic insights into cryptic glacial refugia publication-title: Trends in Ecology and Evolution – volume: 12 start-page: 119 year: 1997 end-page: 136 article-title: Regional ecosystem simulation publication-title: Landscape Ecology – year: 2009 article-title: Local atmospheric decoupling in complex topography alters climate change impacts publication-title: International Journal of Climatology – volume: 35 year: 2008 article-title: Temperature trends at high elevations publication-title: Geophysical Research Letters – volume: 58 start-page: 296 year: 2002 end-page: 309 article-title: High resolution climate simulations of oxygen isotope stage 3 in Europe publication-title: Quaternary Research – volume: 3 start-page: 109 year: 2007 end-page: 118 article-title: Predicting Pleistocene climate from vegetation in North America publication-title: Climate of the Past – volume: 4 start-page: 69 year: 1990 end-page: 80 article-title: Modeling vegetation pattern using digital terrain data publication-title: Landscape Ecology – volume: 21 start-page: 111 year: 2006 end-page: 113 article-title: Climate change and the migration capacity of species publication-title: Trends in Ecology and Evolution – volume: 27 start-page: 188 year: 1988 end-page: 194 article-title: Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS publication-title: Journal of Applied Meteorology – volume: 5 start-page: 39 year: 2009 end-page: 43 article-title: Scale effects in species distribution models publication-title: Biology Letters – volume: 23 start-page: 2369 year: 2004 end-page: 2387 article-title: Trees or no trees? The environments of central and eastern Europe during the last glaciation publication-title: Quaternary Science Reviews – volume: 114 start-page: 141 year: 2003 end-page: 151 article-title: Spatial estimation of air temparture differences for landscape scale studies in montane environments publication-title: Agricultural and Forest Meteorology – start-page: 835 year: 1991 end-page: 844 – year: 1965 – volume: 42 start-page: 1255 year: 2003 end-page: 1272 article-title: A numerical study of inversion layer breakup and the effects of topographic shading in idealized valleys publication-title: Journal of Applied Meteorology – volume: 14 start-page: 483 year: 2008 end-page: 494 article-title: Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models publication-title: Global Change Biology – volume: 43 start-page: 1069 year: 2004 end-page: 1082 article-title: Inversion breakup in small Rocky Mountain and Alpine basins publication-title: Journal of Applied Meteorology – volume: 19 start-page: 489 year: 2000 end-page: 508 article-title: Vegetation and environment in Eastern North America during the last glacial maximum publication-title: Quaternary Science Reviews – volume: 48 start-page: 13 year: 1998 end-page: 24 article-title: Reids paradox of rapid plant migration publication-title: Bioscience – volume: 20 start-page: 1471 year: 2000 end-page: 1483 article-title: Seasonal changes in the cold‐air pool formation in a subalpine hollow, central Japan publication-title: International Journal of Climatology – volume: 110 start-page: D03104 year: 2005 article-title: A global comparison of surface and free‐air temperatures at high elevations publication-title: Journal of Geophysical Research – volume: 185 start-page: 1038 year: 2010 end-page: 1049 article-title: An experimental test of well‐described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers publication-title: New Phytologist – volume: 329 start-page: 620 year: 2006 end-page: 629 article-title: Sensitivity of the penman‐monteith reference evapotranspiration to key climatic variables in the Changjiang basin publication-title: Journal of Hydrology – volume: 399 start-page: 429 year: 1999 end-page: 436 article-title: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antartica publication-title: Nature – volume: 47 start-page: 249 year: 2008 end-page: 261 article-title: Seasonal and synoptic variations in near‐surface air temperature lapse rates in a mountainous basin publication-title: Journal of Applied Meteorology and Climatology – volume: 91 start-page: 161 year: 1998 end-page: 176 article-title: Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains publication-title: Agricultural and Forest Meteorology – volume: 104 start-page: 5738 year: 2007 end-page: 5742 article-title: Projected distributions of novel and disappearing climates by 2100 AD publication-title: Proceedings of National Academy of Science – volume: 18 start-page: 1136 year: 2004 end-page: 155 article-title: Changes toward earlier streamflow timing across western North America publication-title: Journal of Climate – volume: 135 start-page: 289 year: 2000 end-page: 301 article-title: Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality publication-title: Forest Ecology and Management – volume: 25 start-page: 1996 year: 1986 end-page: 2013 article-title: Effect of elevation and aspect on wind, temperature, and humidity publication-title: Journal of Applied Meteorology – volume: 35 start-page: 464 year: 2008 end-page: 482 article-title: Species persistence in northerly glacial refugia of Europe publication-title: Journal of Biogeography – year: 2007 – volume: 102 start-page: 51 year: 2000 end-page: 67 article-title: A frost assessment method for mountainous areas publication-title: Agricultural and Forest Meteorology – year: 1987 – year: 2003 – volume: 4 start-page: 133 year: 2002 end-page: 140 article-title: Minimum temperature mapping in complex terrain based on calculation of cold air accumulation publication-title: Korean Journal of Agriculture and Forest Meteorology – volume: 357 start-page: 849 year: 2002 end-page: 862 article-title: Insects and low temperatures publication-title: Philosophical Transactions of the Royal Society Biological Sciences – volume: 30 start-page: 303 year: 1992 end-page: 314 article-title: Evidence for rising upper limits of four native New Zealand forest trees publication-title: New Zealand Journal of Botany – volume: 338 start-page: 196 year: 2007 end-page: 220 article-title: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences publication-title: Journal of Hydrology – year: 1992 – volume: 243 start-page: 192 year: 2001 end-page: 204 article-title: Effect of the sampling frequency of meteorological varialbes on the estimation of reference evapotranspiration publication-title: Journal of Hydrology – volume: 15 start-page: 578 year: 2001 end-page: 590 article-title: Beyond Kyoto publication-title: Conservation Biology – volume: 12 start-page: 1040 year: 2009 end-page: 1049 article-title: Are treelines advancing? A global meta‐analysis of treeline response to climate warming publication-title: Ecology Letters – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 110 year: 2005 article-title: An examination of the differences between surface and free air temperatur trend at high elevation sites publication-title: Journal of Geophysical Research – volume: 3 start-page: 457 year: 2000 end-page: 463 article-title: The ecological and evolutionary significance of frost in the context of climate change publication-title: Ecology Letters – volume: 112 year: 2007 article-title: Surface temperature patterns in complex terrain publication-title: Journal of Geophysical Research – volume: 26 start-page: 194 year: 2000 end-page: 220 article-title: Responses of plant populations and communities to environmental changes of the late quaternary publication-title: Paleobiology – volume: 113 year: 2008 article-title: Automated algorithm for mapping regions of cold‐air pooling in complex terrain publication-title: Journal of Geophysical Research – volume: 320 start-page: 1768 year: 2008 end-page: 1771 article-title: A significant upward shift in plant species optimum elevation during the 20th century publication-title: Science – volume: 37 start-page: 936 year: 2010 end-page: 950 article-title: Climatic water deficit, tree species ranges, and climate change in Yosemit National Park publication-title: Journal of Biogeography – volume: 1 start-page: 147 year: 2008 end-page: 160 article-title: Alpine trees and refugia in Europe publication-title: Plant Ecology and Diversity – start-page: 423 year: 2003 end-page: 436 – volume: 126 start-page: 129 year: 2004 end-page: 139 article-title: Solar irradiance corrected spatial interpolation of hourly temperature in complex terrain publication-title: Agricultural and Forest Meteorology – volume: 96 start-page: 1117 year: 2008 end-page: 1127 article-title: Glacial refugia of temperate trees in Europe publication-title: Journal of Ecology – volume: 8 start-page: 606 year: 1995 end-page: 623 article-title: Large‐scale atmospheric forcing of recent trends toward early snowmelt runoff in California publication-title: Journal of Climate – volume: 49 start-page: 135 year: 1994 end-page: 159 article-title: An analysis of regional climate change in Switzerland publication-title: Theoretical and Applied Climatology – year: 2002 – volume: 36 start-page: 476 year: 2009 end-page: 480 article-title: A discussion of different types of glacial refugia used in mountain biogeography and phylogeography publication-title: Journal of Biogeography – volume: 29 start-page: 371 year: 2000 end-page: 380 article-title: Impact of climate fluctuations on mountain environments in the Canadian Rockies publication-title: Ambio – volume: 4 start-page: 283 year: 1991 end-page: 303 article-title: The use of general circulation models to predict climatic change publication-title: Journal of Climate – volume: 15 start-page: 125 year: 1994 end-page: 145 article-title: Comparison of vegetation‐topography relationships at the Alpine treeline ecotone publication-title: Physical Geography – volume: 292 start-page: 673 year: 2001 end-page: 679 article-title: Range shifts and adaptive responses to quaternary climate change publication-title: Science – volume: 16 start-page: 214 year: 2010 end-page: 228 article-title: Past and present potential distribution of the Iberian species publication-title: Diversity and Distributions – volume: 36 start-page: 481 year: 2009 end-page: 484 article-title: Microrefugia publication-title: Journal of Biogeography – volume: 149 start-page: 1751 year: 2009 end-page: 1758 article-title: How much influence does landscape‐scale physiography have on air temperature in a mountain environment? publication-title: Agricultural and Forest Meteorology – volume: 192 start-page: 126 year: 2006 end-page: 142 article-title: Improving image derived vegetation maps with regression based distribution modeling publication-title: Ecological Modeling – volume: 25 start-page: 855 year: 1998 end-page: 870 article-title: Actual evapotranspiration and deficit publication-title: Journal of Biogeography – volume: 15 start-page: 603 year: 2000 end-page: 620 article-title: Forest gradient response in Sierran landscapes publication-title: Landscape Ecology – volume: 21 start-page: 270 year: 1982 end-page: 289 article-title: Breakup of temperature inversions in deep mountain valleys publication-title: Journal of Applied Meteorology – ident: e_1_2_8_13_1 doi: 10.1016/S0168-1923(98)00076-8 – ident: e_1_2_8_19_1 doi: 10.2307/1313224 – ident: e_1_2_8_55_1 doi: 10.1111/j.1365-2699.2009.02268.x – ident: e_1_2_8_85_1 doi: 10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2 – ident: e_1_2_8_29_1 doi: 10.1016/j.ecolmodel.2005.09.006 – ident: e_1_2_8_63_1 doi: 10.1016/j.tree.2005.11.022 – ident: e_1_2_8_84_1 doi: 10.2307/1941646 – ident: e_1_2_8_59_1 doi: 10.1007/978-3-642-18967-8_26 – ident: e_1_2_8_23_1 doi: 10.1002/joc.2007 – ident: e_1_2_8_49_1 doi: 10.5194/cp-3-109-2007 – ident: e_1_2_8_68_1 doi: 10.1029/2004JD005047 – ident: e_1_2_8_5_1 doi: 10.1098/rstb.2002.1074 – ident: e_1_2_8_76_1 doi: 10.1175/JCLI3321.1 – ident: e_1_2_8_41_1 doi: 10.1002/1097-0088(200010)20:12<1471::AID-JOC554>3.0.CO;2-6 – start-page: 681 volume-title: Mountain Systems. Ecosystems and Human Well‐Being I. Current State and Trends. Millennium Ecosystem Assessment year: 2005 ident: e_1_2_8_46_1 – ident: e_1_2_8_4_1 doi: 10.1111/j.1365-2486.2008.01762.x – start-page: 835 volume-title: Topoclimatic Models of an Alpine Environment Using Digital Elevation Models within a GIS year: 1991 ident: e_1_2_8_14_1 – ident: e_1_2_8_66_1 – ident: e_1_2_8_24_1 doi: 10.1007/BF02573952 – ident: e_1_2_8_44_1 doi: 10.1017/S0094837300026932 – ident: e_1_2_8_35_1 doi: 10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2 – ident: e_1_2_8_9_1 doi: 10.1111/j.1365-2699.2007.01861.x – volume: 4 start-page: 133 year: 2002 ident: e_1_2_8_17_1 article-title: Minimum temperature mapping in complex terrain based on calculation of cold air accumulation publication-title: Korean Journal of Agriculture and Forest Meteorology – ident: e_1_2_8_37_1 doi: 10.1038/35016000 – ident: e_1_2_8_56_1 doi: 10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2 – ident: e_1_2_8_81_1 doi: 10.1023/A:1008183331604 – ident: e_1_2_8_18_1 doi: 10.1016/j.agrformet.2004.06.006 – volume-title: The Climate Near the Ground year: 1965 ident: e_1_2_8_32_1 – volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Repor of the Intergovermental Panel on Climate Change year: 2007 ident: e_1_2_8_43_1 – ident: e_1_2_8_58_1 doi: 10.1016/j.jhydrol.2007.02.018 – ident: e_1_2_8_38_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_8_1 doi: 10.1007/BF00865530 – ident: e_1_2_8_15_1 doi: 10.1080/02723646.1994.10642509 – ident: e_1_2_8_20_1 doi: 10.1175/1520-0450(2003)042<1255:ANSOIB>2.0.CO;2 – ident: e_1_2_8_48_1 doi: 10.1016/S0168-1923(99)00087-8 – ident: e_1_2_8_11_1 doi: 10.1175/2007JAMC1565.1 – ident: e_1_2_8_79_1 doi: 10.2307/2404314 – ident: e_1_2_8_64_1 doi: 10.1029/2008G – ident: e_1_2_8_12_1 doi: 10.1016/S0378-1127(00)00287-5 – ident: e_1_2_8_72_1 doi: 10.1111/j.1365-2699.2008.02023.x – ident: e_1_2_8_40_1 doi: 10.1016/S0022-1694(00)00413-3 – ident: e_1_2_8_77_1 doi: 10.1016/S0169-5347(01)02338-2 – ident: e_1_2_8_42_1 doi: 10.1046/j.1461-0248.2000.00165.x – ident: e_1_2_8_51_1 doi: 10.1579/0044-7447-29.7.371 – ident: e_1_2_8_78_1 doi: 10.1111/j.1365-2745.2008.01422.x – volume: 8 start-page: 382 year: 1996 ident: e_1_2_8_62_1 article-title: Effects of climate change on mountain ecosystems publication-title: World Resource Review – ident: e_1_2_8_89_1 doi: 10.1016/j.quascirev.2004.06.002 – ident: e_1_2_8_7_1 doi: 10.4324/9780203416020 – ident: e_1_2_8_21_1 doi: 10.1023/A:1007933813251 – ident: e_1_2_8_65_1 doi: 10.1002/joc.740 – ident: e_1_2_8_74_1 doi: 10.1098/rsbl.2008.0476 – ident: e_1_2_8_36_1 doi: 10.1111/j.1461-0248.2009.01355.x – ident: e_1_2_8_71_1 doi: 10.1111/j.1365-2486.2008.01766.x – ident: e_1_2_8_28_1 doi: 10.1016/j.agrformet.2009.06.006 – ident: e_1_2_8_57_1 doi: 10.1890/04-1036 – ident: e_1_2_8_53_1 doi: 10.1029/2008JD009879 – ident: e_1_2_8_22_1 doi: 10.1002/joc.1322 – ident: e_1_2_8_39_1 doi: 10.1111/j.1365-2699.2008.02027.x – ident: e_1_2_8_73_1 doi: 10.1046/j.1469-8137.2001.00057.x – volume-title: Forests in Peril: Tracking Deciduous Trees from Ice Age Refugia into the Greenhouse World year: 2002 ident: e_1_2_8_26_1 – ident: e_1_2_8_6_1 doi: 10.1006/qres.2002.2374 – ident: e_1_2_8_34_1 doi: 10.1038/369448a0 – ident: e_1_2_8_90_1 doi: 10.1086/285186 – volume: 2 start-page: 40 year: 1953 ident: e_1_2_8_80_1 article-title: A charter for climatology publication-title: World Meteorological Organization Bulletin – ident: e_1_2_8_31_1 doi: 10.1175/2008JAMC2084.1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_86_1 doi: 10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2 – ident: e_1_2_8_10_1 doi: 10.1080/17550870802349146 – ident: e_1_2_8_69_1 doi: 10.1038/20859 – ident: e_1_2_8_67_1 doi: 10.1029/2005JD006150 – ident: e_1_2_8_70_1 doi: 10.1016/j.tree.2008.06.010 – ident: e_1_2_8_3_1 doi: 10.1175/1520-0450(1998)037<1547:TFADOI>2.0.CO;2 – ident: e_1_2_8_87_1 doi: 10.1111/j.1523-1739.2009.01409.x – ident: e_1_2_8_25_1 doi: 10.1126/science.292.5517.673 – ident: e_1_2_8_61_1 doi: 10.1046/j.1523-1739.2001.015003578.x – ident: e_1_2_8_83_1 doi: 10.1111/j.1469-8137.2009.03147.x – ident: e_1_2_8_30_1 – ident: e_1_2_8_45_1 doi: 10.1111/j.1420-9101.2004.00734.x – ident: e_1_2_8_75_1 doi: 10.1046/j.1365-2699.1998.00233.x – ident: e_1_2_8_54_1 doi: 10.1111/j.1365-2486.2007.01527.x – ident: e_1_2_8_60_1 doi: 10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2 – ident: e_1_2_8_88_1 doi: 10.1073/pnas.0606292104 – ident: e_1_2_8_47_1 doi: 10.1126/science.1156831 – ident: e_1_2_8_27_1 doi: 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2 – ident: e_1_2_8_52_1 doi: 10.1029/2006JD007561 – ident: e_1_2_8_2_1 doi: 10.1111/j.1472-4642.2010.00636.x – ident: e_1_2_8_82_1 doi: 10.1080/0028825X.1992.10412909 – ident: e_1_2_8_33_1 doi: 10.1016/j.jhydrol.2006.03.027 – ident: e_1_2_8_50_1 doi: 10.1016/S0168-1923(02)00196-X |
| SSID | ssj0003206 |
| Score | 2.5658622 |
| SecondaryResourceType | review_article |
| Snippet | There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support... |
| SourceID | proquest pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1022 |
| SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biogeography Biological and medical sciences Biota climate Climate change Climate change research Climatology. Bioclimatology. Climate change cryptic refugia Dispersal Earth, ocean, space Ecology Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects Genetic diversity genetic variation Glaciers Interglacial periods landscape physiography landscape position landscapes Meteorology microrefugia mountain climate paleoclimate Quaternary refugia Spatial distribution species distributions topoclimate |
| Title | climatic basis for microrefugia: the influence of terrain on climate |
| URI | https://api.istex.fr/ark:/67375/WNG-9FZQPGCZ-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2010.02263.x https://www.proquest.com/docview/822240797 https://www.proquest.com/docview/1663609179 https://www.proquest.com/docview/853485676 |
| Volume | 17 |
| WOSCitedRecordID | wos000285878000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiQuPBaqhkJlJNRbUBK_Em5l6S6HsiqPiqoXy3bsKqJs0KaLyr9nnGRDVwKpQtxixRPF45nxZ3vsD-Al_pzlOA2ImWEiZqWlce4TH1NuqM01N6XxLdmEnM_z09PiuM9_CmdhuvshhgW34BltvA4Ork2z6eRthhbLRZ-hhUiCvkI8uZWhGfMRbL39OD05GuIyzVqmzZRyhsEnpZt5PX_81sZgddvrGiFs0P5VSKHUDWrRd_QXG_j0Ospth6npg__ZwIdwvwer5KCzrkdwyy3GcLejr_w5hu3D36fksFofJpoxRO8RitfLthrZJ5OLCnFxW3oM0wNi23JlCQ6hVUMQNpNvIS8Q2786r_RrgqCUVGv2FFJ7gp0fqCxIveiF3RM4mR5-nryLezKH2HJBaVzmLgtU7dLI3BvvS-azpLDSWCsdc4YlxibcaymF4L7gRmelLNBUBJU6yRndhtGiXrgdIMI5HEO996nLGSsTrJmkVjKOwVsXzkcg172mbH_TeSDcuFDXZjyoWhVUq4JqVatadRVBOkh-7277uIHMDhqG0ucYlNXJpyxsBSMqTmmeR7DfWsvwLb38GhLpJFdf5jNVTM8-HM8mZ-oogr0NcxoEUF9cypRFsLu2L9UHmUYFbIfz8UJG8GJ4i9EhbPnohatXjUpFuA8OfbGIgPylDgI2lnMhRQSitccbN13NJm_C09N_FdyFe90afUgPegajy-XKPYc79sdl1Sz3egf-BfINQCQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BBoIXfpRNC4NhJLS3oKS2Y4e3UdYO0VUDVjHtxUoce4rYmqlZ0fjvOTtpWCWQJsRbovii-PLd-bNz8QfwBh9Oc5wGhCxnScgKTUNpIxtSnlMtM54XufViE2IykScn6VErB-T-hWn2h-gW3Fxk-HztAtwtSK9GuS_RYjJpS7SQStC3SCjXGaIK4b7-4ctwOu4SM-17qc2YcobZJ6arhT1_vNfKaHXXZhVyWOf-a1dDmdXoRtvoX6wQ1Js0149Tw8f_tYdP4FFLV8leg6-ncMfMenC_EbD82YPN_d__yWGzNlHUPQgOkYxXc9-M7JLBeYnM2J89g-Ee0f681AQH0bImSJzJhasMRAcszsrsHUFaSsqlfgqpLMHX78QsSDVrjc0GTIf7x4ODsJVzCDVPKA0LafpOrF3kQtrc2oLZfpRqkWstDDM5i3IdcZsJkSTcpjzP-oVIESwJFVkkGd2EtVk1M1tAEmNwFLXWxkYyVkTYMoq1YBzTd5YaG4BYvjal273OneTGubox50HXKuda5VyrvGvVdQBxZ3nZ7PdxC5stRIbKzjAtq-nXvvsYjLw4plIGsOvh0t0rm393pXSCq2-TkUqHp5-PRoNTNQ5gZwVPnQH6iwsRswC2lwBTbZqplWN3OCNPRQCvu6uYH9xHn2xmqkWt4sTtCIfRmAZA_tIGKRuTPBFJAIkH5K27rkaD9-7o-b8avoIHB8eHYzX-OPm0DQ-bFXtXLPQC1q7mC_MS7ukfV2U932mj-RcmtUQU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4gXPgrTwmAYCe0tKIm_Et5GtxREqcpHxbQXK3HsKWI0U7Oi8d9zTtKwSiBNiLdY8UXx-e78s332D-Al_pzmOA3wWc6EzwpN_dgG1qc8pzrOeF7ktiGbkNNpfHyczDo6IHcWpr0fol9wc57RxGvn4Oa8sJte3qRosVh0KVoIJegrBJRbzHHKDGDr8FM6n_SBmUYN1WZIOcPoE9LNxJ4_fmtjtLppswoxrFP_pcuhzGpUo235LzYA6lWY24xT6f3_2sIHcK-Dq-Sgta-HcMMshnC7JbD8OYTto9_n5LBaFyjqIXgfEIxXy6Ya2SejsxKRcVN6BOkB0U251AQH0bImCJzJd5cZiApYnZbZa4KwlJRr_hRSWYLd78gsSLXohM1jmKdHX0Zv_Y7OwddcUOoXsYkcWbvMZWxzawtmoyDRMtdaGmZyFuQ64DaTUghuE55nUSETNBZBZRbEjG7DYFEtzA4QYQyOotba0MSMFQHWDEItGcfwnSXGeiDX3aZ0d9e5o9w4U1fmPKha5VSrnGpVo1p16UHYS563931cQ2YHLUNlpxiW1fxz5DaDEReHNI492G_Mpf9WtvzmUukkV1-nY5WkJx9n49GJmniwt2FPvQDqi0sZMg921wamujBTK4fucEaeSA9e9G8xPrhNn2xhqlWtQuFuhENvTDwgf6mDkI3FXEjhgWgM8tpNV-PRG_f05F8Fn8Od2WGqJu-m73fhbrtg73KFnsLgYrkyz-CW_nFR1su9zpl_AUq_Q48 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+climatic+basis+for+microrefugia%3A+the+influence+of+terrain+on+climate&rft.jtitle=Global+change+biology&rft.au=DOBROWSKI%2C+SOLOMON+Z.&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=2&rft.spage=1022&rft.epage=1035&rft_id=info:doi/10.1111%2Fj.1365-2486.2010.02263.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9FZQPGCZ_L |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |