Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity

DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell Vol. 67; no. 5; p. 882
Main Authors: Vujanovic, Marko, Krietsch, Jana, Raso, Maria Chiara, Terraneo, Nastassja, Zellweger, Ralph, Schmid, Jonas A, Taglialatela, Angelo, Huang, Jen-Wei, Holland, Cory L, Zwicky, Katharina, Herrador, Raquel, Jacobs, Heinz, Cortez, David, Ciccia, Alberto, Penengo, Lorenza, Lopes, Massimo
Format: Journal Article
Language:English
Published: United States 07.09.2017
Subjects:
ISSN:1097-4164, 1097-4164
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.
AbstractList DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.
DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.
Author Raso, Maria Chiara
Krietsch, Jana
Terraneo, Nastassja
Cortez, David
Schmid, Jonas A
Zellweger, Ralph
Vujanovic, Marko
Ciccia, Alberto
Herrador, Raquel
Holland, Cory L
Jacobs, Heinz
Huang, Jen-Wei
Penengo, Lorenza
Lopes, Massimo
Taglialatela, Angelo
Zwicky, Katharina
Author_xml – sequence: 1
  givenname: Marko
  surname: Vujanovic
  fullname: Vujanovic, Marko
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 2
  givenname: Jana
  surname: Krietsch
  fullname: Krietsch, Jana
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 3
  givenname: Maria Chiara
  surname: Raso
  fullname: Raso, Maria Chiara
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 4
  givenname: Nastassja
  surname: Terraneo
  fullname: Terraneo, Nastassja
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 5
  givenname: Ralph
  surname: Zellweger
  fullname: Zellweger, Ralph
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 6
  givenname: Jonas A
  surname: Schmid
  fullname: Schmid, Jonas A
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 7
  givenname: Angelo
  surname: Taglialatela
  fullname: Taglialatela, Angelo
  organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA
– sequence: 8
  givenname: Jen-Wei
  surname: Huang
  fullname: Huang, Jen-Wei
  organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA
– sequence: 9
  givenname: Cory L
  surname: Holland
  fullname: Holland, Cory L
  organization: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205-0146, USA
– sequence: 10
  givenname: Katharina
  surname: Zwicky
  fullname: Zwicky, Katharina
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 11
  givenname: Raquel
  surname: Herrador
  fullname: Herrador, Raquel
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 12
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
  organization: Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, 1066 CX, Amsterdam, the Netherlands
– sequence: 13
  givenname: David
  surname: Cortez
  fullname: Cortez, David
  organization: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205-0146, USA
– sequence: 14
  givenname: Alberto
  surname: Ciccia
  fullname: Ciccia, Alberto
  organization: Department of Genetics and Development, Columbia University Irving Medical Center, Irving Cancer Research Center, New York, NY 10032, USA
– sequence: 15
  givenname: Lorenza
  surname: Penengo
  fullname: Penengo, Lorenza
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 16
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
  email: lopes@imcr.uzh.ch
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland. Electronic address: lopes@imcr.uzh.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28886337$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1PgzAYbozGfeg_MIajF7AtlJYjbk5NlrnMefFCSumWztIyCjP8e9HNxMv7vHm-Ds8InBtrJAA3CAYIovh-F5RWC6kDDBENIAsggmdgiGBC_QjF0fm_fwBGzu0gRBFhySUYYMZYHIZ0CLqVrLQSvFHWeDNbf3pv2n4ps_W4KbyVPMjace21VS9PF6k35SXfyl7Yt6qW3nLSc0uruzZXPdMoc2z6CX-s0sVD-Jta19w4bQV30ktFow6q6a7AxYZrJ69POAbvs8f15Nmfvz69TNK5L0iMG78QktM8EjiKBCQRLgRFuL9MxphuYkoIYwnJqSCIEMmSkBcUU0hRIuKwiDAeg7tjb1XbfStdk5XK9btpbqRtXYaSkBKcQJz01tuTtc1LWWRVrUped9nfXPgbvIZvUw
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168275
crossref_primary_10_1016_j_isci_2023_106276
crossref_primary_10_1016_j_dnarep_2019_03_016
crossref_primary_10_1016_j_jbc_2025_108551
crossref_primary_10_1038_s41467_020_17324_z
crossref_primary_10_1016_j_molcel_2023_12_025
crossref_primary_10_1080_10409238_2019_1651817
crossref_primary_10_1158_0008_5472_CAN_19_0216
crossref_primary_10_1016_j_molcel_2020_12_010
crossref_primary_10_1016_j_molcel_2022_09_009
crossref_primary_10_1016_j_dnarep_2019_102668
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_1016_j_molcel_2022_02_016
crossref_primary_10_1093_nar_gkab344
crossref_primary_10_1016_j_molcel_2017_11_035
crossref_primary_10_1038_s41580_019_0152_0
crossref_primary_10_1080_10985549_2023_2224199
crossref_primary_10_1016_j_molcel_2022_08_028
crossref_primary_10_1038_s41420_022_01204_0
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_1016_j_bbcan_2019_08_002
crossref_primary_10_1016_j_molcel_2023_07_008
crossref_primary_10_1083_jcb_202106022
crossref_primary_10_15252_embj_2019103654
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_1093_nar_gkae061
crossref_primary_10_1111_mmi_14655
crossref_primary_10_1016_j_molcel_2017_11_022
crossref_primary_10_1016_j_molcel_2020_04_031
crossref_primary_10_1038_s41389_022_00410_w
crossref_primary_10_3390_jof8060621
crossref_primary_10_1038_s41467_025_61828_5
crossref_primary_10_3389_fonc_2021_822500
crossref_primary_10_3390_ijms19102909
crossref_primary_10_1007_s12223_021_00934_5
crossref_primary_10_1016_j_molcel_2020_08_018
crossref_primary_10_1016_j_molcel_2022_05_004
crossref_primary_10_1093_nar_gkae828
crossref_primary_10_1016_j_jbiotec_2023_12_001
crossref_primary_10_1080_10409238_2018_1488803
crossref_primary_10_1038_s41589_018_0113_5
crossref_primary_10_3390_ijms241310488
crossref_primary_10_1016_j_tig_2024_02_006
crossref_primary_10_1042_BCJ20190579
crossref_primary_10_1016_j_dnarep_2024_103701
crossref_primary_10_1016_j_dnarep_2024_103786
crossref_primary_10_1038_s41467_020_16096_w
crossref_primary_10_1038_s41594_022_00871_y
crossref_primary_10_1016_j_tcb_2021_01_008
crossref_primary_10_1093_nar_gkab1184
crossref_primary_10_1371_journal_pgen_1010545
crossref_primary_10_3390_genes12121960
crossref_primary_10_3390_genes9120589
crossref_primary_10_1038_s41467_023_43183_5
crossref_primary_10_1038_s41467_022_32756_5
crossref_primary_10_1042_BSR20222591
crossref_primary_10_1093_nar_gkae154
crossref_primary_10_1016_j_cell_2017_11_047
crossref_primary_10_1093_molbev_msab361
crossref_primary_10_1038_s41467_019_13667_4
crossref_primary_10_1038_s12276_021_00673_0
crossref_primary_10_1038_s41556_019_0293_6
crossref_primary_10_1038_s41594_018_0075_z
crossref_primary_10_1083_jcb_201808134
crossref_primary_10_1093_nar_gkz960
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1016_j_molcel_2025_08_017
crossref_primary_10_1016_j_toxlet_2019_03_006
crossref_primary_10_1093_nar_gkab1173
crossref_primary_10_1016_j_semcancer_2021_04_012
crossref_primary_10_1016_j_molcel_2017_09_036
crossref_primary_10_1093_nar_gkae563
crossref_primary_10_1038_s41467_023_39517_y
crossref_primary_10_1038_s41594_023_00928_6
crossref_primary_10_1098_rsos_201932
crossref_primary_10_1016_j_semcdb_2020_10_001
crossref_primary_10_1016_j_tibs_2025_07_004
crossref_primary_10_7554_eLife_41426
crossref_primary_10_3390_genes12111812
crossref_primary_10_1038_s41589_024_01833_9
crossref_primary_10_3389_fcell_2021_670392
crossref_primary_10_1016_j_dnarep_2021_103209
crossref_primary_10_1073_pnas_2216055120
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_1038_s41467_024_45684_3
crossref_primary_10_1074_jbc_RA120_013495
crossref_primary_10_1093_nar_gkad1054
crossref_primary_10_3390_genes10010010
crossref_primary_10_1007_s00412_023_00813_7
crossref_primary_10_1016_j_molcel_2018_07_011
crossref_primary_10_1016_j_semcdb_2022_02_013
crossref_primary_10_1093_nar_gkaa053
crossref_primary_10_1016_j_molcel_2019_10_026
crossref_primary_10_1016_j_molcel_2018_10_045
crossref_primary_10_1038_s41467_020_17449_1
crossref_primary_10_1093_nar_gkaa974
crossref_primary_10_1093_nar_gkae811
crossref_primary_10_1007_s00412_017_0658_1
crossref_primary_10_1016_j_dnarep_2019_02_003
crossref_primary_10_1038_s41568_022_00518_6
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1093_nar_gkac1116
crossref_primary_10_1016_j_dnarep_2024_103731
crossref_primary_10_1038_s41467_023_37341_y
crossref_primary_10_1146_annurev_cancerbio_030617_050232
crossref_primary_10_3389_fcell_2021_699771
crossref_primary_10_1038_s41389_020_00289_5
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1038_s12276_020_00533_3
crossref_primary_10_1126_sciadv_adv0381
crossref_primary_10_1016_j_semcdb_2020_07_004
crossref_primary_10_1126_science_add7328
crossref_primary_10_1038_s41467_024_50882_0
crossref_primary_10_1016_j_molcel_2025_06_002
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_3390_genes9080416
crossref_primary_10_1186_s13059_022_02638_6
crossref_primary_10_1007_s00018_019_03206_1
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1016_j_molcel_2020_11_029
crossref_primary_10_1016_j_jbc_2022_101672
crossref_primary_10_1016_j_chembiol_2019_11_012
crossref_primary_10_1128_AEM_01988_18
crossref_primary_10_1158_0008_5472_CAN_18_2705
crossref_primary_10_3390_biom15010150
crossref_primary_10_1016_j_semcdb_2020_08_010
crossref_primary_10_3390_cancers12020402
crossref_primary_10_3390_genes12101550
crossref_primary_10_1038_s44318_024_00066_9
crossref_primary_10_1038_s41467_022_34310_9
crossref_primary_10_1038_s41467_017_01164_5
crossref_primary_10_1093_nar_gkab511
crossref_primary_10_3390_biom10040570
crossref_primary_10_1016_j_molcel_2019_10_010
crossref_primary_10_15252_embr_201846263
crossref_primary_10_1016_j_molcel_2019_04_027
crossref_primary_10_1093_hmg_ddaa087
crossref_primary_10_1093_nar_gkac447
crossref_primary_10_26508_lsa_202201584
crossref_primary_10_15252_embr_201948920
crossref_primary_10_1038_s41467_021_26227_6
crossref_primary_10_1038_s41467_019_09196_9
crossref_primary_10_1042_BST20190363
crossref_primary_10_1093_nar_gkae078
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1093_nar_gkab526
crossref_primary_10_1038_s41467_021_24665_w
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_3389_fcell_2020_00717
crossref_primary_10_1093_nar_gkae918
crossref_primary_10_3390_ijms231810212
crossref_primary_10_1007_s00412_023_00807_5
crossref_primary_10_3390_ijms241512419
crossref_primary_10_3390_cancers10080250
crossref_primary_10_1038_s41467_019_12297_0
crossref_primary_10_1016_j_molcel_2020_11_007
crossref_primary_10_1093_nar_gkac583
ContentType Journal Article
Copyright Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2017.08.010
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 28886337
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA197774
– fundername: NIGMS NIH HHS
  grantid: R01 GM116616
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
7-5
AACTN
AAEDT
AAEDW
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
5VS
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c562t-dcea7b4c244c0542dc7122dc8e627f67558895b7c5155e893ad7270719c63d422
IEDL.DBID 7X8
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411128900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Sun Nov 09 11:52:10 EST 2025
Thu Apr 03 07:10:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DNA damage tolerance
cancer chemotherapeutics
ZRANB3 DNA translocase
PCNA ubiquitination
single-molecule approaches
electron microscopy in vivo
postreplication repair
replication fork reversal
replication fork progression
Language English
License Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-dcea7b4c244c0542dc7122dc8e627f67558895b7c5155e893ad7270719c63d422
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.molcel.2017.08.010
PMID 28886337
PQID 1937529029
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1937529029
pubmed_primary_28886337
PublicationCentury 2000
PublicationDate 2017-09-07
PublicationDateYYYYMMDD 2017-09-07
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2017
References 21078962 - Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20970-3
21911365 - Nucleic Acids Res. 2012 Jan;40(1):245-57
26503038 - Nature. 2015 Nov 19;527(7578):389-93
16357261 - Science. 2005 Dec 16;310(5755):1821-4
18974355 - Science. 2008 Oct 31;322(5902):748-50
22388737 - Nat Struct Mol Biol. 2012 Mar 04;19(4):417-23
18719106 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6
19854138 - Mol Cell. 2009 Oct 23;36(2):302-14
23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94
22279047 - Genes Dev. 2012 Jan 15;26(2):151-62
26840898 - Nat Struct Mol Biol. 2016 Feb;23(2):103-9
20096653 - DNA Repair (Amst). 2010 Mar 2;9(3):257-67
21396873 - Mol Cell. 2011 Apr 22;42(2):237-49
24162990 - Methods Mol Biol. 2014;1094:209-19
27060551 - Curr Opin Cell Biol. 2016 Jun;40:137-144
16763556 - EMBO J. 2006 Jun 21;25(12):2847-55
20353596 - BMC Res Notes. 2010 Mar 30;3:85
18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
21269891 - DNA Repair (Amst). 2011 Apr 3;10 (4):438-44
12142537 - Science. 2002 Jul 26;297(5581):599-602
17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
22704558 - Mol Cell. 2012 Aug 10;47(3):396-409
27242895 - Front Genet. 2016 May 13;7:87
14685245 - Nature. 2003 Dec 18;426(6968):870-4
25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79
22759634 - Genes Dev. 2012 Jul 15;26(14):1558-72
1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
25661486 - Mol Cell. 2015 Mar 5;57(5):812-23
22705370 - Mol Cell. 2012 Aug 10;47(3):410-21
17936713 - Mol Cell. 2007 Oct 12;28(1):167-75
25195051 - Nat Struct Mol Biol. 2014 Oct;21(10):884-92
25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
18498753 - Mol Cell. 2008 May 23;30(4):519-29
12226657 - Nature. 2002 Sep 12;419(6903):135-41
22499669 - J Cell Sci. 2012 Apr 1;125(Pt 7):1633-43
23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69
26051180 - Mol Cell. 2015 Jun 18;58(6):1090-100
23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
References_xml – reference: 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69
– reference: 14685245 - Nature. 2003 Dec 18;426(6968):870-4
– reference: 21078962 - Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20970-3
– reference: 22759634 - Genes Dev. 2012 Jul 15;26(14):1558-72
– reference: 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49
– reference: 19854138 - Mol Cell. 2009 Oct 23;36(2):302-14
– reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
– reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4
– reference: 27242895 - Front Genet. 2016 May 13;7:87
– reference: 23454978 - Nat Struct Mol Biol. 2013 Apr;20(4):486-94
– reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
– reference: 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62
– reference: 25733714 - J Cell Biol. 2015 Mar 2;208(5):563-79
– reference: 22499669 - J Cell Sci. 2012 Apr 1;125(Pt 7):1633-43
– reference: 26503038 - Nature. 2015 Nov 19;527(7578):389-93
– reference: 24162990 - Methods Mol Biol. 2014;1094:209-19
– reference: 17936713 - Mol Cell. 2007 Oct 12;28(1):167-75
– reference: 26051180 - Mol Cell. 2015 Jun 18;58(6):1090-100
– reference: 18974355 - Science. 2008 Oct 31;322(5902):748-50
– reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29
– reference: 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409
– reference: 27060551 - Curr Opin Cell Biol. 2016 Jun;40:137-144
– reference: 21269891 - DNA Repair (Amst). 2011 Apr 3;10 (4):438-44
– reference: 26840898 - Nat Struct Mol Biol. 2016 Feb;23(2):103-9
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55
– reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602
– reference: 20353596 - BMC Res Notes. 2010 Mar 30;3:85
– reference: 21911365 - Nucleic Acids Res. 2012 Jan;40(1):245-57
– reference: 18719106 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6
– reference: 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
– reference: 22705370 - Mol Cell. 2012 Aug 10;47(3):410-21
– reference: 25195051 - Nat Struct Mol Biol. 2014 Oct;21(10):884-92
– reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
– reference: 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
– reference: 22388737 - Nat Struct Mol Biol. 2012 Mar 04;19(4):417-23
– reference: 25661486 - Mol Cell. 2015 Mar 5;57(5):812-23
– reference: 20096653 - DNA Repair (Amst). 2010 Mar 2;9(3):257-67
SSID ssj0014589
Score 2.609687
Snippet DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 882
SubjectTerms Animals
CRISPR-Cas Systems
DNA Damage
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Replication
DNA, Neoplasm - biosynthesis
DNA, Neoplasm - genetics
DNA, Neoplasm - ultrastructure
HCT116 Cells
HEK293 Cells
Humans
Kinetics
Mice
Mutation
Neoplasms - enzymology
Neoplasms - genetics
Neoplasms - ultrastructure
Polyubiquitin - metabolism
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Replication Origin
RNA Interference
Transfection
Ubiquitin-Conjugating Enzymes - genetics
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitination
Title Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity
URI https://www.ncbi.nlm.nih.gov/pubmed/28886337
https://www.proquest.com/docview/1937529029
Volume 67
WOSCitedRecordID wos000411128900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxfpk3Ivha7NJL2iepm8MHLWUqDF9KboXh1s51U_bvPUlb9iQIvuQh4ZSSnOR855J8CN1wn0kmwVOVmW2Dg8I9KxTSgY1HuB1Km0thVvqJxnEwHIZJHXAr67LK5kw0B7UshI6R3wLQoB4JbRLeTT8tzRqls6s1hcY6ajkAZbRW0-Eqi-B6hgJPJ1ktAB5uc3XO1HdNirFQOvnQoeYRz479O8g0xqa_-9_f3EM7NczEUaUX-2hN5QdoqyKeXB6iJeDuJlqH-8XsA7-Mi2-wYpjlEg-UrtUA8cUUhntxhHtsAucODOi6YYWTLvQlxXi54CPomY-qkKIRfh9E8b1jpIwd1MayVDgSFU3FEXrrP7x2H62ahMESAI3mlhSKUe4KgAEC4B2RgnYItIHyCc3A3fCCIPQ4FZorRgH6YRIgEQCXUPiOdAk5Rht5katThCX4kuCwSfigclnAeRCwzPEDQHjMp6Foo-tmTlNQcp25YLkqFmW6mtU2OqkWJp1Wr3GkBHx433Ho2R-kz9G2Xm9TI0YvUCuDLa4u0ab4mo_K2ZXRHmjj5PkHUFrOwA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+Fork+Slowing+and+Reversal+upon+DNA+Damage+Require+PCNA+Polyubiquitination+and+ZRANB3+DNA+Translocase+Activity&rft.jtitle=Molecular+cell&rft.au=Vujanovic%2C+Marko&rft.au=Krietsch%2C+Jana&rft.au=Raso%2C+Maria+Chiara&rft.au=Terraneo%2C+Nastassja&rft.date=2017-09-07&rft.eissn=1097-4164&rft.volume=67&rft.issue=5&rft.spage=882&rft_id=info:doi/10.1016%2Fj.molcel.2017.08.010&rft_id=info%3Apmid%2F28886337&rft_id=info%3Apmid%2F28886337&rft.externalDocID=28886337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon