DC approximation approaches for sparse optimization

•A unifying DC approximation, including all standard approximations, of the zero-norm is proposed.•The consistency between global/local minima of approximate and original problems are proved.•The equivalence between approximate and original problems are established for some approximations.•Four DCA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 244; číslo 1; s. 26 - 46
Hlavní autoři: Le Thi, H.A., Pham Dinh, T., Le, H.M., Vo, X.T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.07.2015
Elsevier Sequoia S.A
Elsevier
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A unifying DC approximation, including all standard approximations, of the zero-norm is proposed.•The consistency between global/local minima of approximate and original problems are proved.•The equivalence between approximate and original problems are established for some approximations.•Four DCA schemes are developed that cover all standard nonconvex approximation algorithms.•A careful empirical experiment for feature selection in SVM are performed. Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches for sparse optimization have been studied with a unifying point of view in DC (Difference of Convex functions) programming framework. Considering a common DC approximation of the zero-norm including all standard sparse inducing penalty functions, we studied the consistency between global minimums (resp. local minimums) of approximate and original problems. We showed that, in several cases, some global minimizers (resp. local minimizers) of the approximate problem are also those of the original problem. Using exact penalty techniques in DC programming, we proved stronger results for some particular approximations, namely, the approximate problem, with suitable parameters, is equivalent to the original problem. The efficiency of several sparse inducing penalty functions have been fully analyzed. Four DCA (DC Algorithm) schemes were developed that cover all standard algorithms in nonconvex sparse approximation approaches as special versions. They can be viewed as, an ℓ1-perturbed algorithm/reweighted-ℓ1 algorithm / reweighted-ℓ2 algorithm. We offer a unifying nonconvex approximation approach, with solid theoretical tools as well as efficient algorithms based on DC programming and DCA, to tackle the zero-norm and sparse optimization. As an application, we implemented our methods for the feature selection in SVM (Support Vector Machine) problem and performed empirical comparative numerical experiments on the proposed algorithms with various approximation functions.
AbstractList Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches for sparse optimization have been studied with a unifying point of view in DC (Difference of Convex functions) programming framework. Considering a common DC approximation of the zero-norm including all standard sparse inducing penalty functions, we studied the consistency between global minimums (resp. local minimums) of approximate and original problems. We showed that, in several cases, some global minimizers (resp. local minimizers) of the approximate problem are also those of the original problem. Using exact penalty techniques in DC programming, we proved stronger results for some particular approximations, namely, the approximate problem, with suitable parameters, is equivalent to the original problem. The efficiency of several sparse inducing penalty functions have been fully analyzed. Four DCA (DC Algorithm) schemes were developed that cover all standard algorithms in nonconvex sparse approximation approaches as special versions. They can be viewed as, an ℓ1-perturbed algorithm/reweighted-ℓ1 algorithm / reweighted-ℓ2 algorithm. We offer a unifying nonconvex approximation approach, with solid theoretical tools as well as efficient algorithms based on DC programming and DCA, to tackle the zero-norm and sparse optimization. As an application, we implemented our methods for the feature selection in SVM (Support Vector Machine) problem and performed empirical comparative numerical experiments on the proposed algorithms with various approximation functions.
Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches for sparse optimization have been studied with a unifying point of view in DC (Difference of Convex functions) programming framework. Considering a common DC approximation of the zero-norm including all standard sparse inducing penalty functions, we studied the consistency between global minimums (resp. local minimums) of approximate and original problems. We showed that, in several cases, some global minimizers (resp. local minimizers) of the approximate problem are also those of the original problem. Using exact penalty techniques in DC programming, we proved stronger results for some particular approximations, namely, the approximate problem, with suitable parameters, is equivalent to the original problem. The efficiency of several sparse inducing penalty functions have been fully analyzed. Four DCA (DC Algorithm) schemes were developed that cover all standard algorithms in nonconvex sparse approximation approaches as special versions. They can be viewed as, an ...-perturbed algorithm/reweighted-... algorithm / reweighted-... algorithm. We offer a unifying nonconvex approximation approach, with solid theoretical tools as well as efficient algorithms based on DC programming and DCA, to tackle the zero-norm and sparse optimization. As an application, we implemented our methods for the feature selection in SVM (Support Vector Machine) problem and performed empirical comparative numerical experiments on the proposed algorithms with various approximation functions. (ProQuest: ... denotes formulae/symbols omitted.)
Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches for sparse optimization have been studied with a unifying point of view in DC (Difference of Convex functions) programming framework. Considering a common DC approximation of the zero-norm including all standard sparse inducing penalty functions, we studied the consistency between global minimums (resp. local minimums) of approximate and original problems. We showed that, in several cases, some global minimizers (resp. local minimizers) of the approximate problem are also those of the original problem. Using exact penalty techniques in DC programming, we proved stronger results for some particular approximations, namely, the approximate problem, with suitable parameters, is equivalent to the original problem. The efficiency of several sparse inducing penalty functions have been fully analyzed. Four DCA (DC Algorithm) schemes were developed that cover all standard algorithms in nonconvex sparse approximation approaches as special versions. They can be viewed as, an [ell] sub(1)-perturbed algorithm/reweighted-[ell] sub(1) algorithm / reweighted-[ell] sub(2) algorithm. We offer a unifying nonconvex approximation approach, with solid theoretical tools as well as efficient algorithms based on DC programming and DCA, to tackle the zero-norm and sparse optimization. As an application, we implemented our methods for the feature selection in SVM (Support Vector Machine) problem and performed empirical comparative numerical experiments on the proposed algorithms with various approximation functions.
•A unifying DC approximation, including all standard approximations, of the zero-norm is proposed.•The consistency between global/local minima of approximate and original problems are proved.•The equivalence between approximate and original problems are established for some approximations.•Four DCA schemes are developed that cover all standard nonconvex approximation algorithms.•A careful empirical experiment for feature selection in SVM are performed. Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches for sparse optimization have been studied with a unifying point of view in DC (Difference of Convex functions) programming framework. Considering a common DC approximation of the zero-norm including all standard sparse inducing penalty functions, we studied the consistency between global minimums (resp. local minimums) of approximate and original problems. We showed that, in several cases, some global minimizers (resp. local minimizers) of the approximate problem are also those of the original problem. Using exact penalty techniques in DC programming, we proved stronger results for some particular approximations, namely, the approximate problem, with suitable parameters, is equivalent to the original problem. The efficiency of several sparse inducing penalty functions have been fully analyzed. Four DCA (DC Algorithm) schemes were developed that cover all standard algorithms in nonconvex sparse approximation approaches as special versions. They can be viewed as, an ℓ1-perturbed algorithm/reweighted-ℓ1 algorithm / reweighted-ℓ2 algorithm. We offer a unifying nonconvex approximation approach, with solid theoretical tools as well as efficient algorithms based on DC programming and DCA, to tackle the zero-norm and sparse optimization. As an application, we implemented our methods for the feature selection in SVM (Support Vector Machine) problem and performed empirical comparative numerical experiments on the proposed algorithms with various approximation functions.
Author Pham Dinh, T.
Le Thi, H.A.
Vo, X.T.
Le, H.M.
Author_xml – sequence: 1
  givenname: H.A.
  surname: Le Thi
  fullname: Le Thi, H.A.
  email: hoai-an.le-thi@univ-lorraine.fr
  organization: Laboratory of Theoretical and Applied Computer Science EA 3097, University of Lorraine, Ile du Saulcy, Metz 57045, France
– sequence: 2
  givenname: T.
  surname: Pham Dinh
  fullname: Pham Dinh, T.
  email: pham@insa-rouen.fr
  organization: Laboratory of Mathematics, INSA – Rouen, University of Normandie, Saint-Etienne-du-Rouvray Cedex 76801, France
– sequence: 3
  givenname: H.M.
  surname: Le
  fullname: Le, H.M.
  email: minh.le@univ-lorraine.fr
  organization: Laboratory of Theoretical and Applied Computer Science EA 3097, University of Lorraine, Ile du Saulcy, Metz 57045, France
– sequence: 4
  givenname: X.T.
  surname: Vo
  fullname: Vo, X.T.
  email: xuan-thanh.vo@univ-lorraine.fr
  organization: Laboratory of Theoretical and Applied Computer Science EA 3097, University of Lorraine, Ile du Saulcy, Metz 57045, France
BackLink https://hal.univ-lorraine.fr/hal-01616997$$DView record in HAL
BookMark eNp9kE9LxDAQxYMouK5-AU8LXvTQmknaJAUvsv6FBS96DjGdYkq3qUlX1E9v1urFg6dhht8b3nsHZLf3PRJyDDQHCuK8zbH1IWcUihwgpxx2yAyUZJlQgu6SGeVSZoyB3CcHMbaUUiihnBF-tVyYYQj-3a3N6Hw_bca-YFw0PiziYELEhR9Gt3af38gh2WtMF_HoZ87J08314_IuWz3c3i8vV5ktBRuzRqCqCkP5sy1kLQpe2QZZXUhOeQmNEZyVaa8NU_UzQ1vJQiIvK6sqy0BwPidn098X0-khJIPhQ3vj9N3lSm9vKTmIqpJvkNjTiU3mXzcYR7120WLXmR79JmoQqlRMcaESevIHbf0m9ClJokRRyFIKmSg1UTb4GAM22rrxO_4YjOs0UL1tXrd627zeNq8BdGo-Sdkf6a_5f0UXkwhTo28Og47WYW-xdgHtqGvv_pN_ASIpnM4
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1016_j_neunet_2020_08_024
crossref_primary_10_1016_j_acha_2021_09_003
crossref_primary_10_1080_10556788_2021_1977809
crossref_primary_10_1007_s10107_018_01357_w
crossref_primary_10_1109_TFUZZ_2019_2900859
crossref_primary_10_1007_s10479_023_05726_3
crossref_primary_10_1142_S021759592240005X
crossref_primary_10_1016_j_knosys_2020_106707
crossref_primary_10_1162_NECO_a_00836
crossref_primary_10_1137_18M117337X
crossref_primary_10_1137_20M1385706
crossref_primary_10_1287_moor_2020_0393
crossref_primary_10_1016_j_amc_2020_125904
crossref_primary_10_1109_TSP_2023_3262184
crossref_primary_10_1287_ijoc_2020_1004
crossref_primary_10_1007_s10489_016_0778_y
crossref_primary_10_1287_ijoo_2024_0038
crossref_primary_10_1016_j_jtbi_2018_06_015
crossref_primary_10_1109_ACCESS_2019_2955108
crossref_primary_10_1049_iet_spr_2018_5130
crossref_primary_10_1007_s10915_025_02900_6
crossref_primary_10_1109_TSP_2018_2849746
crossref_primary_10_1007_s10107_021_01766_4
crossref_primary_10_1007_s10898_022_01220_5
crossref_primary_10_1016_j_jfranklin_2023_02_035
crossref_primary_10_1109_TIT_2024_3454694
crossref_primary_10_1109_JSEN_2017_2754502
crossref_primary_10_1007_s10589_024_00625_0
crossref_primary_10_1109_TSP_2016_2637314
crossref_primary_10_1007_s10107_018_1235_y
crossref_primary_10_1007_s12190_022_01797_w
crossref_primary_10_1137_21M142770X
crossref_primary_10_1371_journal_pone_0315740
crossref_primary_10_1016_j_engappai_2016_04_003
crossref_primary_10_1007_s10915_024_02584_4
crossref_primary_10_1007_s10107_023_01966_0
crossref_primary_10_1080_10556788_2019_1684492
crossref_primary_10_1109_TSP_2023_3315449
crossref_primary_10_1007_s11042_023_17315_4
crossref_primary_10_1109_TSP_2023_3311523
crossref_primary_10_1007_s40305_025_00594_z
crossref_primary_10_1016_j_neucom_2015_12_068
crossref_primary_10_1109_TSP_2023_3315454
crossref_primary_10_1016_j_ejor_2016_05_020
crossref_primary_10_1109_TCOMM_2019_2920594
crossref_primary_10_3233_JIFS_181501
crossref_primary_10_1016_j_cor_2016_11_003
crossref_primary_10_1109_LWC_2017_2680449
crossref_primary_10_1007_s11590_019_01408_x
crossref_primary_10_1137_16M1084754
crossref_primary_10_1007_s10489_018_01407_y
crossref_primary_10_1109_TCOMM_2021_3093331
crossref_primary_10_1109_TNNLS_2022_3213558
crossref_primary_10_1007_s00521_016_2216_9
crossref_primary_10_1016_j_jvcir_2021_103367
crossref_primary_10_1049_ipr2_12917
crossref_primary_10_1186_s13638_020_01804_3
crossref_primary_10_1007_s11081_017_9372_3
crossref_primary_10_1137_16M1059333
crossref_primary_10_1007_s10898_019_00857_z
crossref_primary_10_1007_s10107_018_1236_x
crossref_primary_10_1109_TIP_2019_2898843
crossref_primary_10_1016_j_apnum_2023_04_004
crossref_primary_10_1016_j_neucom_2025_129390
crossref_primary_10_1162_neco_a_01012
crossref_primary_10_1137_21M1443455
crossref_primary_10_1016_j_cmpb_2023_107503
crossref_primary_10_1007_s10107_024_02161_5
crossref_primary_10_1007_s10107_018_1286_0
crossref_primary_10_1016_j_ins_2020_07_068
crossref_primary_10_1016_j_neucom_2019_08_035
crossref_primary_10_1109_JSEN_2017_2730226
crossref_primary_10_1109_TNNLS_2022_3153310
crossref_primary_10_1007_s10472_021_09732_8
crossref_primary_10_1007_s11590_020_01696_8
crossref_primary_10_1016_j_neucom_2020_07_085
crossref_primary_10_1016_j_dsp_2019_02_009
crossref_primary_10_1007_s10898_019_00826_6
crossref_primary_10_1109_LSP_2024_3370493
crossref_primary_10_1109_TWC_2016_2578922
crossref_primary_10_1162_neco_a_01002
crossref_primary_10_1016_j_ejor_2024_07_019
crossref_primary_10_1137_18M1186009
crossref_primary_10_1007_s10915_024_02715_x
crossref_primary_10_1007_s10589_022_00419_2
crossref_primary_10_1007_s11590_018_1280_8
crossref_primary_10_1137_22M1525363
crossref_primary_10_1007_s10479_016_2333_y
crossref_primary_10_1016_j_compeleceng_2024_109306
crossref_primary_10_1051_itmconf_20213604007
crossref_primary_10_1109_ACCESS_2018_2879336
crossref_primary_10_1080_02331934_2021_1892675
crossref_primary_10_12677_AAM_2021_1011409
crossref_primary_10_1007_s10898_018_0698_y
crossref_primary_10_1061_JSENDH_STENG_14658
crossref_primary_10_1016_j_neunet_2019_05_011
crossref_primary_10_1016_j_knosys_2020_106536
crossref_primary_10_1016_j_neucom_2020_12_045
crossref_primary_10_1016_j_bspc_2024_107327
crossref_primary_10_1007_s10107_018_1283_3
crossref_primary_10_1016_j_ejor_2025_06_004
crossref_primary_10_1016_j_neucom_2021_09_039
crossref_primary_10_1080_10556788_2025_2521527
crossref_primary_10_1016_j_dte_2025_100045
crossref_primary_10_1016_j_neunet_2022_03_033
crossref_primary_10_12677_AAM_2023_121022
crossref_primary_10_1016_j_neucom_2018_06_070
crossref_primary_10_1007_s00180_022_01249_w
crossref_primary_10_1016_j_sigpro_2022_108754
crossref_primary_10_1287_moor_2021_0258
crossref_primary_10_1016_j_csda_2023_107902
crossref_primary_10_1080_00207543_2019_1657245
crossref_primary_10_1007_s10107_024_02103_1
crossref_primary_10_1007_s10898_021_01028_9
crossref_primary_10_1016_j_cor_2016_04_005
crossref_primary_10_1155_2021_3289477
crossref_primary_10_1007_s43670_025_00102_7
crossref_primary_10_1109_LSP_2023_3298283
crossref_primary_10_1109_TSP_2018_2871998
crossref_primary_10_1007_s10107_017_1181_0
crossref_primary_10_1007_s11081_017_9359_0
crossref_primary_10_1109_TWC_2020_2979147
Cites_doi 10.1007/s10994-005-1505-9
10.1007/s10589-008-9202-9
10.1016/j.csda.2013.01.020
10.1023/A:1008288411710
10.1198/016214505000000781
10.1007/s101070050003
10.1016/S0377-2217(01)00301-0
10.1023/A:1012487302797
10.1007/s11634-008-0030-7
10.1080/10618600.1998.10474784
10.1109/TIT.2005.858979
10.1109/TIT.2008.924688
10.1109/TSP.2002.808076
10.1023/A:1018361916442
10.1080/10556788.2011.652630
10.1007/s10957-012-0197-0
10.1007/s10618-014-0369-7
10.1007/s10898-009-9507-y
10.1109/TIT.2003.820031
10.1080/10556788.2011.645543
10.1016/j.neunet.2014.06.011
10.1198/016214506000000735
10.1214/009053607000000802
10.1093/bioinformatics/bti736
10.1016/j.sigpro.2007.08.015
10.1109/TSP.2009.2026004
10.1007/978-3-642-36543-0_40
10.1109/ACSSC.1993.342465
10.1007/s10898-011-9765-3
10.1137/S1052623494274313
10.1198/016214501753382273
10.1016/j.ejor.2005.07.028
10.1016/j.dam.2007.03.024
10.1137/S0097539792240406
10.1109/78.558475
10.1109/78.738251
10.1007/BF00994018
10.1007/s10898-012-9859-6
10.1109/78.258082
10.1007/s10479-004-5022-1
10.1007/s10589-010-9388-5
10.1109/TAC.2014.2301575
10.1137/090761471
10.1007/s11263-014-0784-7
10.1214/08-AOS659
10.1162/NECO_a_00490
10.1080/10556789208805504
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jul 1, 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jul 1, 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
1XC
DOI 10.1016/j.ejor.2014.11.031
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList
Technology Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 46
ExternalDocumentID oai:HAL:hal-01616997v1
3628923491
10_1016_j_ejor_2014_11_031
S0377221714009540
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
7TA
JG9
1XC
ID FETCH-LOGICAL-c562t-f6e894a03bc47d6439cfe2d4730351fa6325e2dda28db2ec9747e359c89c21633
ISICitedReferencesCount 164
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352667900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Oct 14 20:33:05 EDT 2025
Sun Nov 09 13:33:02 EST 2025
Fri Jul 25 04:22:10 EDT 2025
Tue Nov 18 22:14:39 EST 2025
Sat Nov 29 01:41:12 EST 2025
Fri Feb 23 02:27:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sparse optimization
DC programming and DCA
Global optimization
DC approximation function
Feature selection in SVM
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-f6e894a03bc47d6439cfe2d4730351fa6325e2dda28db2ec9747e359c89c21633
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7337-1505
0000-0002-2239-2100
PQID 1664475767
PQPubID 45678
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_01616997v1
proquest_miscellaneous_1685828368
proquest_journals_1664475767
crossref_citationtrail_10_1016_j_ejor_2014_11_031
crossref_primary_10_1016_j_ejor_2014_11_031
elsevier_sciencedirect_doi_10_1016_j_ejor_2014_11_031
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
– name: Elsevier
References Guan, Gray (bib0022) 2013; 67
Zhang, Ahn, Lin, Park (bib0088) 2006; 2
Gorodnitsky, Rao (bib0019) 1997; 45
Le Thi, Moeini (bib0055) 2014; 161
Zhang (bib0087) 2009; 37
Sriperumbudur, Torres, Lanckriet (bib0078) 2007
Schmidt, Fung, Rosales (bib0077) 2007; 4701
Chan, Vasconcelos, Lanckriet (bib0010) 2007
Le, Le Thi, Nguyen (bib0047) 2013
Bradley, Mangasarian, Rosen (bib0005) 1998; 11
Le Thi, Pham Dinh (bib0050) 2013
Weston, Mukherjee, Chapelle, Pontil, Poggio, Vapnik (bib0085) 2001
Le Thi, Huynh, Pham Dinh (bib0042) 2009
Chartrand, Yin (bib0009) 2008
Le Thi (bib0030) 2000; 87
Cortes, Vapnik (bib0012) 1995; 20
Mohri, Medina (bib0061) 2014
Le Thi, Le, Pham Dinh (bib0054) 2014
Niu, Y. S., Pham Dinh, T., Le Thi, H. A. Judice, J. (2012). Efficient DC programming approaches for asymmetric eigenvalue complementarity problem, optimization methods and software, doi: 10.1080/10556788.2011.645543.
Pham Dinh, Nguyen Canh, Le Thi (bib0070) 2010; 48
Le Thi, Nguyen, Le (bib0049) 2013
Le Thi, Huynh, Pham Dinh (bib0044) 2012; 52
Fawzi, Davies, Frossard (bib0015) 2014
Le, Le Thi, Pham Dinh, Huynh (bib0046) 2013; 25
Le Thi, Nguyen (bib0053) 2014; 28
Tan, Wang, Tsang (bib0080) 2010
Thiao, Pham Dinh, Le Thi (bib0082) 2010
Candes, Wakin, Boyd (bib0008) 2008; 14
Pham Dinh, Le, Le Thi, Lauer (bib0072) 2014; 59
Pham Dinh, Le Thi (bib0071) 2014; 8342
Zou (bib0089) 2006; 101
Gribonval, Nielsen (bib0018) 2003; 49
Guyon, Gunn, Nikravesh, Zadeh (bib0021) 2006
Candes, Randall (bib0007) 2006; 54
Tibshirani (bib0083) 1996; 46
Le Thi, Le, Nguyen, Pham Dinh (bib0040) 2008; 2
Le Thi, Pham Dinh (bib0039) 2008; 156
Pham Dinh, Le Thi (bib0069) 2002
Fan, Li (bib0014) 2001; 96
Le Thi, Pham Dinh, Nguyen Van (bib0032) 2002; 142
Takhar, Laska, Wakin, Duarte, Baron, Sarvotham (bib0079) 2006, January
.
Candes, Tao (bib0006) 2005; 51
Le Thi, H. A. (2012). DC programming and DCA.
Le Thi, Pham Dinh (bib0034) 2005; 133
Natarajan (bib0062) 1995; 24
Heiler, Cremers, Schnörr (bib0024) 2001
Le Thi (bib0043) 2012
Le Thi, Moeini, Pham Dinh, Joaquim (bib0045) 2012; 51
Guyon, Weston, Barnhill, Vapnik (bib0020) 2002; 46
Le Thi (bib0027) 1994
Le Thi, Nguyen (bib0051) 2013
Hastie, Tibshirani, Friedman (bib0023) 2009
Gasso, Rakotomamonjy, Canu (bib0017) 2009; 57
Baron, Wakin, Duarte, Sarvotham, Baraniuk (bib0002) 2009, November
Rinaldi, Schoen, Sciandrone (bib0075) 2010; 46
Le Thi, Vo, Pham Dinh (bib0052) 2014; 59
Trombettoni, Araya, Neveu, Chabert (bib0084) 2011
Rao, Engan, Cotter, Palmer, KreutzDelgado (bib0074) 2003; 51
Peleg, Meir (bib0026) 2008; 8
Le Thi, Pham Dinh (bib0029) 1997; 11
Neumann, Schnörr, Steidl (bib0063) 2005; 61
Bennett, Mangasarian (bib0003) 1992; 1
Le Thi, Nguyen, Ouchani (bib0041) 2009; 3
Le Thi, Nguyen, Pham Dinh (bib0037) 2007; 183
Le Thi, Huynh, Pham Dinh (bib0056) 2014; 282
Thiao, Pham Dinh, Le Thi (bib0081) 2008
Weston, Elisseeff, Scholkopf, Tipping (bib0086) 2003; 3
Le Thi, Le, Pham Dinh (bib0038) 2007; 183
Bradley, Mangasarian (bib0004) 1998
Pham Dinh, Le Thi (bib0068) 1998; 8
Collobert, Sinz, Weston, Bottou (bib0013) 2006
Le Thi (bib0028) 1997
Le Thi, Le, Pham Dinh (bib0036) 2006; 183
Rockafellar (bib0076) 1970
Chen, Xu, Ye (bib0011) 2010; 32
Pham Dinh, Le Thi (bib0067) 1997; 22
Ong, Le Thi (bib0065) 2013; 28
Le Thi, Le, Pham Dinh, Huynh (bib0048) 2013; 56
Rao, Kreutz-Delgado (bib0073) 1999; 47
Mallat, Zhang (bib0059) 1993; 41
Zou, Li (bib0090) 2008; 36
Liu, Zheng (bib0057) 2005
Le Thi, Pham Dinh (bib0033) 2003; 4
Bajwa, Haupt, Sayeed, Nowak (bib0001) 2006
Krause, Singer (bib0025) 2004
Le Thi, Belghiti, Pham Dinh (bib0035) 2006; 37
Mangasarian (bib0060) 1996
Fu (bib0016) 1998; 7
Liu, Shen (bib0058) 2006; 101
Pati, Rezaifar, Krishnaprasa (bib0066) 1993, November
10.1016/j.ejor.2014.11.031_bib0031
Le Thi (10.1016/j.ejor.2014.11.031_bib0041) 2009; 3
Guyon (10.1016/j.ejor.2014.11.031_bib0021) 2006
Takhar (10.1016/j.ejor.2014.11.031_bib0079) 2006
Chartrand (10.1016/j.ejor.2014.11.031_bib0009) 2008
Le Thi (10.1016/j.ejor.2014.11.031_bib0035) 2006; 37
Le Thi (10.1016/j.ejor.2014.11.031_bib0037) 2007; 183
Le Thi (10.1016/j.ejor.2014.11.031_bib0043) 2012
Le Thi (10.1016/j.ejor.2014.11.031_bib0039) 2008; 156
Le Thi (10.1016/j.ejor.2014.11.031_bib0036) 2006; 183
Bajwa (10.1016/j.ejor.2014.11.031_bib0001) 2006
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0069) 2002
Liu (10.1016/j.ejor.2014.11.031_bib0058) 2006; 101
Le Thi (10.1016/j.ejor.2014.11.031_bib0052) 2014; 59
Le Thi (10.1016/j.ejor.2014.11.031_bib0053) 2014; 28
Le Thi (10.1016/j.ejor.2014.11.031_bib0033) 2003; 4
Le Thi (10.1016/j.ejor.2014.11.031_bib0045) 2012; 51
Le Thi (10.1016/j.ejor.2014.11.031_bib0050) 2013
Le Thi (10.1016/j.ejor.2014.11.031_bib0055) 2014; 161
Le Thi (10.1016/j.ejor.2014.11.031_bib0029) 1997; 11
Krause (10.1016/j.ejor.2014.11.031_bib0025) 2004
Le Thi (10.1016/j.ejor.2014.11.031_bib0048) 2013; 56
Mangasarian (10.1016/j.ejor.2014.11.031_bib0060) 1996
Le Thi (10.1016/j.ejor.2014.11.031_bib0034) 2005; 133
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0070) 2010; 48
Zhang (10.1016/j.ejor.2014.11.031_bib0088) 2006; 2
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0068) 1998; 8
Le Thi (10.1016/j.ejor.2014.11.031_bib0032) 2002; 142
Gribonval (10.1016/j.ejor.2014.11.031_bib0018) 2003; 49
Neumann (10.1016/j.ejor.2014.11.031_bib0063) 2005; 61
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0071) 2014; 8342
Le Thi (10.1016/j.ejor.2014.11.031_bib0027) 1994
Le Thi (10.1016/j.ejor.2014.11.031_bib0030) 2000; 87
Tan (10.1016/j.ejor.2014.11.031_bib0080) 2010
Candes (10.1016/j.ejor.2014.11.031_bib0008) 2008; 14
Weston (10.1016/j.ejor.2014.11.031_bib0086) 2003; 3
Bradley (10.1016/j.ejor.2014.11.031_bib0004) 1998
Peleg (10.1016/j.ejor.2014.11.031_bib0026) 2008; 8
Schmidt (10.1016/j.ejor.2014.11.031_bib0077) 2007; 4701
Guyon (10.1016/j.ejor.2014.11.031_bib0020) 2002; 46
Candes (10.1016/j.ejor.2014.11.031_bib0006) 2005; 51
Gasso (10.1016/j.ejor.2014.11.031_bib0017) 2009; 57
Le Thi (10.1016/j.ejor.2014.11.031_bib0051) 2013
Le Thi (10.1016/j.ejor.2014.11.031_bib0056) 2014; 282
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0067) 1997; 22
Le Thi (10.1016/j.ejor.2014.11.031_bib0054) 2014
Thiao (10.1016/j.ejor.2014.11.031_bib0081) 2008
Le Thi (10.1016/j.ejor.2014.11.031_bib0049) 2013
Pham Dinh (10.1016/j.ejor.2014.11.031_bib0072) 2014; 59
Tibshirani (10.1016/j.ejor.2014.11.031_bib0083) 1996; 46
Zhang (10.1016/j.ejor.2014.11.031_bib0087) 2009; 37
Rao (10.1016/j.ejor.2014.11.031_bib0073) 1999; 47
Trombettoni (10.1016/j.ejor.2014.11.031_bib0084) 2011
Mallat (10.1016/j.ejor.2014.11.031_bib0059) 1993; 41
Rockafellar (10.1016/j.ejor.2014.11.031_bib0076) 1970
Fan (10.1016/j.ejor.2014.11.031_bib0014) 2001; 96
Heiler (10.1016/j.ejor.2014.11.031_sbref0024) 2001
Le Thi (10.1016/j.ejor.2014.11.031_bib0040) 2008; 2
Baron (10.1016/j.ejor.2014.11.031_bib0002) 2009
Chen (10.1016/j.ejor.2014.11.031_bib0011) 2010; 32
Liu (10.1016/j.ejor.2014.11.031_bib0057) 2005
Mohri (10.1016/j.ejor.2014.11.031_bib0061) 2014
Ong (10.1016/j.ejor.2014.11.031_bib0065) 2013; 28
Natarajan (10.1016/j.ejor.2014.11.031_bib0062) 1995; 24
Le Thi (10.1016/j.ejor.2014.11.031_bib0038) 2007; 183
Le (10.1016/j.ejor.2014.11.031_bib0046) 2013; 25
Guan (10.1016/j.ejor.2014.11.031_bib0022) 2013; 67
Pati (10.1016/j.ejor.2014.11.031_bib0066) 1993
Candes (10.1016/j.ejor.2014.11.031_bib0007) 2006; 54
Fawzi (10.1016/j.ejor.2014.11.031_bib0015) 2014
10.1016/j.ejor.2014.11.031_bib0064
Bradley (10.1016/j.ejor.2014.11.031_bib0005) 1998; 11
Sriperumbudur (10.1016/j.ejor.2014.11.031_bib0078) 2007
Weston (10.1016/j.ejor.2014.11.031_bib0085) 2001
Rao (10.1016/j.ejor.2014.11.031_bib0074) 2003; 51
Le Thi (10.1016/j.ejor.2014.11.031_bib0042) 2009
Le (10.1016/j.ejor.2014.11.031_bib0047) 2013
Rinaldi (10.1016/j.ejor.2014.11.031_bib0075) 2010; 46
Cortes (10.1016/j.ejor.2014.11.031_bib0012) 1995; 20
Gorodnitsky (10.1016/j.ejor.2014.11.031_bib0019) 1997; 45
Hastie (10.1016/j.ejor.2014.11.031_bib0023) 2009
Le Thi (10.1016/j.ejor.2014.11.031_bib0044) 2012; 52
Chan (10.1016/j.ejor.2014.11.031_bib0010) 2007
Bennett (10.1016/j.ejor.2014.11.031_bib0003) 1992; 1
Zou (10.1016/j.ejor.2014.11.031_bib0090) 2008; 36
Collobert (10.1016/j.ejor.2014.11.031_bib0013) 2006
Fu (10.1016/j.ejor.2014.11.031_bib0016) 1998; 7
Thiao (10.1016/j.ejor.2014.11.031_bib0082) 2010
Le Thi (10.1016/j.ejor.2014.11.031_bib0028) 1997
Zou (10.1016/j.ejor.2014.11.031_bib0089) 2006; 101
References_xml – volume: 8342
  start-page: 1
  year: 2014
  end-page: 37
  ident: bib0071
  article-title: Recent advances in DC programming and DCA
  publication-title: Transactions on Computational Collective Intelligence
– year: 1970
  ident: bib0076
  publication-title: Convex analysis
– volume: 22
  start-page: 289
  year: 1997
  end-page: 355
  ident: bib0067
  article-title: Convex analysis approach to d.c. programming: Theory, algorithm and applications
  publication-title: Acta Mathematica Vietnamica
– reference: Niu, Y. S., Pham Dinh, T., Le Thi, H. A. Judice, J. (2012). Efficient DC programming approaches for asymmetric eigenvalue complementarity problem, optimization methods and software, doi: 10.1080/10556788.2011.645543.
– year: 1994
  ident: bib0027
  publication-title: Analyse numérique des algorithmes de l’Optimisation d. c. Approches locales et globales. Codes et simulations numériques en grande dimension. Applications
– start-page: 145
  year: 2007
  end-page: 153
  ident: bib0010
  article-title: Direct convex relaxations of sparse SVM
  publication-title: Proceeding ICML’07. Proceedings of the 24th international conference on machine learning
– volume: 8
  start-page: 375
  year: 2008
  end-page: 389
  ident: bib0026
  article-title: A bilinear formulation for vector sparsity optimization
  publication-title: Signal Processing
– volume: 59
  start-page: 2277
  year: 2014
  end-page: 2282
  ident: bib0072
  article-title: A DC programming algorithm for switched linear regression
  publication-title: IEEE Transactions on Automatic Control
– year: 2009, November
  ident: bib0002
  publication-title: Distributed compressed sensing
– start-page: 134
  year: 2006
  end-page: 142
  ident: bib0001
  article-title: Compressive wireless sensing
  publication-title: Proceedings of fifth international conference on information processing in sensor networks
– volume: 8
  start-page: 476
  year: 1998
  end-page: 505
  ident: bib0068
  article-title: DC optimization algorithms for solving the trust region subproblem.
  publication-title: SIAM Journal of Optimization
– volume: 56
  start-page: 1393
  year: 2013
  end-page: 1407
  ident: bib0048
  article-title: Binary classification via spherical separator by DC programming and DCA
  publication-title: Journal of Global Optimization
– volume: 7
  start-page: 397
  year: 1998
  end-page: 416
  ident: bib0016
  article-title: Penalized regression: The bridge versus the lasso
  publication-title: Journal of Computational and Graphical Statistics
– volume: 161
  start-page: 199
  year: 2014
  end-page: 224
  ident: bib0055
  article-title: Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm
  publication-title: Journal of Optimization Theory, & Applications
– year: 2001
  ident: bib0085
  article-title: Feature selection for SVMs
  publication-title: Neural information processing systems
– year: 2006
  ident: bib0013
  article-title: Trading convexity for scalability
  publication-title: Proceedings of the 23th international conference on machine learning (ICML 2006)
– year: 1997
  ident: bib0028
  publication-title: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, algorithmes et applications
– volume: 4701
  start-page: 286
  year: 2007
  end-page: 297
  ident: bib0077
  article-title: Fast optimization methods for L1 regularization: A comparative study and two new approaches
  publication-title: ECML 2007, Lecture Notes in Computer Science
– volume: 37
  start-page: 2109
  year: 2009
  end-page: 2144
  ident: bib0087
  article-title: Some sharp performance bounds for least squares regression with regularization
  publication-title: Annals of Statistics
– volume: 32
  start-page: 2832
  year: 2010
  end-page: 2852
  ident: bib0011
  article-title: Lower bound theory of nonzero entries in solutions of l2-lp minimization
  publication-title: SIAM Journal on Scientific Computing
– year: 2002
  ident: bib0069
  article-title: DC programming: Theory, algorithms and applications. The state of the art
  publication-title: Proceedings of the first international workshop on global constrained optimization and constraint satisfaction (Cocos’ 02)
– volume: 2
  start-page: 88
  year: 2006
  end-page: 95
  ident: bib0088
  article-title: Gene selection using support vector machines with non-convex penalty
  publication-title: Bioinformatics
– volume: 57
  start-page: 4686
  year: 2009
  end-page: 4698
  ident: bib0017
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and dc programming
  publication-title: IEEE Transactions on Signal Processing
– volume: 183
  start-page: 1067
  year: 2007
  end-page: 1085
  ident: bib0038
  article-title: Optimization based DC programming and DCA for hierarchical clustering
  publication-title: European Journal of Operational Research
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: bib0008
  article-title: Enhancing sparsity by reweighted-
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 37
  start-page: 593
  year: 2006
  end-page: 608
  ident: bib0035
  article-title: A new efficient algorithm based on DC programming and DCA for clustering
  publication-title: Journal of Global Optimization
– year: 1993, November
  ident: bib0066
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
  publication-title: 27th asilomar conference on signals, systems and computers
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bib0059
  article-title: Matching pursuit in a time-frequency dictionary
  publication-title: IEEE Transactions on Signal Processing
– volume: 51
  start-page: 1097
  year: 2012
  end-page: 1117
  ident: bib0045
  article-title: A DC programming approach for solving the symmetric eigenvalue complementarity problem
  publication-title: Computational Optimization and Applications
– volume: 25
  start-page: 2776
  year: 2013
  end-page: 2807
  ident: bib0046
  article-title: Block clustering based on difference of convex functions (DC) programming and DC algorithms
  publication-title: Neural Computation
– volume: 142
  start-page: 258
  year: 2002
  end-page: 270
  ident: bib0032
  article-title: Combination between local and global methods for solving an optimization problem over the efficient set
  publication-title: European Journal of Operational Research
– year: 2010
  ident: bib0080
  article-title: Learning sparse svm for feature selection on very high dimensional datasets.
  publication-title: ICML 2010
– start-page: 175
  year: 1996
  end-page: 188
  ident: bib0060
  article-title: Machine learning via polyhedral concave minimization
  publication-title: Applied mathematics and parallel computing – Festschrift for Klaus Ritter
– year: 2012
  ident: bib0043
  publication-title: A new approximation for the ℓ
– year: 2014
  ident: bib0061
  article-title: Learning theory and algorithms for revenue optimization in second-price auctions with reserve
  publication-title: Proceeding ICML’14. Proceedings of the 31th international conference on machine learning
– volume: 28
  start-page: 830
  year: 2013
  end-page: 854
  ident: bib0065
  article-title: Learning sparse classifiers with difference of convex functions algorithms
  publication-title: Optimization Methods and Software
– volume: 46
  start-page: 431
  year: 1996
  end-page: 439
  ident: bib0083
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of The Royal Statistical Society
– start-page: 348
  year: 2008
  end-page: 357
  ident: bib0081
  article-title: DC programming approach for solving a class of nonconvex programs dealing with zero-norm
  publication-title: Modelling, computation and optimization in information systems and management science, CCIS 14
– volume: 61
  start-page: 129
  year: 2005
  end-page: 150
  ident: bib0063
  article-title: Combined SVM-based feature selection and classification.
  publication-title: Machine Learning
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0012
  article-title: Support vector networks
  publication-title: Machine Learning
– volume: 47
  start-page: 87
  year: 1999
  end-page: 200
  ident: bib0073
  article-title: An affine scaling methodology for best basis selection
  publication-title: IEEE Transactions on Signal Processing
– year: 2001
  ident: bib0024
  publication-title: Efficient feature subset selection for support vector machines
– volume: 48
  start-page: 595
  year: 2010
  end-page: 632
  ident: bib0070
  article-title: An efficient combination of DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs
  publication-title: Journal of Global Optimization
– year: 2006
  ident: bib0021
  publication-title: Feature extraction, foundations and applications
– volume: 3
  start-page: 62
  year: 2009
  ident: bib0041
  article-title: Gene selection for cancer classification using DCA
  publication-title: Journal of Fonctiers of Computer Science and Technology
– volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: bib0062
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM Journal on Scientific Computing
– volume: 11
  start-page: 5
  year: 1998
  end-page: 21
  ident: bib0005
  article-title: Parsimonious least norm approximation
  publication-title: Computational Optimization and Applications
– volume: 87
  start-page: 401
  year: 2000
  end-page: 426
  ident: bib0030
  article-title: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints
  publication-title: Mathematical Programming
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib0014
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
– year: 2006, January
  ident: bib0079
  article-title: A new compressive imaging camera architecture using optical-domain compression
  publication-title: Computational imaging IV at IS&T/SPIE electronic imaging
– volume: 54
  start-page: 2829
  year: 2006
  end-page: 2840
  ident: bib0007
  article-title: Highly robust error correction by convex programming
  publication-title: IEEE Transactions on Information Theory
– volume: 45
  start-page: 600
  year: 1997
  end-page: 616
  ident: bib0019
  article-title: Sparse signal reconstructions from limited data using FOCUSS: A re-weighted minimum norm algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 133
  start-page: 23
  year: 2005
  end-page: 46
  ident: bib0034
  article-title: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
  publication-title: Annals of Operations Research
– year: 2009
  ident: bib0042
  publication-title: Convergence analysis of DC algorithms for DC programming with subanalytic data
– start-page: 831
  year: 2007
  end-page: 838
  ident: bib0078
  article-title: Sparse eigen methods by D.C. programming
  publication-title: Proceeding ICML ’07. Proceedings of the 24th international conference on machine learning
– volume: 1
  start-page: 23
  year: 1992
  end-page: 34
  ident: bib0003
  article-title: Robust linear programming discrimination of two linearly inseparable sets
  publication-title: Optimization Methods and Software
– volume: 46
  start-page: 467
  year: 2010
  end-page: 486
  ident: bib0075
  article-title: Concave programming for minimizing the zero-norm over polyhedral sets
  publication-title: Computational Optimization and Applications
– volume: 67
  start-page: 136
  year: 2013
  end-page: 148
  ident: bib0022
  article-title: Sparse high-dimensional fractional-norm support vector machine via DC programming
  publication-title: Computational Statistics and Data Analysis
– year: 2014
  ident: bib0054
  article-title: Feature selection in machine learning: An exact penalty approach using a difference of convex function algorithm
  publication-title: Machine Learning
– year: 2008
  ident: bib0009
  article-title: Iteratively reweighted algorithms for compressive sensing
  publication-title: ICASSP
– volume: 156
  start-page: 325
  year: 2008
  end-page: 338
  ident: bib0039
  article-title: A continuous approach for the concave cost supply problem via DC programming and DCA
  publication-title: Discrete Applied Mathematics
– year: 2009
  ident: bib0023
  publication-title: The elements of statistical learning
– start-page: 387
  year: 2013
  end-page: 397
  ident: bib0049
  article-title: Sparse signal recovery by difference of convex functions algorithms
  publication-title: Lecture notes in computer science
– volume: 183
  start-page: 1001
  year: 2007
  end-page: 1012
  ident: bib0037
  article-title: A continuous approach for solving the concave cost supply problem by combining DCA and B&B techniques
  publication-title: European Journal of Operational Research
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bib0089
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– year: 2005
  ident: bib0057
  article-title: FS SFS: A novel feature selection method for support vector machines
  publication-title: Pattern Recognition
– year: 2004
  ident: bib0025
  article-title: Leveraging the margin more carefully
  publication-title: Proceedings of the 21st international conference on machine learning, ICML 2004
– year: 1998
  ident: bib0004
  article-title: Feature Selection via concave minimization and support vector machines
  publication-title: Proceeding of international conference on machine learning ICML’98
– volume: 49
  start-page: 3320
  year: 2003
  end-page: 3325
  ident: bib0018
  article-title: Sparse representation in union of bases
  publication-title: IEEE Transactions on Information Theory
– year: 2013
  ident: bib0051
  article-title: Efficient algorithms for feature selection in multi-class support vector machine
  publication-title: Advanced computational methods for knowledge engineering. Studies in computational intelligence 479
– reference: Le Thi, H. A. (2012). DC programming and DCA.
– volume: 2
  start-page: 259
  year: 2008
  end-page: 278
  ident: bib0040
  article-title: A dc programming approach for feature selection in support vector machines learning
  publication-title: Journal of Advances in Data Analysis and Classification
– volume: 36
  start-page: 1509
  year: 2008
  end-page: 1533
  ident: bib0090
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Annals of Statistics
– volume: 28
  start-page: 1336
  year: 2014
  end-page: 1365
  ident: bib0053
  article-title: Self-organizing maps by difference of convex functions optimization
  publication-title: Data Mining and Knowledge Discovery
– volume: 4
  start-page: 77
  year: 2003
  end-page: 116
  ident: bib0033
  article-title: Large scale molecular optimization from distance matrices by a D.C. optimization approach
  publication-title: SIAM Journal on Optimization
– year: 2014
  ident: bib0015
  article-title: Dictionary learning for fast classification based on soft-thresholding
  publication-title: International Journal of Computer Vision
– start-page: 528
  year: 2013
  end-page: 542
  ident: bib0047
  article-title: DCA based algorithms for feature selection in semi-supervised support vector machines
  publication-title: Machine learning and data mining in pattern recognition
– volume: 3
  start-page: 1439
  year: 2003
  end-page: 1461
  ident: bib0086
  article-title: Use of the zero-norm with linear models and kernel methods
  publication-title: Journal of Machine Learning Research
– reference: .
– volume: 52
  start-page: 509
  year: 2012
  end-page: 535
  ident: bib0044
  article-title: Exact penalty and error bounds in DC programming
  publication-title: Journal of Global Optimization
– volume: 11
  start-page: 253
  year: 1997
  end-page: 285
  ident: bib0029
  article-title: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
  publication-title: Journal of Global Optimization
– start-page: 1063
  year: 2010
  end-page: 1070
  ident: bib0082
  article-title: A DC programming approach for sparse eigenvalue problem.
  publication-title: Proceedings of the 27th international conference on machine learning, ICML 2010
– volume: 183
  start-page: 1067
  year: 2006
  end-page: 1085
  ident: bib0036
  article-title: Optimization based DC programming and DCA for hierarchical clustering
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 36
  year: 2014
  end-page: 50
  ident: bib0052
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms.
  publication-title: Neural Networks
– start-page: 99
  year: 2011
  end-page: 104
  ident: bib0084
  article-title: Inner regions and interval linearizations for global optimization
  publication-title: Proceedings of the twenty-fifth AAAI conference on artificial intelligence
– start-page: 225
  year: 2013
  end-page: 290
  ident: bib0050
  article-title: DC programming approaches for distance geometry problems
  publication-title: Distance geometry: Theory, methods and applications
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0020
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
– volume: 282
  start-page: 15
  year: 2014
  end-page: 35
  ident: bib0056
  article-title: DC programming and DCA for solving general DC programs
  publication-title: Proceedings of 2nd international conference on computer science, applied mathematics and applications (ICCSAMA 2014), Advances in Intelligent systems and Computing
– volume: 101
  start-page: 500
  year: 2006
  end-page: 509
  ident: bib0058
  article-title: Multicategory
  publication-title: Journal of the American Statistical Association
– volume: 51
  start-page: 4203
  year: 2005
  end-page: 4215
  ident: bib0006
  article-title: Decoding by linear programming
  publication-title: IEEE Transactions on Information Theory
– volume: 51
  start-page: 760
  year: 2003
  end-page: 770
  ident: bib0074
  article-title: Subset selection in noise based on diversity measure minimization
  publication-title: IEEE Transactions on Signal Processing
– volume: 61
  start-page: 129
  issue: 1–3
  year: 2005
  ident: 10.1016/j.ejor.2014.11.031_bib0063
  article-title: Combined SVM-based feature selection and classification.
  publication-title: Machine Learning
  doi: 10.1007/s10994-005-1505-9
– volume: 46
  start-page: 467
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2014.11.031_bib0075
  article-title: Concave programming for minimizing the zero-norm over polyhedral sets
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-008-9202-9
– volume: 67
  start-page: 136
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0022
  article-title: Sparse high-dimensional fractional-norm support vector machine via DC programming
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2013.01.020
– year: 1970
  ident: 10.1016/j.ejor.2014.11.031_bib0076
– volume: 11
  start-page: 253
  issue: 3
  year: 1997
  ident: 10.1016/j.ejor.2014.11.031_bib0029
  article-title: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008288411710
– volume: 101
  start-page: 500
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0058
  article-title: Multicategory ψ-learning
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000781
– volume: 87
  start-page: 401
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2014.11.031_bib0030
  article-title: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints
  publication-title: Mathematical Programming
  doi: 10.1007/s101070050003
– year: 2005
  ident: 10.1016/j.ejor.2014.11.031_bib0057
  article-title: FS SFS: A novel feature selection method for support vector machines
  publication-title: Pattern Recognition
– year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0051
  article-title: Efficient algorithms for feature selection in multi-class support vector machine
– volume: 142
  start-page: 258
  year: 2002
  ident: 10.1016/j.ejor.2014.11.031_bib0032
  article-title: Combination between local and global methods for solving an optimization problem over the efficient set
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(01)00301-0
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.ejor.2014.11.031_bib0020
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– volume: 2
  start-page: 259
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0040
  article-title: A dc programming approach for feature selection in support vector machines learning
  publication-title: Journal of Advances in Data Analysis and Classification
  doi: 10.1007/s11634-008-0030-7
– year: 2001
  ident: 10.1016/j.ejor.2014.11.031_sbref0024
– year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0054
  article-title: Feature selection in machine learning: An exact penalty approach using a difference of convex function algorithm
– volume: 7
  start-page: 397
  year: 1998
  ident: 10.1016/j.ejor.2014.11.031_bib0016
  article-title: Penalized regression: The bridge versus the lasso
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1998.10474784
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  ident: 10.1016/j.ejor.2014.11.031_bib0006
  article-title: Decoding by linear programming
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2005.858979
– volume: 54
  start-page: 2829
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0007
  article-title: Highly robust error correction by convex programming
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2008.924688
– volume: 51
  start-page: 760
  issue: 3
  year: 2003
  ident: 10.1016/j.ejor.2014.11.031_bib0074
  article-title: Subset selection in noise based on diversity measure minimization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2002.808076
– volume: 11
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.1016/j.ejor.2014.11.031_bib0005
  article-title: Parsimonious least norm approximation
  publication-title: Computational Optimization and Applications
  doi: 10.1023/A:1018361916442
– year: 2001
  ident: 10.1016/j.ejor.2014.11.031_bib0085
  article-title: Feature selection for SVMs
– volume: 28
  start-page: 830
  issue: 4
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0065
  article-title: Learning sparse classifiers with difference of convex functions algorithms
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556788.2011.652630
– volume: 4701
  start-page: 286
  year: 2007
  ident: 10.1016/j.ejor.2014.11.031_bib0077
  article-title: Fast optimization methods for L1 regularization: A comparative study and two new approaches
– volume: 161
  start-page: 199
  issue: 1
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0055
  article-title: Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm
  publication-title: Journal of Optimization Theory, & Applications
  doi: 10.1007/s10957-012-0197-0
– year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0042
– start-page: 99
  year: 2011
  ident: 10.1016/j.ejor.2014.11.031_bib0084
  article-title: Inner regions and interval linearizations for global optimization
– year: 1998
  ident: 10.1016/j.ejor.2014.11.031_bib0004
  article-title: Feature Selection via concave minimization and support vector machines
– volume: 37
  start-page: 593
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0035
  article-title: A new efficient algorithm based on DC programming and DCA for clustering
  publication-title: Journal of Global Optimization
– start-page: 134
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0001
  article-title: Compressive wireless sensing
– year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0013
  article-title: Trading convexity for scalability
– volume: 183
  start-page: 1067
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0036
  article-title: Optimization based DC programming and DCA for hierarchical clustering
  publication-title: European Journal of Operational Research
– volume: 28
  start-page: 1336
  issue: 5–6
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0053
  article-title: Self-organizing maps by difference of convex functions optimization
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-014-0369-7
– volume: 22
  start-page: 289
  year: 1997
  ident: 10.1016/j.ejor.2014.11.031_bib0067
  article-title: Convex analysis approach to d.c. programming: Theory, algorithm and applications
  publication-title: Acta Mathematica Vietnamica
– year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0061
  article-title: Learning theory and algorithms for revenue optimization in second-price auctions with reserve
– start-page: 225
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0050
  article-title: DC programming approaches for distance geometry problems
– volume: 48
  start-page: 595
  issue: 4
  year: 2010
  ident: 10.1016/j.ejor.2014.11.031_bib0070
  article-title: An efficient combination of DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-009-9507-y
– year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0002
– volume: 49
  start-page: 3320
  year: 2003
  ident: 10.1016/j.ejor.2014.11.031_bib0018
  article-title: Sparse representation in union of bases
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2003.820031
– ident: 10.1016/j.ejor.2014.11.031_bib0064
  doi: 10.1080/10556788.2011.645543
– volume: 59
  start-page: 36
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0052
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms.
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.06.011
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0089
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000735
– volume: 4
  start-page: 77
  issue: 1
  year: 2003
  ident: 10.1016/j.ejor.2014.11.031_bib0033
  article-title: Large scale molecular optimization from distance matrices by a D.C. optimization approach
  publication-title: SIAM Journal on Optimization
– volume: 282
  start-page: 15
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0056
  article-title: DC programming and DCA for solving general DC programs
– volume: 46
  start-page: 431
  year: 1996
  ident: 10.1016/j.ejor.2014.11.031_bib0083
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of The Royal Statistical Society
– volume: 36
  start-page: 1509
  issue: 4
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0090
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Annals of Statistics
  doi: 10.1214/009053607000000802
– volume: 14
  start-page: 877
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0008
  article-title: Enhancing sparsity by reweighted-l1 minimization
  publication-title: Journal of Mathematical Analysis and Applications
– year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0023
– volume: 2
  start-page: 88
  issue: 1
  year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0088
  article-title: Gene selection using support vector machines with non-convex penalty
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti736
– volume: 8
  start-page: 375
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0026
  article-title: A bilinear formulation for vector sparsity optimization
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2007.08.015
– volume: 57
  start-page: 4686
  year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0017
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and dc programming
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2026004
– volume: 3
  start-page: 1439
  year: 2003
  ident: 10.1016/j.ejor.2014.11.031_bib0086
  article-title: Use of the zero-norm with linear models and kernel methods
  publication-title: Journal of Machine Learning Research
– start-page: 387
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0049
  article-title: Sparse signal recovery by difference of convex functions algorithms
  doi: 10.1007/978-3-642-36543-0_40
– year: 1993
  ident: 10.1016/j.ejor.2014.11.031_bib0066
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
  publication-title: 27th asilomar conference on signals, systems and computers
  doi: 10.1109/ACSSC.1993.342465
– year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0009
  article-title: Iteratively reweighted algorithms for compressive sensing
  publication-title: ICASSP
– year: 2002
  ident: 10.1016/j.ejor.2014.11.031_bib0069
  article-title: DC programming: Theory, algorithms and applications. The state of the art
– start-page: 175
  year: 1996
  ident: 10.1016/j.ejor.2014.11.031_bib0060
  article-title: Machine learning via polyhedral concave minimization
– year: 2012
  ident: 10.1016/j.ejor.2014.11.031_bib0043
– year: 2010
  ident: 10.1016/j.ejor.2014.11.031_bib0080
  article-title: Learning sparse svm for feature selection on very high dimensional datasets.
  publication-title: ICML 2010
– volume: 52
  start-page: 509
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2014.11.031_bib0044
  article-title: Exact penalty and error bounds in DC programming
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-011-9765-3
– volume: 8
  start-page: 476
  year: 1998
  ident: 10.1016/j.ejor.2014.11.031_bib0068
  article-title: DC optimization algorithms for solving the trust region subproblem.
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/S1052623494274313
– volume: 8342
  start-page: 1
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0071
  article-title: Recent advances in DC programming and DCA
  publication-title: Transactions on Computational Collective Intelligence
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 10.1016/j.ejor.2014.11.031_bib0014
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382273
– volume: 183
  start-page: 1067
  year: 2007
  ident: 10.1016/j.ejor.2014.11.031_bib0038
  article-title: Optimization based DC programming and DCA for hierarchical clustering
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.07.028
– year: 2004
  ident: 10.1016/j.ejor.2014.11.031_bib0025
  article-title: Leveraging the margin more carefully
– volume: 156
  start-page: 325
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0039
  article-title: A continuous approach for the concave cost supply problem via DC programming and DCA
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2007.03.024
– volume: 24
  start-page: 227
  year: 1995
  ident: 10.1016/j.ejor.2014.11.031_bib0062
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S0097539792240406
– volume: 45
  start-page: 600
  year: 1997
  ident: 10.1016/j.ejor.2014.11.031_bib0019
  article-title: Sparse signal reconstructions from limited data using FOCUSS: A re-weighted minimum norm algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.558475
– start-page: 1063
  year: 2010
  ident: 10.1016/j.ejor.2014.11.031_bib0082
  article-title: A DC programming approach for sparse eigenvalue problem.
– volume: 47
  start-page: 87
  year: 1999
  ident: 10.1016/j.ejor.2014.11.031_bib0073
  article-title: An affine scaling methodology for best basis selection
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.738251
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.ejor.2014.11.031_bib0012
  article-title: Support vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 56
  start-page: 1393
  issue: 4
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0048
  article-title: Binary classification via spherical separator by DC programming and DCA
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-012-9859-6
– year: 1997
  ident: 10.1016/j.ejor.2014.11.031_bib0028
– ident: 10.1016/j.ejor.2014.11.031_bib0031
– start-page: 528
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0047
  article-title: DCA based algorithms for feature selection in semi-supervised support vector machines
– start-page: 348
  year: 2008
  ident: 10.1016/j.ejor.2014.11.031_bib0081
  article-title: DC programming approach for solving a class of nonconvex programs dealing with zero-norm
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.ejor.2014.11.031_bib0059
  article-title: Matching pursuit in a time-frequency dictionary
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.258082
– start-page: 831
  year: 2007
  ident: 10.1016/j.ejor.2014.11.031_bib0078
  article-title: Sparse eigen methods by D.C. programming
– volume: 133
  start-page: 23
  year: 2005
  ident: 10.1016/j.ejor.2014.11.031_bib0034
  article-title: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-004-5022-1
– volume: 51
  start-page: 1097
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2014.11.031_bib0045
  article-title: A DC programming approach for solving the symmetric eigenvalue complementarity problem
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-010-9388-5
– volume: 183
  start-page: 1001
  year: 2007
  ident: 10.1016/j.ejor.2014.11.031_bib0037
  article-title: A continuous approach for solving the concave cost supply problem by combining DCA and B&B techniques
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 2277
  issue: 8
  year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0072
  article-title: A DC programming algorithm for switched linear regression
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2301575
– year: 1994
  ident: 10.1016/j.ejor.2014.11.031_bib0027
– volume: 32
  start-page: 2832
  issue: 5
  year: 2010
  ident: 10.1016/j.ejor.2014.11.031_bib0011
  article-title: Lower bound theory of nonzero entries in solutions of l2-lp minimization
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/090761471
– year: 2014
  ident: 10.1016/j.ejor.2014.11.031_bib0015
  article-title: Dictionary learning for fast classification based on soft-thresholding
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0784-7
– year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0079
  article-title: A new compressive imaging camera architecture using optical-domain compression
– volume: 3
  start-page: 62
  issue: 6
  year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0041
  article-title: Gene selection for cancer classification using DCA
  publication-title: Journal of Fonctiers of Computer Science and Technology
– volume: 37
  start-page: 2109
  year: 2009
  ident: 10.1016/j.ejor.2014.11.031_bib0087
  article-title: Some sharp performance bounds for least squares regression with regularization
  publication-title: Annals of Statistics
  doi: 10.1214/08-AOS659
– volume: 25
  start-page: 2776
  issue: 10
  year: 2013
  ident: 10.1016/j.ejor.2014.11.031_bib0046
  article-title: Block clustering based on difference of convex functions (DC) programming and DC algorithms
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00490
– volume: 1
  start-page: 23
  year: 1992
  ident: 10.1016/j.ejor.2014.11.031_bib0003
  article-title: Robust linear programming discrimination of two linearly inseparable sets
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789208805504
– year: 2006
  ident: 10.1016/j.ejor.2014.11.031_bib0021
– start-page: 145
  year: 2007
  ident: 10.1016/j.ejor.2014.11.031_bib0010
  article-title: Direct convex relaxations of sparse SVM
SSID ssj0001515
Score 2.5726247
Snippet •A unifying DC approximation, including all standard approximations, of the zero-norm is proposed.•The consistency between global/local minima of approximate...
Sparse optimization refers to an optimization problem involving the zero-norm in objective or constraints. In this paper, nonconvex approximation approaches...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Algorithms
Approximation
Computer Science
DC approximation function
DC programming and DCA
Direct current
Feature selection in SVM
Global optimization
Mathematical analysis
Mathematical functions
Mathematical models
Mathematical problems
Mathematical programming
Optimization
Optimization algorithms
Programming
Sparse optimization
Studies
Title DC approximation approaches for sparse optimization
URI https://dx.doi.org/10.1016/j.ejor.2014.11.031
https://www.proquest.com/docview/1664475767
https://www.proquest.com/docview/1685828368
https://hal.univ-lorraine.fr/hal-01616997
Volume 244
WOSCitedRecordID wos000352667900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQwge-CggChsKiLcp0eI4dvxYdZsGKnsqqG9W4jjaKpZObTf1z-cudtyPqRN72IvVXi9u07vcnc--3xHyvaCagdmXYVyKPGQ5ZaGEMD-kiLZGdZEK03QtGYrz82w8lu2O7rxpJyDqOlsu5fWjihpoIGwsnX2AuP2kQIDXIHQYQeww_pfgjwcWKHx5aasSPWy4aaAXDsGEzDCBD7biyhVh7kzPu1AVCLM2aejQgXwWeWiw92fjwaJ-tNpkyK_AnNZN0mYUrZgt4y9P-dOkaseR43H5hzj1Z1V93ZUQIaW2ArO1qdSCOm4oj7OQfM3X2uzjHStuEwqTyEymCNkaswiBVp232IDM3nJl_oBhe3ZtonAOhXPAWkcdYcX9HhWpzDpkr__jZPzTu22M7JotJ3c7rsLKHgbc_iW7opinF3icdsurN6HK6A155dYYQd_qxlvyxNRd8rwtceiS120rj8BZ9i55uYZL-Y4kx4NgQ4eClQ4FoEOB1aFgXYfek9-nJ6PBWei6a4QaYt5FWHGTSZYfJYVmosTAVFeGlgxMfpLGVc4TmsL7MqdZWVCjceFpklTqTGoKUXzygXTqaW0-kgBWAbSSFSsYh6HkeVHqtDQ6EXFexYz2SNz-W0o76HnsgPJX7ZZTjxz6a64t8Mq93GkrBOVCRxsSKtCpe6_7BhLzX4BY62f9oUIaroW4lOIWmPZbgSr37M1VzDliZQoueuSr_xhsM2645bWZ3iBPhrvSCc8-PehuPpMXqydtn3QWsxtzQJ7p28XlfPbFKe4_LvatmA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC+approximation+approaches+for+sparse+optimization&rft.jtitle=European+journal+of+operational+research&rft.au=Le+Thi%2C+H.A.&rft.au=Pham+Dinh%2C+T.&rft.au=Le%2C+H.M.&rft.au=Vo%2C+X.T.&rft.date=2015-07-01&rft.issn=0377-2217&rft.volume=244&rft.issue=1&rft.spage=26&rft.epage=46&rft_id=info:doi/10.1016%2Fj.ejor.2014.11.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2014_11_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon