Structural insights into the action mechanisms of artificial electron acceptors in photosystem II
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electron...
Gespeichert in:
| Veröffentlicht in: | The Journal of biological chemistry Jg. 299; H. 7; S. 104839 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.07.2023
American Society for Biochemistry and Molecular Biology |
| Schlagworte: | |
| ISSN: | 0021-9258, 1083-351X, 1083-351X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors. |
|---|---|
| AbstractList | Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to Q
, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for Q
and are bound to the Q
-binding site (Q
site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the Q
site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the Q
site, was discovered, which is located in the vicinity of Q
site and close to Q
site, a binding site reported previously. This Q
site is expected to play a role as a channel or a storage site for quinones to be transported to the Q
site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of Q
in PSII and also provide information for the design of more efficient electron acceptors. Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors. Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors. |
| ArticleNumber | 104839 |
| Author | Kamada, Shinji Nakajima, Yoshiki Shen, Jian-Ren |
| Author_xml | – sequence: 1 givenname: Shinji surname: Kamada fullname: Kamada, Shinji organization: Faculty of Science, Okayama University, Okayama, Japan – sequence: 2 givenname: Yoshiki surname: Nakajima fullname: Nakajima, Yoshiki email: yoshi-n@okayama-u.ac.jp organization: Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan – sequence: 3 givenname: Jian-Ren orcidid: 0000-0003-4471-8797 surname: Shen fullname: Shen, Jian-Ren email: shen@cc.okayama-u.ac.jp organization: Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37209822$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URKeFH8AGZckmgx-T2BELhCoeI1ViAUjsrGvnpvEosQfbqdR_X0fTImBRb2zL5zsnueeCnPngkZDXjG4ZZe27w_Zg7JZTLsp9p0T3jGwYVaIWDft1RjaUclZ3vFHn5CKlAy1r17EX5FxITjvF-YbA9xwXm5cIU-V8cjdjTuWQQ5VHrMBmF3w1ox3BuzSnKgwVxOwGZ10hcEKbY1GAtXjMIa5sdRxDDukuZZyr_f4leT7AlPDVw35Jfn7-9OPqa3397cv-6uN1bZuW51q1nWWDMorvUErsu8ZYKRkDAwpAKgHCgpFgOLQ9MsMVbTgzlGJPGeeduCQfTr7HxczYW_S5_JQ-RjdDvNMBnP73xbtR34RbzaigVEhZHN4-OMTwe8GU9eySxWkCj2FJmivWymb9qCJ983fYn5THwRaBPAlsDClFHLR1GdZplmw3lVC9VqgPulSo1wr1qcJCsv_IR_OnmPcnBsuAbx1GnaxDb7F3sTSk--CeoO8Bi6m1-Q |
| CitedBy_id | crossref_primary_10_1016_j_bbabio_2025_149557 crossref_primary_10_1093_pcp_pcaf072 crossref_primary_10_1002_psc_3606 crossref_primary_10_1016_j_algal_2025_104223 crossref_primary_10_1016_j_bbabio_2024_149150 crossref_primary_10_1016_j_bbabio_2024_149507 crossref_primary_10_1093_plphys_kiaf082 |
| Cites_doi | 10.1007/s11120-007-9213-x 10.1073/pnas.1910675116 10.1039/b810067p 10.1016/j.bbabio.2012.04.003 10.1111/ppl.13469 10.1016/0014-5793(89)81447-4 10.1073/pnas.2116765118 10.1107/S0907444910007493 10.1021/bi0613022 10.3389/fpls.2019.01688 10.1093/oxfordjournals.pcp.a029047 10.1093/oxfordjournals.pcp.a029048 10.1073/pnas.0812797106 10.1021/bi001402m 10.1107/S0021889812017293 10.1016/0005-2728(87)90033-8 10.1021/bi051000k 10.1007/1-4020-4254-X 10.1021/bi010852r 10.1023/A:1006303510458 10.1016/j.bbabio.2005.12.002 10.1038/nature13991 10.1007/BF02185410 10.1073/pnas.1212957110 10.1038/nature09913 10.1016/j.bbabio.2013.01.007 10.1107/S0907444994003112 10.1038/s41586-018-0681-2 10.1126/science.1090165 10.1016/0005-2728(87)90032-6 10.1111/j.1751-1097.2008.00444.x 10.1073/pnas.2103203118 10.1038/nature21400 10.1038/ncomms15214 10.1107/S0907444996012255 10.1038/nsmb.1559 10.1107/S0907444909052925 10.1016/j.bbabio.2012.03.038 10.1016/j.ccr.2020.213183 10.1016/0005-2728(86)90078-2 10.1107/S0021889893005588 10.1007/s11120-008-9302-5 10.1073/pnas.1219922110 10.1107/S0907444904019158 10.1038/s42003-021-01919-3 10.1002/cphc.200900901 10.1021/bi00058a017 10.1146/annurev-arplant-050312-120129 10.1016/j.bbabio.2011.05.021 10.1074/jbc.RA118.004304 10.1016/j.bbabio.2007.02.013 10.1107/S0021889897006766 10.1016/j.bbabio.2007.01.007 10.1021/acs.biochem.0c00810 10.1021/bi100639q 10.2174/1389203715666140327104802 10.1007/s11120-016-0292-4 10.1074/jbc.M110.215970 10.1073/pnas.0135651100 10.1073/pnas.2000529117 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. 2023 The Authors 2023 |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2023 The Authors 2023 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.jbc.2023.104839 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1083-351X |
| ExternalDocumentID | PMC10300377 37209822 10_1016_j_jbc_2023_104839 S0021925823018677 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ABUFD ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 5PM |
