ChemTS: an efficient python library for de novo molecular generation

Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural net...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science and technology of advanced materials Ročník 18; číslo 1; s. 972 - 976
Hlavní autoři: Yang, Xiufeng, Zhang, Jinzhe, Yoshizoe, Kazuki, Terayama, Kei, Tsuda, Koji
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 31.12.2017
Taylor & Francis Ltd
Taylor & Francis Group
Témata:
ISSN:1468-6996, 1878-5514
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2017.1401424