ChemTS: an efficient python library for de novo molecular generation

Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural net...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science and technology of advanced materials Ročník 18; číslo 1; s. 972 - 976
Hlavní autori: Yang, Xiufeng, Zhang, Jinzhe, Yoshizoe, Kazuki, Terayama, Kei, Tsuda, Koji
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 31.12.2017
Taylor & Francis Ltd
Taylor & Francis Group
Predmet:
ISSN:1468-6996, 1878-5514
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2017.1401424