| ID | FETCH-LOGICAL-c562t-869c1f8b824e77ed95bc7711aba8aa783a3cab7ab2a6de1b280521b00ed012293 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9258 1083-351X |
| IngestDate | Tue Nov 04 02:06:52 EST 2025 Fri Sep 05 13:14:27 EDT 2025 Wed Feb 19 02:22:58 EST 2025 Tue Nov 18 22:18:26 EST 2025 Sat Nov 29 07:29:07 EST 2025 Fri Feb 23 02:35:12 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | PQ DMSO Chl PSII Photosystem II PPBQ PDB DCBQ DBBQ electron transfer photosynthesis crystal structure structural biology electron acceptor AEA |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c562t-869c1f8b824e77ed95bc7711aba8aa783a3cab7ab2a6de1b280521b00ed012293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4471-8797 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2023.104839 |
| PMID | 37209822 |
| PQID | 2816757711 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10300377 proquest_miscellaneous_2816757711 pubmed_primary_37209822 crossref_citationtrail_10_1016_j_jbc_2023_104839 crossref_primary_10_1016_j_jbc_2023_104839 elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104839 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of biological chemistry |
| PublicationTitleAlternate | J Biol Chem |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
| Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
| References | Echols, Grosse-Kunstleve, Afonine, Bunkóczi, Chen, Headd (bib55) 2012; 45 Najafpour, Zaharieva, Zand, Hosseini, Kouzmanova, Hołynska (bib3) 2020; 409 Shevela, Eaton-Rye, Shen, Govindjee (bib13) 2012; 1817 Takano, Takahashi, Suzuki, Noguchi (bib20) 2008; 98 Satoh, Oh-hashi, Kashino, Koike (bib32) 1995; 36 Gleiter, Haag, Inoue, Renger (bib35) 1993; 35 Fufezan, Zhang, Krieger-Liszkay, Rutherford (bib47) 2005; 44 Baniulis, Yamashita, Zhang, Hasan, Cramer (bib16) 2008; 84 Guskov, Kern, Gabdulkhakov, Broser, Zouni, Saenger (bib26) 2009; 16 Zobnina, Lambreva, Rea, Campi, Antonacci, Scognamiglio (bib24) 2017; 131 Kamiya, Shen (bib50) 2003; 100 Kargul, Maghlaoui, Murray, Deak, Boussac, Rutherford (bib61) 2007; 1767 Takahashi, Hasegawa, Takano, Noguchi (bib19) 2010; 49 Forsman, Eaton-Rye (bib18) 2021; 172 Shevela, Messinger (bib31) 2012; 1817 Kawakami, Umena, Kamiya, Shen (bib42) 2009; 106 de Wijn, van Gorkom (bib9) 2001; 40 Murshudov, Vagin, Dodson (bib54) 1997; 53 Van Eerden, Melo, Frederix, Periole, Marrink (bib25) 2017; 8 Krivanek, Kern, Zouni, Dau, Haumann (bib46) 2007; 1767 Broser, Glöckner, Gabdulkhakov, Guskov, Buchta, Kern (bib21) 2011; 286 Kato, Miyazaki, Hamaguchi, Nakajima, Akita, Yonekura (bib7) 2021; 4 Delrieu, Rosengard (bib30) 1989; 251 Kaminskaya, Shuvalov (bib39) 2013; 1827 Emsley, Lohkamp, Scott, Cowtan (bib58) 2010; 66 Murray, Maghlaoui, Kargul, Ishida, Lai, Rutherford (bib41) 2008; 1 Lambreva, Russo, Polticelli, Scognamiglio, Antonacci, Zobnina (bib40) 2014; 15 Emsley, Cowtan (bib57) 2004; 60 Trebst (bib23) 2007; 92 Koua, Umena, Kawakami, Shen (bib60) 2013; 110 (bib53) 1994; 50 Gisriel, Wang, Liu, Flesher, Reiss, Huang (bib6) 2022; 119 Kurisu, Zhang, Smith, Cramer (bib15) 2003; 302 Shen, Inoue (bib44) 1993; 32 Petrouleas, Diner (bib37) 1987; 893 Nakajima, Umena, Nagao, Endo, Kobayashi, Akita (bib59) 2018; 293 Kashino, Yamashita, Okamoto, Koike, Satoh (bib33) 1996; 37 Umena, Kawakami, Shen, Kamiya (bib4) 2011; 473 Guskov, Gabdulkhakov, Broser, Glöckner, Hellmich, Kern (bib45) 2010; 11 Shen (bib2) 2015; 66 Zimmermann, Heck, Frank, Kern, Vass, Zouni (bib22) 2006; 1757 Vagin, Teplyakov (bib52) 1997; 30 Sugo, Saito, Ishikita (bib43) 2021; 118 Wydrzynski, Satoh (bib1) 2005; vol. 22 Kaminskaya, Shuvalov, Renger (bib48) 2007; 46 Saito, Rutherford, Ishikita (bib11) 2013; 110 Kurreck, Schödel, Renger (bib14) 2000; 63 Ibrahim, Fransson, Chatterjee, Cheah, Hussein, Lassalle (bib29) 2020; 117 Suga, Akita, Hirata, Ueno, Murakami, Nakajima (bib5) 2015; 517 Suga, Akita, Sugahara, Kubo, Nakajima, Nakane (bib27) 2017; 543 Kabsch (bib51) 1993; 26 Zimmermann, Rutherford (bib36) 1986; 851 Causmaecker, Douglass, Fantuzzi, Nitschke, Rutherford (bib10) 2019; 116 Diner, Petrouleas (bib38) 1987; 893 Shen, Kamiya (bib49) 2000; 39 Müh, Glöckner, Hellmich, Zouni (bib8) 2012; 1817 Adams, Afonine, Bunkóczi, Chen, Davis, Echols (bib56) 2010; 66 Kern, Chatterjee, Young, Fuller, Lassalle, Ibrahim (bib28) 2018; 563 Kimura, Kato, Noguchi (bib12) 2020; 59 Guo, Cheng, Lu, Wang, Gao, Shi (bib17) 2020; 10 Koike, Yoneyama, Kashino, Satoh (bib34) 1996; 37 Baniulis (10.1016/j.jbc.2023.104839_bib16) 2008; 84 Müh (10.1016/j.jbc.2023.104839_bib8) 2012; 1817 Umena (10.1016/j.jbc.2023.104839_bib4) 2011; 473 Satoh (10.1016/j.jbc.2023.104839_bib32) 1995; 36 Emsley (10.1016/j.jbc.2023.104839_bib58) 2010; 66 Ibrahim (10.1016/j.jbc.2023.104839_bib29) 2020; 117 Gleiter (10.1016/j.jbc.2023.104839_bib35) 1993; 35 (10.1016/j.jbc.2023.104839_bib53) 1994; 50 Adams (10.1016/j.jbc.2023.104839_bib56) 2010; 66 Kern (10.1016/j.jbc.2023.104839_bib28) 2018; 563 Diner (10.1016/j.jbc.2023.104839_bib38) 1987; 893 Emsley (10.1016/j.jbc.2023.104839_bib57) 2004; 60 Saito (10.1016/j.jbc.2023.104839_bib11) 2013; 110 Kashino (10.1016/j.jbc.2023.104839_bib33) 1996; 37 Vagin (10.1016/j.jbc.2023.104839_bib52) 1997; 30 Echols (10.1016/j.jbc.2023.104839_bib55) 2012; 45 Lambreva (10.1016/j.jbc.2023.104839_bib40) 2014; 15 Guo (10.1016/j.jbc.2023.104839_bib17) 2020; 10 Guskov (10.1016/j.jbc.2023.104839_bib45) 2010; 11 Takahashi (10.1016/j.jbc.2023.104839_bib19) 2010; 49 Kabsch (10.1016/j.jbc.2023.104839_bib51) 1993; 26 Murshudov (10.1016/j.jbc.2023.104839_bib54) 1997; 53 Delrieu (10.1016/j.jbc.2023.104839_bib30) 1989; 251 Zobnina (10.1016/j.jbc.2023.104839_bib24) 2017; 131 Murray (10.1016/j.jbc.2023.104839_bib41) 2008; 1 Trebst (10.1016/j.jbc.2023.104839_bib23) 2007; 92 Suga (10.1016/j.jbc.2023.104839_bib27) 2017; 543 Kato (10.1016/j.jbc.2023.104839_bib7) 2021; 4 Shevela (10.1016/j.jbc.2023.104839_bib13) 2012; 1817 Suga (10.1016/j.jbc.2023.104839_bib5) 2015; 517 Kurreck (10.1016/j.jbc.2023.104839_bib14) 2000; 63 Forsman (10.1016/j.jbc.2023.104839_bib18) 2021; 172 Kaminskaya (10.1016/j.jbc.2023.104839_bib39) 2013; 1827 Shevela (10.1016/j.jbc.2023.104839_bib31) 2012; 1817 Kargul (10.1016/j.jbc.2023.104839_bib61) 2007; 1767 Causmaecker (10.1016/j.jbc.2023.104839_bib10) 2019; 116 Van Eerden (10.1016/j.jbc.2023.104839_bib25) 2017; 8 Fufezan (10.1016/j.jbc.2023.104839_bib47) 2005; 44 Takano (10.1016/j.jbc.2023.104839_bib20) 2008; 98 de Wijn (10.1016/j.jbc.2023.104839_bib9) 2001; 40 Kimura (10.1016/j.jbc.2023.104839_bib12) 2020; 59 Zimmermann (10.1016/j.jbc.2023.104839_bib36) 1986; 851 Kaminskaya (10.1016/j.jbc.2023.104839_bib48) 2007; 46 Shen (10.1016/j.jbc.2023.104839_bib44) 1993; 32 Petrouleas (10.1016/j.jbc.2023.104839_bib37) 1987; 893 Nakajima (10.1016/j.jbc.2023.104839_bib59) 2018; 293 Najafpour (10.1016/j.jbc.2023.104839_bib3) 2020; 409 Gisriel (10.1016/j.jbc.2023.104839_bib6) 2022; 119 Wydrzynski (10.1016/j.jbc.2023.104839_bib1) 2005; vol. 22 Zimmermann (10.1016/j.jbc.2023.104839_bib22) 2006; 1757 Kawakami (10.1016/j.jbc.2023.104839_bib42) 2009; 106 Kurisu (10.1016/j.jbc.2023.104839_bib15) 2003; 302 Krivanek (10.1016/j.jbc.2023.104839_bib46) 2007; 1767 Broser (10.1016/j.jbc.2023.104839_bib21) 2011; 286 Shen (10.1016/j.jbc.2023.104839_bib49) 2000; 39 Guskov (10.1016/j.jbc.2023.104839_bib26) 2009; 16 Sugo (10.1016/j.jbc.2023.104839_bib43) 2021; 118 Shen (10.1016/j.jbc.2023.104839_bib2) 2015; 66 Koike (10.1016/j.jbc.2023.104839_bib34) 1996; 37 Koua (10.1016/j.jbc.2023.104839_bib60) 2013; 110 Kamiya (10.1016/j.jbc.2023.104839_bib50) 2003; 100 |
| References_xml | – volume: 110 start-page: 3889 year: 2013 end-page: 3894 ident: bib60 article-title: Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 251 start-page: 161 year: 1989 end-page: 166 ident: bib30 article-title: Interaction of exogenous quinones with photosystem II in inside-out thylakoids publication-title: FEBS Lett. – volume: 40 start-page: 11912 year: 2001 end-page: 11922 ident: bib9 article-title: Kinetics of electron transfer from Q publication-title: Biochemistry – volume: 44 start-page: 12780 year: 2005 end-page: 12789 ident: bib47 article-title: Secondary quinone in Photosystem II of publication-title: Biochemistry – volume: 110 start-page: 954 year: 2013 end-page: 959 ident: bib11 article-title: Mechanism of proton-coupled quinone reduction in Photosystem II publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 597 year: 1995 end-page: 605 ident: bib32 article-title: Mechanism of electron flow through the Q publication-title: Plant Cell Physiol. – volume: 66 start-page: 23 year: 2015 end-page: 48 ident: bib2 article-title: The Structure of photosystem II and the mechanism of water oxidation in photosynthesis publication-title: Annu. Rev. Plant Biol. – volume: 39 start-page: 14739 year: 2000 end-page: 14744 ident: bib49 article-title: Crystallization and the crystal properties of the oxygen-evolving photosystem II from publication-title: Biochemistry – volume: 1767 start-page: 404 year: 2007 end-page: 413 ident: bib61 article-title: Purification, crystallization and X-ray diffraction analyses of the publication-title: Biochim. Biophys. Acta – volume: 8 year: 2017 ident: bib25 article-title: Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex publication-title: Nat. Commun. – volume: 37 start-page: 976 year: 1996 end-page: 982 ident: bib33 article-title: Mechanisms of electron flow through the Q publication-title: Plant Cell Physiol. – volume: 172 start-page: 2217 year: 2021 end-page: 2225 ident: bib18 article-title: The hydrophobicity of mutations targeting D1:Val219 modifies formate and diuron binding in the quinone-Fe-acceptor complex of Photosystem II publication-title: Physiol. Plant. – volume: 106 start-page: 8567 year: 2009 end-page: 8572 ident: bib42 article-title: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 start-page: 1091 year: 2007 end-page: 1105 ident: bib48 article-title: Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome publication-title: Biochemistry – volume: 563 start-page: 421 year: 2018 end-page: 425 ident: bib28 article-title: Structures of the intermediates of Kok’s photosynthetic water oxidation clock publication-title: Nature – volume: 302 start-page: 1009 year: 2003 end-page: 1014 ident: bib15 article-title: Structure of the cytochrome publication-title: Science – volume: 131 start-page: 15 year: 2017 end-page: 30 ident: bib24 article-title: The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations publication-title: Photosynth. Res. – volume: 4 start-page: 1 year: 2021 end-page: 11 ident: bib7 article-title: High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams publication-title: Commun. Biol. – volume: 1817 start-page: 1134 year: 2012 end-page: 1151 ident: bib13 article-title: Photosystem II and the unique role of bicarbonate: a historical perspective publication-title: Biochim. Biophys. Acta – volume: 893 start-page: 138 year: 1987 end-page: 148 ident: bib38 article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the Q publication-title: Biochim. Biophys. Acta – volume: 118 year: 2021 ident: bib43 article-title: Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 41 year: 1993 end-page: 53 ident: bib35 article-title: Functional characterization of a purified homogeneous photosystem II core complex with high oxygen evolution capacity from spinach publication-title: Photosynth. Res. – volume: 92 start-page: 217 year: 2007 end-page: 224 ident: bib23 article-title: Inhibitors in the functional dissection of the photosynthetic electron transport system publication-title: Photosynth. Res. – volume: 59 start-page: 4336 year: 2020 end-page: 4343 ident: bib12 article-title: Protonation state of a key histidine ligand in the iron–quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy publication-title: Biochemistry – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib56 article-title: Phenix: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 98 start-page: 159 year: 2008 end-page: 167 ident: bib20 article-title: Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor Q publication-title: Photosynth. Res. – volume: 84 start-page: 1349 year: 2008 end-page: 1358 ident: bib16 article-title: Structure-function of the cytochrome publication-title: Photochem. Photobiol. – volume: 11 start-page: 1160 year: 2010 end-page: 1171 ident: bib45 article-title: Recent progress in the crystallographic studies of photosystem II publication-title: Chemphyschem – volume: 473 start-page: 55 year: 2011 end-page: 60 ident: bib4 article-title: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å publication-title: Nature – volume: 10 start-page: 1688 year: 2020 ident: bib17 article-title: Novel action targets of natural product gliotoxin in photosynthetic apparatus publication-title: Front. Plant Sci. – volume: 517 start-page: 99 year: 2015 end-page: 103 ident: bib5 article-title: Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses publication-title: Nature – volume: 1817 start-page: 1208 year: 2012 end-page: 1212 ident: bib31 article-title: Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors publication-title: Biochim. Biophys. Acta – volume: 409 year: 2020 ident: bib3 article-title: Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts publication-title: Coord. Chem. Rev. – volume: 1 start-page: 161 year: 2008 end-page: 166 ident: bib41 article-title: X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II publication-title: Energy Environ. Sci. – volume: 286 start-page: 15964 year: 2011 end-page: 15972 ident: bib21 article-title: Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn publication-title: J. Biol. Chem. – volume: 30 start-page: 1022 year: 1997 end-page: 1025 ident: bib52 article-title: Molrep: an automated program for molecular replacement publication-title: J. Appl. Crystallogr. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib58 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 117 start-page: 12624 year: 2020 end-page: 12635 ident: bib29 article-title: Untangling the sequence of events during the S publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 45 start-page: 581 year: 2012 end-page: 586 ident: bib55 article-title: Graphical tools for macromolecular crystallography in PHENIX publication-title: J. Appl. Crystallogr. – volume: 15 start-page: 285 year: 2014 end-page: 295 ident: bib40 article-title: Structure/function/dynamics of photosystem II plastoquinone binding sites publication-title: Curr. Protein Pept. Sci. – volume: 100 start-page: 98 year: 2003 end-page: 103 ident: bib50 article-title: Crystal structure of oxygen-evolving photosystem II from publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1767 start-page: 520 year: 2007 end-page: 527 ident: bib46 article-title: Spare quinones in the Q publication-title: Biochim. Biophys. Acta – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib57 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 49 start-page: 5445 year: 2010 end-page: 5454 ident: bib19 article-title: Structures and binding sites of phenolic herbicides in the Q publication-title: Biochemistry – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: bib53 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 63 start-page: 171 year: 2000 ident: bib14 article-title: Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments publication-title: Photosynth. Res. – volume: 16 start-page: 334 year: 2009 end-page: 342 ident: bib26 article-title: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride publication-title: Nat. Struct. Mol. Biol. – volume: 32 start-page: 1825 year: 1993 end-page: 1832 ident: bib44 article-title: Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II publication-title: Biochemistry – volume: 1757 start-page: 106 year: 2006 end-page: 114 ident: bib22 article-title: Herbicide binding and thermal stability of photosystem II isolated from publication-title: Biochim. Biophys. Acta – volume: 1827 start-page: 471 year: 2013 end-page: 483 ident: bib39 article-title: Biphasic reduction of cytochrome publication-title: Biochim. Biophys. Acta – volume: 53 start-page: 240 year: 1997 end-page: 255 ident: bib54 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 26 start-page: 795 year: 1993 end-page: 800 ident: bib51 article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants publication-title: J. Appl. Crystallogr. – volume: 37 start-page: 983 year: 1996 end-page: 988 ident: bib34 article-title: Mechanism of electron flow through the Q publication-title: Plant Cell Physiol. – volume: 893 start-page: 126 year: 1987 end-page: 137 ident: bib37 article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the Q publication-title: Biochim. Biophys. Acta – volume: 1817 start-page: 44 year: 2012 end-page: 65 ident: bib8 article-title: Light-induced quinone reduction in photosystem II publication-title: Biochim. Biophys. Acta – volume: 851 start-page: 416 year: 1986 end-page: 423 ident: bib36 article-title: Photoreductant-induced oxidation of Fe publication-title: Biochim. Biophys. Acta – volume: vol. 22 start-page: 1 year: 2005 end-page: 786 ident: bib1 article-title: Photosystem II: the light-driven water:plastoquinone oxidoreductase publication-title: Advances in Photosynthesis and Respiration – volume: 119 year: 2022 ident: bib6 article-title: High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 543 start-page: 131 year: 2017 end-page: 135 ident: bib27 article-title: Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL publication-title: Nature – volume: 293 start-page: 14786 year: 2018 end-page: 14797 ident: bib59 article-title: Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in publication-title: J. Biol. Chem. – volume: 116 start-page: 19458 year: 2019 end-page: 19463 ident: bib10 article-title: Energetics of the exchangeable quinone, Q publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 92 start-page: 217 year: 2007 ident: 10.1016/j.jbc.2023.104839_bib23 article-title: Inhibitors in the functional dissection of the photosynthetic electron transport system publication-title: Photosynth. Res. doi: 10.1007/s11120-007-9213-x – volume: 116 start-page: 19458 year: 2019 ident: 10.1016/j.jbc.2023.104839_bib10 article-title: Energetics of the exchangeable quinone, QB, in Photosystem II publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1910675116 – volume: 1 start-page: 161 year: 2008 ident: 10.1016/j.jbc.2023.104839_bib41 article-title: X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II publication-title: Energy Environ. Sci. doi: 10.1039/b810067p – volume: 1817 start-page: 1134 year: 2012 ident: 10.1016/j.jbc.2023.104839_bib13 article-title: Photosystem II and the unique role of bicarbonate: a historical perspective publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.04.003 – volume: 172 start-page: 2217 year: 2021 ident: 10.1016/j.jbc.2023.104839_bib18 article-title: The hydrophobicity of mutations targeting D1:Val219 modifies formate and diuron binding in the quinone-Fe-acceptor complex of Photosystem II publication-title: Physiol. Plant. doi: 10.1111/ppl.13469 – volume: 251 start-page: 161 year: 1989 ident: 10.1016/j.jbc.2023.104839_bib30 article-title: Interaction of exogenous quinones with photosystem II in inside-out thylakoids publication-title: FEBS Lett. doi: 10.1016/0014-5793(89)81447-4 – volume: 119 year: 2022 ident: 10.1016/j.jbc.2023.104839_bib6 article-title: High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2116765118 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.jbc.2023.104839_bib58 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 46 start-page: 1091 year: 2007 ident: 10.1016/j.jbc.2023.104839_bib48 article-title: Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559 publication-title: Biochemistry doi: 10.1021/bi0613022 – volume: 10 start-page: 1688 year: 2020 ident: 10.1016/j.jbc.2023.104839_bib17 article-title: Novel action targets of natural product gliotoxin in photosynthetic apparatus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01688 – volume: 37 start-page: 976 year: 1996 ident: 10.1016/j.jbc.2023.104839_bib33 article-title: Mechanisms of electron flow through the QB site in photosystem II. 3. Effects of the presence of membrane structure on the redox reactions at the QB site publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029047 – volume: 37 start-page: 983 year: 1996 ident: 10.1016/j.jbc.2023.104839_bib34 article-title: Mechanism of electron flow through the QB site in photosystem II. 4. Reaction mechanism of plastoquinone derivatives at the QB site in spinach photosystem II membrane fragments publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029048 – volume: 106 start-page: 8567 year: 2009 ident: 10.1016/j.jbc.2023.104839_bib42 article-title: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0812797106 – volume: 39 start-page: 14739 year: 2000 ident: 10.1016/j.jbc.2023.104839_bib49 article-title: Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus publication-title: Biochemistry doi: 10.1021/bi001402m – volume: 45 start-page: 581 year: 2012 ident: 10.1016/j.jbc.2023.104839_bib55 article-title: Graphical tools for macromolecular crystallography in PHENIX publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889812017293 – volume: 893 start-page: 138 year: 1987 ident: 10.1016/j.jbc.2023.104839_bib38 article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the QB binding site. II. Blockage by inhibitors and their effects on the Fe(III) EPR spectra publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(87)90033-8 – volume: 44 start-page: 12780 year: 2005 ident: 10.1016/j.jbc.2023.104839_bib47 article-title: Secondary quinone in Photosystem II of Thermosynechococcus elongatus: semiquinone−iron EPR signals and temperature dependence of electron transfer publication-title: Biochemistry doi: 10.1021/bi051000k – volume: vol. 22 start-page: 1 year: 2005 ident: 10.1016/j.jbc.2023.104839_bib1 article-title: Photosystem II: the light-driven water:plastoquinone oxidoreductase doi: 10.1007/1-4020-4254-X – volume: 40 start-page: 11912 year: 2001 ident: 10.1016/j.jbc.2023.104839_bib9 article-title: Kinetics of electron transfer from QA to QB in photosystem II publication-title: Biochemistry doi: 10.1021/bi010852r – volume: 63 start-page: 171 year: 2000 ident: 10.1016/j.jbc.2023.104839_bib14 article-title: Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments publication-title: Photosynth. Res. doi: 10.1023/A:1006303510458 – volume: 1757 start-page: 106 year: 2006 ident: 10.1016/j.jbc.2023.104839_bib22 article-title: Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2005.12.002 – volume: 517 start-page: 99 year: 2015 ident: 10.1016/j.jbc.2023.104839_bib5 article-title: Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses publication-title: Nature doi: 10.1038/nature13991 – volume: 35 start-page: 41 year: 1993 ident: 10.1016/j.jbc.2023.104839_bib35 article-title: Functional characterization of a purified homogeneous photosystem II core complex with high oxygen evolution capacity from spinach publication-title: Photosynth. Res. doi: 10.1007/BF02185410 – volume: 110 start-page: 954 year: 2013 ident: 10.1016/j.jbc.2023.104839_bib11 article-title: Mechanism of proton-coupled quinone reduction in Photosystem II publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1212957110 – volume: 473 start-page: 55 year: 2011 ident: 10.1016/j.jbc.2023.104839_bib4 article-title: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å publication-title: Nature doi: 10.1038/nature09913 – volume: 1827 start-page: 471 year: 2013 ident: 10.1016/j.jbc.2023.104839_bib39 article-title: Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2013.01.007 – volume: 50 start-page: 760 year: 1994 ident: 10.1016/j.jbc.2023.104839_bib53 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444994003112 – volume: 563 start-page: 421 year: 2018 ident: 10.1016/j.jbc.2023.104839_bib28 article-title: Structures of the intermediates of Kok’s photosynthetic water oxidation clock publication-title: Nature doi: 10.1038/s41586-018-0681-2 – volume: 302 start-page: 1009 year: 2003 ident: 10.1016/j.jbc.2023.104839_bib15 article-title: Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity publication-title: Science doi: 10.1126/science.1090165 – volume: 893 start-page: 126 year: 1987 ident: 10.1016/j.jbc.2023.104839_bib37 article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the QB binding site. I. Quinones, kinetics and pH-dependence publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(87)90032-6 – volume: 84 start-page: 1349 year: 2008 ident: 10.1016/j.jbc.2023.104839_bib16 article-title: Structure-function of the cytochrome b6f complex publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2008.00444.x – volume: 118 year: 2021 ident: 10.1016/j.jbc.2023.104839_bib43 article-title: Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2103203118 – volume: 543 start-page: 131 year: 2017 ident: 10.1016/j.jbc.2023.104839_bib27 article-title: Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL publication-title: Nature doi: 10.1038/nature21400 – volume: 8 year: 2017 ident: 10.1016/j.jbc.2023.104839_bib25 article-title: Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex publication-title: Nat. Commun. doi: 10.1038/ncomms15214 – volume: 36 start-page: 597 year: 1995 ident: 10.1016/j.jbc.2023.104839_bib32 article-title: Mechanism of electron flow through the QB site in photosystem II. 1. Kinetics of the reduction of electron acceptors at the QB and plastoquinone sites in photosystem II particles from the cyanobacterium Synechococcus vulcanus publication-title: Plant Cell Physiol. – volume: 53 start-page: 240 year: 1997 ident: 10.1016/j.jbc.2023.104839_bib54 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444996012255 – volume: 16 start-page: 334 year: 2009 ident: 10.1016/j.jbc.2023.104839_bib26 article-title: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1559 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.jbc.2023.104839_bib56 article-title: Phenix: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 1817 start-page: 1208 year: 2012 ident: 10.1016/j.jbc.2023.104839_bib31 article-title: Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.03.038 – volume: 409 year: 2020 ident: 10.1016/j.jbc.2023.104839_bib3 article-title: Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213183 – volume: 851 start-page: 416 year: 1986 ident: 10.1016/j.jbc.2023.104839_bib36 article-title: Photoreductant-induced oxidation of Fe2+ in the electron-acceptor complex of photosystem II publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(86)90078-2 – volume: 26 start-page: 795 year: 1993 ident: 10.1016/j.jbc.2023.104839_bib51 article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889893005588 – volume: 98 start-page: 159 year: 2008 ident: 10.1016/j.jbc.2023.104839_bib20 article-title: Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor QA in photosystem II as studied by Fourier transform infrared spectroscopy publication-title: Photosynth. Res. doi: 10.1007/s11120-008-9302-5 – volume: 110 start-page: 3889 year: 2013 ident: 10.1016/j.jbc.2023.104839_bib60 article-title: Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219922110 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.jbc.2023.104839_bib57 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 4 start-page: 1 year: 2021 ident: 10.1016/j.jbc.2023.104839_bib7 article-title: High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams publication-title: Commun. Biol. doi: 10.1038/s42003-021-01919-3 – volume: 11 start-page: 1160 year: 2010 ident: 10.1016/j.jbc.2023.104839_bib45 article-title: Recent progress in the crystallographic studies of photosystem II publication-title: Chemphyschem doi: 10.1002/cphc.200900901 – volume: 32 start-page: 1825 year: 1993 ident: 10.1016/j.jbc.2023.104839_bib44 article-title: Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II publication-title: Biochemistry doi: 10.1021/bi00058a017 – volume: 66 start-page: 23 year: 2015 ident: 10.1016/j.jbc.2023.104839_bib2 article-title: The Structure of photosystem II and the mechanism of water oxidation in photosynthesis publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120129 – volume: 1817 start-page: 44 year: 2012 ident: 10.1016/j.jbc.2023.104839_bib8 article-title: Light-induced quinone reduction in photosystem II publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2011.05.021 – volume: 293 start-page: 14786 year: 2018 ident: 10.1016/j.jbc.2023.104839_bib59 article-title: Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004304 – volume: 1767 start-page: 520 year: 2007 ident: 10.1016/j.jbc.2023.104839_bib46 article-title: Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2007.02.013 – volume: 30 start-page: 1022 year: 1997 ident: 10.1016/j.jbc.2023.104839_bib52 article-title: Molrep: an automated program for molecular replacement publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889897006766 – volume: 1767 start-page: 404 year: 2007 ident: 10.1016/j.jbc.2023.104839_bib61 article-title: Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2007.01.007 – volume: 59 start-page: 4336 year: 2020 ident: 10.1016/j.jbc.2023.104839_bib12 article-title: Protonation state of a key histidine ligand in the iron–quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy publication-title: Biochemistry doi: 10.1021/acs.biochem.0c00810 – volume: 49 start-page: 5445 year: 2010 ident: 10.1016/j.jbc.2023.104839_bib19 article-title: Structures and binding sites of phenolic herbicides in the QB pocket of photosystem II publication-title: Biochemistry doi: 10.1021/bi100639q – volume: 15 start-page: 285 year: 2014 ident: 10.1016/j.jbc.2023.104839_bib40 article-title: Structure/function/dynamics of photosystem II plastoquinone binding sites publication-title: Curr. Protein Pept. Sci. doi: 10.2174/1389203715666140327104802 – volume: 131 start-page: 15 year: 2017 ident: 10.1016/j.jbc.2023.104839_bib24 article-title: The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations publication-title: Photosynth. Res. doi: 10.1007/s11120-016-0292-4 – volume: 286 start-page: 15964 year: 2011 ident: 10.1016/j.jbc.2023.104839_bib21 article-title: Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.215970 – volume: 100 start-page: 98 year: 2003 ident: 10.1016/j.jbc.2023.104839_bib50 article-title: Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0135651100 – volume: 117 start-page: 12624 year: 2020 ident: 10.1016/j.jbc.2023.104839_bib29 article-title: Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2000529117 |
| SSID | ssj0000491 |
| Score | 2.47496 |
| Snippet | Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the... Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to Q , a plastoquinone molecule bound to the... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104839 |
| SubjectTerms | Benzoquinones crystal structure electron acceptor electron transfer Electron Transport Electrons Oxidants Oxygen - metabolism photosynthesis Photosystem II Photosystem II Protein Complex - metabolism Plastoquinone - chemistry Plastoquinone - metabolism Quinones - metabolism structural biology Water - chemistry |
| Title | Structural insights into the action mechanisms of artificial electron acceptors in photosystem II |
| URI | https://dx.doi.org/10.1016/j.jbc.2023.104839 https://www.ncbi.nlm.nih.gov/pubmed/37209822 https://www.proquest.com/docview/2816757711 https://pubmed.ncbi.nlm.nih.gov/PMC10300377 |
| Volume | 299 |
| WOSCitedRecordID | wos001166336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6gWAvCDY-ysdkJMQDKFPitLXzOCoQfWCa6JDKU2QnrppuSSpapvHj-G_c648kGzABEi9R1cRJ5HPiXMf3nkPIizCaRwOuMkAgywN4BeggmYcyiDQAPswBFzk3ZhP86EjMZslxr_fd18Kcn_GqEhcXyeq_Qg3_AdhYOvsXcDcnhT_gN4AOW4Adtn8E_NQowjo1jTXOvTHlyoWYzhm81FjwW6xLk8iBJ3FCEt4VBw7EfBd04sE080W9qa3m8-vJpBvPtpVlJqa1kk5WdMQ7yTVDuixlbkLV6aKolkXzGVqeymVRmj2f6_WiOG12TX3pCHA4-OiK1twnChY36aybTlUADledRNQ3Rd3ciM0p8XbAzoWzOxKaPBJmNd4PtB2pIXbEMoRZdyhn1mzJcZb_8hVhv1YsD5YKFSxZjKvcwgoqddixKg090MMHFQ7bt2WTw3j8YYwWbWHM-Ra5wfgwifyM3gcCA2fY6O7eL6qb9MIrl98ht_y1fhch_TwDuprI24mMTu6SOw5-emipeI_0dLVL9g4ruanLb_QlNUnGpq93ye2xR2OPyJap1DOVIlMpMJVaptKWqbSe05ap1DOVNkyFtrTDVDqZ3Cef3r09Gb8PnONHkEEcvgnEKMmiuVCCDTTnOk-GKuM8iqSSQkouYhlnUnGpmBzlOlLMGHLAm0PnuEScxA_IdlVX-hGh0CehZCoPRywbhFoJCVOhhKsoybORGoo-CX0vp5mTw0dXlrPU5z0uU8AoRYxSi1GfvGqarKwWzHUHDzx0qQtmbZCaAhGva_bcw5wCHLh6Jytdf12nTEQwucfe6JOHFvbmLjx1-kRcIkRzAIrIX95TFQsjJu85_Pjfmz4hO-1T_5RsA3n0M3IzO98U6y_7ZIvPxL55Mn4AJL30Yg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+insights+into+the+action+mechanisms+of+artificial+electron+acceptors+in+photosystem+II&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Kamada%2C+Shinji&rft.au=Nakajima%2C+Yoshiki&rft.au=Shen%2C+Jian-Ren&rft.date=2023-07-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=299&rft.issue=7&rft_id=info:doi/10.1016%2Fj.jbc.2023.104839&rft_id=info%3Apmid%2F37209822&rft.externalDocID=PMC10300377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |