Cohesin Causes Replicative DNA Damage by Trapping DNA Topological Stress
DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complex...
Saved in:
| Published in: | Molecular cell Vol. 78; no. 4; p. 739 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
21.05.2020
|
| Subjects: | |
| ISSN: | 1097-4164, 1097-4164 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological-stress-linked damage in these regions. At cohesin-enriched centromeres, cohesin activity causes the accumulation of DNA damage, RF rotation, and pre-catenation, confirming that cohesin-dependent DNA topological stress impacts on normal replication progression. In contrast, at the rDNA, cohesin and condensin activity inhibit the repair of damage caused by DNA topological stress. We propose that, as well as generally acting to ensure faithful genetic inheritance, SMCs can disrupt genome stability by trapping DNA topological stress. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1097-4164 1097-4164 |
| DOI: | 10.1016/j.molcel.2020.03.013 |