Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity
DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven...
Saved in:
| Published in: | Molecular cell Vol. 67; no. 5; p. 882 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
07.09.2017
|
| Subjects: | |
| ISSN: | 1097-4164, 1097-4164 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy. |
|---|---|
| AbstractList | DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy. DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy. |
| Author | Raso, Maria Chiara Krietsch, Jana Terraneo, Nastassja Cortez, David Schmid, Jonas A Zellweger, Ralph Vujanovic, Marko Ciccia, Alberto Herrador, Raquel Holland, Cory L Jacobs, Heinz Huang, Jen-Wei Penengo, Lorenza Lopes, Massimo Taglialatela, Angelo Zwicky, Katharina |
| Author_xml | – sequence: 1 givenname: Marko surname: Vujanovic fullname: Vujanovic, Marko organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 2 givenname: Jana surname: Krietsch fullname: Krietsch, Jana organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 3 givenname: Maria Chiara surname: Raso fullname: Raso, Maria Chiara organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 4 givenname: Nastassja surname: Terraneo fullname: Terraneo, Nastassja organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 5 givenname: Ralph surname: Zellweger fullname: Zellweger, Ralph organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 6 givenname: Jonas A surname: Schmid fullname: Schmid, Jonas A organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 7 givenname: Angelo surname: Taglialatela fullname: Taglialatela, Angelo organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA – sequence: 8 givenname: Jen-Wei surname: Huang fullname: Huang, Jen-Wei organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA – sequence: 9 givenname: Cory L surname: Holland fullname: Holland, Cory L organization: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205-0146, USA – sequence: 10 givenname: Katharina surname: Zwicky fullname: Zwicky, Katharina organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 11 givenname: Raquel surname: Herrador fullname: Herrador, Raquel organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 12 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz organization: Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, 1066 CX, Amsterdam, the Netherlands – sequence: 13 givenname: David surname: Cortez fullname: Cortez, David organization: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205-0146, USA – sequence: 14 givenname: Alberto surname: Ciccia fullname: Ciccia, Alberto organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA – sequence: 15 givenname: Lorenza surname: Penengo fullname: Penengo, Lorenza organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 16 givenname: Massimo surname: Lopes fullname: Lopes, Massimo email: lopes@imcr.uzh.ch organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland. Electronic address: lopes@imcr.uzh.ch |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28886337$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUE1PgzAYbozGfeg_MIajF7AtlJYjbk5NlrnMefFCSumWztIyCjP8e9HNxMv7vHm-Ds8InBtrJAA3CAYIovh-F5RWC6kDDBENIAsggmdgiGBC_QjF0fm_fwBGzu0gRBFhySUYYMZYHIZ0CLqVrLQSvFHWeDNbf3pv2n4ps_W4KbyVPMjace21VS9PF6k35SXfyl7Yt6qW3nLSc0uruzZXPdMoc2z6CX-s0sVD-Jta19w4bQV30ktFow6q6a7AxYZrJ69POAbvs8f15Nmfvz69TNK5L0iMG78QktM8EjiKBCQRLgRFuL9MxphuYkoIYwnJqSCIEMmSkBcUU0hRIuKwiDAeg7tjb1XbfStdk5XK9btpbqRtXYaSkBKcQJz01tuTtc1LWWRVrUped9nfXPgbvIZvUw |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2023_168275 crossref_primary_10_1016_j_isci_2023_106276 crossref_primary_10_1016_j_dnarep_2019_03_016 crossref_primary_10_1016_j_jbc_2025_108551 crossref_primary_10_1038_s41467_020_17324_z crossref_primary_10_1016_j_molcel_2023_12_025 crossref_primary_10_1080_10409238_2019_1651817 crossref_primary_10_1158_0008_5472_CAN_19_0216 crossref_primary_10_1016_j_molcel_2020_12_010 crossref_primary_10_1016_j_molcel_2022_09_009 crossref_primary_10_1016_j_dnarep_2019_102668 crossref_primary_10_1038_s41580_020_0257_5 crossref_primary_10_1016_j_molcel_2022_02_016 crossref_primary_10_1093_nar_gkab344 crossref_primary_10_1016_j_molcel_2017_11_035 crossref_primary_10_1038_s41580_019_0152_0 crossref_primary_10_1080_10985549_2023_2224199 crossref_primary_10_1016_j_molcel_2022_08_028 crossref_primary_10_1038_s41420_022_01204_0 crossref_primary_10_1158_2159_8290_CD_17_1461 crossref_primary_10_1016_j_bbcan_2019_08_002 crossref_primary_10_1016_j_molcel_2023_07_008 crossref_primary_10_1083_jcb_202106022 crossref_primary_10_15252_embj_2019103654 crossref_primary_10_1083_jcb_201809012 crossref_primary_10_1093_nar_gkae061 crossref_primary_10_1111_mmi_14655 crossref_primary_10_1016_j_molcel_2017_11_022 crossref_primary_10_1016_j_molcel_2020_04_031 crossref_primary_10_1038_s41389_022_00410_w crossref_primary_10_3390_jof8060621 crossref_primary_10_1038_s41467_025_61828_5 crossref_primary_10_3389_fonc_2021_822500 crossref_primary_10_3390_ijms19102909 crossref_primary_10_1007_s12223_021_00934_5 crossref_primary_10_1016_j_molcel_2020_08_018 crossref_primary_10_1016_j_molcel_2022_05_004 crossref_primary_10_1093_nar_gkae828 crossref_primary_10_1016_j_jbiotec_2023_12_001 crossref_primary_10_1080_10409238_2018_1488803 crossref_primary_10_1038_s41589_018_0113_5 crossref_primary_10_3390_ijms241310488 crossref_primary_10_1016_j_tig_2024_02_006 crossref_primary_10_1042_BCJ20190579 crossref_primary_10_1016_j_dnarep_2024_103701 crossref_primary_10_1016_j_dnarep_2024_103786 crossref_primary_10_1038_s41467_020_16096_w crossref_primary_10_1038_s41594_022_00871_y crossref_primary_10_1016_j_tcb_2021_01_008 crossref_primary_10_1093_nar_gkab1184 crossref_primary_10_1371_journal_pgen_1010545 crossref_primary_10_3390_genes12121960 crossref_primary_10_3390_genes9120589 crossref_primary_10_1038_s41467_023_43183_5 crossref_primary_10_1038_s41467_022_32756_5 crossref_primary_10_1042_BSR20222591 crossref_primary_10_1093_nar_gkae154 crossref_primary_10_1016_j_cell_2017_11_047 crossref_primary_10_1093_molbev_msab361 crossref_primary_10_1038_s41467_019_13667_4 crossref_primary_10_1038_s12276_021_00673_0 crossref_primary_10_1038_s41556_019_0293_6 crossref_primary_10_1038_s41594_018_0075_z crossref_primary_10_1083_jcb_201808134 crossref_primary_10_1093_nar_gkz960 crossref_primary_10_1016_j_molcel_2021_01_012 crossref_primary_10_1016_j_molcel_2025_08_017 crossref_primary_10_1016_j_toxlet_2019_03_006 crossref_primary_10_1093_nar_gkab1173 crossref_primary_10_1016_j_semcancer_2021_04_012 crossref_primary_10_1016_j_molcel_2017_09_036 crossref_primary_10_1093_nar_gkae563 crossref_primary_10_1038_s41467_023_39517_y crossref_primary_10_1038_s41594_023_00928_6 crossref_primary_10_1098_rsos_201932 crossref_primary_10_1016_j_semcdb_2020_10_001 crossref_primary_10_1016_j_tibs_2025_07_004 crossref_primary_10_7554_eLife_41426 crossref_primary_10_3390_genes12111812 crossref_primary_10_1038_s41589_024_01833_9 crossref_primary_10_3389_fcell_2021_670392 crossref_primary_10_1016_j_dnarep_2021_103209 crossref_primary_10_1073_pnas_2216055120 crossref_primary_10_1093_nar_gkz531 crossref_primary_10_1038_s41467_024_45684_3 crossref_primary_10_1074_jbc_RA120_013495 crossref_primary_10_1093_nar_gkad1054 crossref_primary_10_3390_genes10010010 crossref_primary_10_1007_s00412_023_00813_7 crossref_primary_10_1016_j_molcel_2018_07_011 crossref_primary_10_1016_j_semcdb_2022_02_013 crossref_primary_10_1093_nar_gkaa053 crossref_primary_10_1016_j_molcel_2019_10_026 crossref_primary_10_1016_j_molcel_2018_10_045 crossref_primary_10_1038_s41467_020_17449_1 crossref_primary_10_1093_nar_gkaa974 crossref_primary_10_1093_nar_gkae811 crossref_primary_10_1007_s00412_017_0658_1 crossref_primary_10_1016_j_dnarep_2019_02_003 crossref_primary_10_1038_s41568_022_00518_6 crossref_primary_10_1080_10409238_2019_1687420 crossref_primary_10_1093_nar_gkac1116 crossref_primary_10_1016_j_dnarep_2024_103731 crossref_primary_10_1038_s41467_023_37341_y crossref_primary_10_1146_annurev_cancerbio_030617_050232 crossref_primary_10_3389_fcell_2021_699771 crossref_primary_10_1038_s41389_020_00289_5 crossref_primary_10_1186_s13059_024_03451_z crossref_primary_10_1038_s12276_020_00533_3 crossref_primary_10_1126_sciadv_adv0381 crossref_primary_10_1016_j_semcdb_2020_07_004 crossref_primary_10_1126_science_add7328 crossref_primary_10_1038_s41467_024_50882_0 crossref_primary_10_1016_j_molcel_2025_06_002 crossref_primary_10_3389_fonc_2020_00670 crossref_primary_10_3390_genes9080416 crossref_primary_10_1186_s13059_022_02638_6 crossref_primary_10_1007_s00018_019_03206_1 crossref_primary_10_1016_j_dnarep_2021_103163 crossref_primary_10_1016_j_molcel_2020_11_029 crossref_primary_10_1016_j_jbc_2022_101672 crossref_primary_10_1016_j_chembiol_2019_11_012 crossref_primary_10_1128_AEM_01988_18 crossref_primary_10_1158_0008_5472_CAN_18_2705 crossref_primary_10_3390_biom15010150 crossref_primary_10_1016_j_semcdb_2020_08_010 crossref_primary_10_3390_cancers12020402 crossref_primary_10_3390_genes12101550 crossref_primary_10_1038_s44318_024_00066_9 crossref_primary_10_1038_s41467_022_34310_9 crossref_primary_10_1038_s41467_017_01164_5 crossref_primary_10_1093_nar_gkab511 crossref_primary_10_3390_biom10040570 crossref_primary_10_1016_j_molcel_2019_10_010 crossref_primary_10_15252_embr_201846263 crossref_primary_10_1016_j_molcel_2019_04_027 crossref_primary_10_1093_hmg_ddaa087 crossref_primary_10_1093_nar_gkac447 crossref_primary_10_26508_lsa_202201584 crossref_primary_10_15252_embr_201948920 crossref_primary_10_1038_s41467_021_26227_6 crossref_primary_10_1038_s41467_019_09196_9 crossref_primary_10_1042_BST20190363 crossref_primary_10_1093_nar_gkae078 crossref_primary_10_3389_fcell_2021_702584 crossref_primary_10_1093_nar_gkab526 crossref_primary_10_1038_s41467_021_24665_w crossref_primary_10_1016_j_dnarep_2020_102947 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_3389_fcell_2020_00717 crossref_primary_10_1093_nar_gkae918 crossref_primary_10_3390_ijms231810212 crossref_primary_10_1007_s00412_023_00807_5 crossref_primary_10_3390_ijms241512419 crossref_primary_10_3390_cancers10080250 crossref_primary_10_1038_s41467_019_12297_0 crossref_primary_10_1016_j_molcel_2020_11_007 crossref_primary_10_1093_nar_gkac583 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.molcel.2017.08.010 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4164 |
| ExternalDocumentID | 28886337 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA197774 – fundername: NIGMS NIH HHS grantid: R01 GM116616 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 7-5 AACTN AAEDT AAEDW AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NPM O-L O9- OK1 P2P RIG ROL RPZ SDG SES SSZ TR2 5VS 7X8 AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c562t-dcea7b4c244c0542dc7122dc8e627f67558895b7c5155e893ad7270719c63d422 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411128900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4164 |
| IngestDate | Sun Nov 09 11:52:10 EST 2025 Thu Apr 03 07:10:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | DNA damage tolerance cancer chemotherapeutics ZRANB3 DNA translocase PCNA ubiquitination single-molecule approaches electron microscopy in vivo postreplication repair replication fork reversal replication fork progression |
| Language | English |
| License | Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c562t-dcea7b4c244c0542dc7122dc8e627f67558895b7c5155e893ad7270719c63d422 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.molcel.2017.08.010 |
| PMID | 28886337 |
| PQID | 1937529029 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1937529029 pubmed_primary_28886337 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-07 |
| PublicationDateYYYYMMDD | 2017-09-07 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular cell |
| PublicationTitleAlternate | Mol Cell |
| PublicationYear | 2017 |
| References | 21078962 - Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20970-3 21911365 - Nucleic Acids Res. 2012 Jan;40(1):245-57 26503038 - Nature. 2015 Nov 19;527(7578):389-93 16357261 - Science. 2005 Dec 16;310(5755):1821-4 18974355 - Science. 2008 Oct 31;322(5902):748-50 22388737 - Nat Struct Mol Biol. 2012 Mar 04;19(4):417-23 18719106 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6 19854138 - Mol Cell. 2009 Oct 23;36(2):302-14 23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62 26840898 - Nat Struct Mol Biol. 2016 Feb;23(2):103-9 20096653 - DNA Repair (Amst). 2010 Mar 2;9(3):257-67 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49 24162990 - Methods Mol Biol. 2014;1094:209-19 27060551 - Curr Opin Cell Biol. 2016 Jun;40:137-144 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 20353596 - BMC Res Notes. 2010 Mar 30;3:85 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 21269891 - DNA Repair (Amst). 2011 Apr 3;10 (4):438-44 12142537 - Science. 2002 Jul 26;297(5581):599-602 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409 27242895 - Front Genet. 2016 May 13;7:87 14685245 - Nature. 2003 Dec 18;426(6968):870-4 25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79 22759634 - Genes Dev. 2012 Jul 15;26(14):1558-72 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 25661486 - Mol Cell. 2015 Mar 5;57(5):812-23 22705370 - Mol Cell. 2012 Aug 10;47(3):410-21 17936713 - Mol Cell. 2007 Oct 12;28(1):167-75 25195051 - Nat Struct Mol Biol. 2014 Oct;21(10):884-92 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20 18498753 - Mol Cell. 2008 May 23;30(4):519-29 12226657 - Nature. 2002 Sep 12;419(6903):135-41 22499669 - J Cell Sci. 2012 Apr 1;125(Pt 7):1633-43 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69 26051180 - Mol Cell. 2015 Jun 18;58(6):1090-100 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708 |
| References_xml | – reference: 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69 – reference: 14685245 - Nature. 2003 Dec 18;426(6968):870-4 – reference: 21078962 - Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20970-3 – reference: 22759634 - Genes Dev. 2012 Jul 15;26(14):1558-72 – reference: 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49 – reference: 19854138 - Mol Cell. 2009 Oct 23;36(2):302-14 – reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 27242895 - Front Genet. 2016 May 13;7:87 – reference: 23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94 – reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 – reference: 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62 – reference: 25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79 – reference: 22499669 - J Cell Sci. 2012 Apr 1;125(Pt 7):1633-43 – reference: 26503038 - Nature. 2015 Nov 19;527(7578):389-93 – reference: 24162990 - Methods Mol Biol. 2014;1094:209-19 – reference: 17936713 - Mol Cell. 2007 Oct 12;28(1):167-75 – reference: 26051180 - Mol Cell. 2015 Jun 18;58(6):1090-100 – reference: 18974355 - Science. 2008 Oct 31;322(5902):748-50 – reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29 – reference: 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409 – reference: 27060551 - Curr Opin Cell Biol. 2016 Jun;40:137-144 – reference: 21269891 - DNA Repair (Amst). 2011 Apr 3;10 (4):438-44 – reference: 26840898 - Nat Struct Mol Biol. 2016 Feb;23(2):103-9 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 – reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602 – reference: 20353596 - BMC Res Notes. 2010 Mar 30;3:85 – reference: 21911365 - Nucleic Acids Res. 2012 Jan;40(1):245-57 – reference: 18719106 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6 – reference: 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20 – reference: 22705370 - Mol Cell. 2012 Aug 10;47(3):410-21 – reference: 25195051 - Nat Struct Mol Biol. 2014 Oct;21(10):884-92 – reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 – reference: 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708 – reference: 22388737 - Nat Struct Mol Biol. 2012 Mar 04;19(4):417-23 – reference: 25661486 - Mol Cell. 2015 Mar 5;57(5):812-23 – reference: 20096653 - DNA Repair (Amst). 2010 Mar 2;9(3):257-67 |
| SSID | ssj0014589 |
| Score | 2.609687 |
| Snippet | DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 882 |
| SubjectTerms | Animals CRISPR-Cas Systems DNA Damage DNA Helicases - genetics DNA Helicases - metabolism DNA Replication DNA, Neoplasm - biosynthesis DNA, Neoplasm - genetics DNA, Neoplasm - ultrastructure HCT116 Cells HEK293 Cells Humans Kinetics Mice Mutation Neoplasms - enzymology Neoplasms - genetics Neoplasms - ultrastructure Polyubiquitin - metabolism Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Replication Origin RNA Interference Transfection Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - metabolism Ubiquitination |
| Title | Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28886337 https://www.proquest.com/docview/1937529029 |
| Volume | 67 |
| WOSCitedRecordID | wos000411128900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxfpk3Ivha7NJL2iepm8MHLWUqDF9KboXh1s51U_bvPUlb9iQIvuQh4ZSSnOR855J8CN1wn0kmwVOVmW2Dg8I9KxTSgY1HuB1Km0thVvqJxnEwHIZJHXAr67LK5kw0B7UshI6R3wLQoB4JbRLeTT8tzRqls6s1hcY6ajkAZbRW0-Eqi-B6hgJPJ1ktAB5uc3XO1HdNirFQOvnQoeYRz479O8g0xqa_-9_f3EM7NczEUaUX-2hN5QdoqyKeXB6iJeDuJlqH-8XsA7-Mi2-wYpjlEg-UrtUA8cUUhntxhHtsAucODOi6YYWTLvQlxXi54CPomY-qkKIRfh9E8b1jpIwd1MayVDgSFU3FEXrrP7x2H62ahMESAI3mlhSKUe4KgAEC4B2RgnYItIHyCc3A3fCCIPQ4FZorRgH6YRIgEQCXUPiOdAk5Rht5katThCX4kuCwSfigclnAeRCwzPEDQHjMp6Foo-tmTlNQcp25YLkqFmW6mtU2OqkWJp1Wr3GkBHx433Ho2R-kz9G2Xm9TI0YvUCuDLa4u0ab4mo_K2ZXRHmjj5PkHUFrOwA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+Fork+Slowing+and+Reversal+upon+DNA+Damage+Require+PCNA+Polyubiquitination+and+ZRANB3+DNA+Translocase+Activity&rft.jtitle=Molecular+cell&rft.au=Vujanovic%2C+Marko&rft.au=Krietsch%2C+Jana&rft.au=Raso%2C+Maria+Chiara&rft.au=Terraneo%2C+Nastassja&rft.date=2017-09-07&rft.eissn=1097-4164&rft.volume=67&rft.issue=5&rft.spage=882&rft_id=info:doi/10.1016%2Fj.molcel.2017.08.010&rft_id=info%3Apmid%2F28886337&rft_id=info%3Apmid%2F28886337&rft.externalDocID=28886337 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon |