Structural insights into the action mechanisms of artificial electron acceptors in photosystem II

Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry Jg. 299; H. 7; S. 104839
Hauptverfasser: Kamada, Shinji, Nakajima, Yoshiki, Shen, Jian-Ren
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.07.2023
American Society for Biochemistry and Molecular Biology
Schlagworte:
ISSN:0021-9258, 1083-351X, 1083-351X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
AbstractList Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to Q , a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for Q and are bound to the Q -binding site (Q site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the Q site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the Q site, was discovered, which is located in the vicinity of Q site and close to Q site, a binding site reported previously. This Q site is expected to play a role as a channel or a storage site for quinones to be transported to the Q site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of Q in PSII and also provide information for the design of more efficient electron acceptors.
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
ArticleNumber 104839
Author Kamada, Shinji
Nakajima, Yoshiki
Shen, Jian-Ren
Author_xml – sequence: 1
  givenname: Shinji
  surname: Kamada
  fullname: Kamada, Shinji
  organization: Faculty of Science, Okayama University, Okayama, Japan
– sequence: 2
  givenname: Yoshiki
  surname: Nakajima
  fullname: Nakajima, Yoshiki
  email: yoshi-n@okayama-u.ac.jp
  organization: Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
– sequence: 3
  givenname: Jian-Ren
  orcidid: 0000-0003-4471-8797
  surname: Shen
  fullname: Shen, Jian-Ren
  email: shen@cc.okayama-u.ac.jp
  organization: Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37209822$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFH8AGZckmgx-T2BELhCoeI1ViAUjsrGvnpvEosQfbqdR_X0fTImBRb2zL5zsnueeCnPngkZDXjG4ZZe27w_Zg7JZTLsp9p0T3jGwYVaIWDft1RjaUclZ3vFHn5CKlAy1r17EX5FxITjvF-YbA9xwXm5cIU-V8cjdjTuWQQ5VHrMBmF3w1ox3BuzSnKgwVxOwGZ10hcEKbY1GAtXjMIa5sdRxDDukuZZyr_f4leT7AlPDVw35Jfn7-9OPqa3397cv-6uN1bZuW51q1nWWDMorvUErsu8ZYKRkDAwpAKgHCgpFgOLQ9MsMVbTgzlGJPGeeduCQfTr7HxczYW_S5_JQ-RjdDvNMBnP73xbtR34RbzaigVEhZHN4-OMTwe8GU9eySxWkCj2FJmivWymb9qCJ983fYn5THwRaBPAlsDClFHLR1GdZplmw3lVC9VqgPulSo1wr1qcJCsv_IR_OnmPcnBsuAbx1GnaxDb7F3sTSk--CeoO8Bi6m1-Q
CitedBy_id crossref_primary_10_1016_j_bbabio_2025_149557
crossref_primary_10_1093_pcp_pcaf072
crossref_primary_10_1002_psc_3606
crossref_primary_10_1016_j_algal_2025_104223
crossref_primary_10_1016_j_bbabio_2024_149150
crossref_primary_10_1016_j_bbabio_2024_149507
crossref_primary_10_1093_plphys_kiaf082
Cites_doi 10.1007/s11120-007-9213-x
10.1073/pnas.1910675116
10.1039/b810067p
10.1016/j.bbabio.2012.04.003
10.1111/ppl.13469
10.1016/0014-5793(89)81447-4
10.1073/pnas.2116765118
10.1107/S0907444910007493
10.1021/bi0613022
10.3389/fpls.2019.01688
10.1093/oxfordjournals.pcp.a029047
10.1093/oxfordjournals.pcp.a029048
10.1073/pnas.0812797106
10.1021/bi001402m
10.1107/S0021889812017293
10.1016/0005-2728(87)90033-8
10.1021/bi051000k
10.1007/1-4020-4254-X
10.1021/bi010852r
10.1023/A:1006303510458
10.1016/j.bbabio.2005.12.002
10.1038/nature13991
10.1007/BF02185410
10.1073/pnas.1212957110
10.1038/nature09913
10.1016/j.bbabio.2013.01.007
10.1107/S0907444994003112
10.1038/s41586-018-0681-2
10.1126/science.1090165
10.1016/0005-2728(87)90032-6
10.1111/j.1751-1097.2008.00444.x
10.1073/pnas.2103203118
10.1038/nature21400
10.1038/ncomms15214
10.1107/S0907444996012255
10.1038/nsmb.1559
10.1107/S0907444909052925
10.1016/j.bbabio.2012.03.038
10.1016/j.ccr.2020.213183
10.1016/0005-2728(86)90078-2
10.1107/S0021889893005588
10.1007/s11120-008-9302-5
10.1073/pnas.1219922110
10.1107/S0907444904019158
10.1038/s42003-021-01919-3
10.1002/cphc.200900901
10.1021/bi00058a017
10.1146/annurev-arplant-050312-120129
10.1016/j.bbabio.2011.05.021
10.1074/jbc.RA118.004304
10.1016/j.bbabio.2007.02.013
10.1107/S0021889897006766
10.1016/j.bbabio.2007.01.007
10.1021/acs.biochem.0c00810
10.1021/bi100639q
10.2174/1389203715666140327104802
10.1007/s11120-016-0292-4
10.1074/jbc.M110.215970
10.1073/pnas.0135651100
10.1073/pnas.2000529117
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbc.2023.104839
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC10300377
37209822
10_1016_j_jbc_2023_104839
S0021925823018677
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ABUFD
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
5PM
ID FETCH-LOGICAL-c562t-869c1f8b824e77ed95bc7711aba8aa783a3cab7ab2a6de1b280521b00ed012293
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9258
1083-351X
IngestDate Tue Nov 04 02:06:52 EST 2025
Fri Sep 05 13:14:27 EDT 2025
Wed Feb 19 02:22:58 EST 2025
Tue Nov 18 22:18:26 EST 2025
Sat Nov 29 07:29:07 EST 2025
Fri Feb 23 02:35:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords PQ
DMSO
Chl
PSII
Photosystem II
PPBQ
PDB
DCBQ
DBBQ
electron transfer
photosynthesis
crystal structure
structural biology
electron acceptor
AEA
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-869c1f8b824e77ed95bc7711aba8aa783a3cab7ab2a6de1b280521b00ed012293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4471-8797
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2023.104839
PMID 37209822
PQID 2816757711
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10300377
proquest_miscellaneous_2816757711
pubmed_primary_37209822
crossref_citationtrail_10_1016_j_jbc_2023_104839
crossref_primary_10_1016_j_jbc_2023_104839
elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104839
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2023
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Echols, Grosse-Kunstleve, Afonine, Bunkóczi, Chen, Headd (bib55) 2012; 45
Najafpour, Zaharieva, Zand, Hosseini, Kouzmanova, Hołynska (bib3) 2020; 409
Shevela, Eaton-Rye, Shen, Govindjee (bib13) 2012; 1817
Takano, Takahashi, Suzuki, Noguchi (bib20) 2008; 98
Satoh, Oh-hashi, Kashino, Koike (bib32) 1995; 36
Gleiter, Haag, Inoue, Renger (bib35) 1993; 35
Fufezan, Zhang, Krieger-Liszkay, Rutherford (bib47) 2005; 44
Baniulis, Yamashita, Zhang, Hasan, Cramer (bib16) 2008; 84
Guskov, Kern, Gabdulkhakov, Broser, Zouni, Saenger (bib26) 2009; 16
Zobnina, Lambreva, Rea, Campi, Antonacci, Scognamiglio (bib24) 2017; 131
Kamiya, Shen (bib50) 2003; 100
Kargul, Maghlaoui, Murray, Deak, Boussac, Rutherford (bib61) 2007; 1767
Takahashi, Hasegawa, Takano, Noguchi (bib19) 2010; 49
Forsman, Eaton-Rye (bib18) 2021; 172
Shevela, Messinger (bib31) 2012; 1817
Kawakami, Umena, Kamiya, Shen (bib42) 2009; 106
de Wijn, van Gorkom (bib9) 2001; 40
Murshudov, Vagin, Dodson (bib54) 1997; 53
Van Eerden, Melo, Frederix, Periole, Marrink (bib25) 2017; 8
Krivanek, Kern, Zouni, Dau, Haumann (bib46) 2007; 1767
Broser, Glöckner, Gabdulkhakov, Guskov, Buchta, Kern (bib21) 2011; 286
Kato, Miyazaki, Hamaguchi, Nakajima, Akita, Yonekura (bib7) 2021; 4
Delrieu, Rosengard (bib30) 1989; 251
Kaminskaya, Shuvalov (bib39) 2013; 1827
Emsley, Lohkamp, Scott, Cowtan (bib58) 2010; 66
Murray, Maghlaoui, Kargul, Ishida, Lai, Rutherford (bib41) 2008; 1
Lambreva, Russo, Polticelli, Scognamiglio, Antonacci, Zobnina (bib40) 2014; 15
Emsley, Cowtan (bib57) 2004; 60
Trebst (bib23) 2007; 92
Koua, Umena, Kawakami, Shen (bib60) 2013; 110
(bib53) 1994; 50
Gisriel, Wang, Liu, Flesher, Reiss, Huang (bib6) 2022; 119
Kurisu, Zhang, Smith, Cramer (bib15) 2003; 302
Shen, Inoue (bib44) 1993; 32
Petrouleas, Diner (bib37) 1987; 893
Nakajima, Umena, Nagao, Endo, Kobayashi, Akita (bib59) 2018; 293
Kashino, Yamashita, Okamoto, Koike, Satoh (bib33) 1996; 37
Umena, Kawakami, Shen, Kamiya (bib4) 2011; 473
Guskov, Gabdulkhakov, Broser, Glöckner, Hellmich, Kern (bib45) 2010; 11
Shen (bib2) 2015; 66
Zimmermann, Heck, Frank, Kern, Vass, Zouni (bib22) 2006; 1757
Vagin, Teplyakov (bib52) 1997; 30
Sugo, Saito, Ishikita (bib43) 2021; 118
Wydrzynski, Satoh (bib1) 2005; vol. 22
Kaminskaya, Shuvalov, Renger (bib48) 2007; 46
Saito, Rutherford, Ishikita (bib11) 2013; 110
Kurreck, Schödel, Renger (bib14) 2000; 63
Ibrahim, Fransson, Chatterjee, Cheah, Hussein, Lassalle (bib29) 2020; 117
Suga, Akita, Hirata, Ueno, Murakami, Nakajima (bib5) 2015; 517
Suga, Akita, Sugahara, Kubo, Nakajima, Nakane (bib27) 2017; 543
Kabsch (bib51) 1993; 26
Zimmermann, Rutherford (bib36) 1986; 851
Causmaecker, Douglass, Fantuzzi, Nitschke, Rutherford (bib10) 2019; 116
Diner, Petrouleas (bib38) 1987; 893
Shen, Kamiya (bib49) 2000; 39
Müh, Glöckner, Hellmich, Zouni (bib8) 2012; 1817
Adams, Afonine, Bunkóczi, Chen, Davis, Echols (bib56) 2010; 66
Kern, Chatterjee, Young, Fuller, Lassalle, Ibrahim (bib28) 2018; 563
Kimura, Kato, Noguchi (bib12) 2020; 59
Guo, Cheng, Lu, Wang, Gao, Shi (bib17) 2020; 10
Koike, Yoneyama, Kashino, Satoh (bib34) 1996; 37
Baniulis (10.1016/j.jbc.2023.104839_bib16) 2008; 84
Müh (10.1016/j.jbc.2023.104839_bib8) 2012; 1817
Umena (10.1016/j.jbc.2023.104839_bib4) 2011; 473
Satoh (10.1016/j.jbc.2023.104839_bib32) 1995; 36
Emsley (10.1016/j.jbc.2023.104839_bib58) 2010; 66
Ibrahim (10.1016/j.jbc.2023.104839_bib29) 2020; 117
Gleiter (10.1016/j.jbc.2023.104839_bib35) 1993; 35
(10.1016/j.jbc.2023.104839_bib53) 1994; 50
Adams (10.1016/j.jbc.2023.104839_bib56) 2010; 66
Kern (10.1016/j.jbc.2023.104839_bib28) 2018; 563
Diner (10.1016/j.jbc.2023.104839_bib38) 1987; 893
Emsley (10.1016/j.jbc.2023.104839_bib57) 2004; 60
Saito (10.1016/j.jbc.2023.104839_bib11) 2013; 110
Kashino (10.1016/j.jbc.2023.104839_bib33) 1996; 37
Vagin (10.1016/j.jbc.2023.104839_bib52) 1997; 30
Echols (10.1016/j.jbc.2023.104839_bib55) 2012; 45
Lambreva (10.1016/j.jbc.2023.104839_bib40) 2014; 15
Guo (10.1016/j.jbc.2023.104839_bib17) 2020; 10
Guskov (10.1016/j.jbc.2023.104839_bib45) 2010; 11
Takahashi (10.1016/j.jbc.2023.104839_bib19) 2010; 49
Kabsch (10.1016/j.jbc.2023.104839_bib51) 1993; 26
Murshudov (10.1016/j.jbc.2023.104839_bib54) 1997; 53
Delrieu (10.1016/j.jbc.2023.104839_bib30) 1989; 251
Zobnina (10.1016/j.jbc.2023.104839_bib24) 2017; 131
Murray (10.1016/j.jbc.2023.104839_bib41) 2008; 1
Trebst (10.1016/j.jbc.2023.104839_bib23) 2007; 92
Suga (10.1016/j.jbc.2023.104839_bib27) 2017; 543
Kato (10.1016/j.jbc.2023.104839_bib7) 2021; 4
Shevela (10.1016/j.jbc.2023.104839_bib13) 2012; 1817
Suga (10.1016/j.jbc.2023.104839_bib5) 2015; 517
Kurreck (10.1016/j.jbc.2023.104839_bib14) 2000; 63
Forsman (10.1016/j.jbc.2023.104839_bib18) 2021; 172
Kaminskaya (10.1016/j.jbc.2023.104839_bib39) 2013; 1827
Shevela (10.1016/j.jbc.2023.104839_bib31) 2012; 1817
Kargul (10.1016/j.jbc.2023.104839_bib61) 2007; 1767
Causmaecker (10.1016/j.jbc.2023.104839_bib10) 2019; 116
Van Eerden (10.1016/j.jbc.2023.104839_bib25) 2017; 8
Fufezan (10.1016/j.jbc.2023.104839_bib47) 2005; 44
Takano (10.1016/j.jbc.2023.104839_bib20) 2008; 98
de Wijn (10.1016/j.jbc.2023.104839_bib9) 2001; 40
Kimura (10.1016/j.jbc.2023.104839_bib12) 2020; 59
Zimmermann (10.1016/j.jbc.2023.104839_bib36) 1986; 851
Kaminskaya (10.1016/j.jbc.2023.104839_bib48) 2007; 46
Shen (10.1016/j.jbc.2023.104839_bib44) 1993; 32
Petrouleas (10.1016/j.jbc.2023.104839_bib37) 1987; 893
Nakajima (10.1016/j.jbc.2023.104839_bib59) 2018; 293
Najafpour (10.1016/j.jbc.2023.104839_bib3) 2020; 409
Gisriel (10.1016/j.jbc.2023.104839_bib6) 2022; 119
Wydrzynski (10.1016/j.jbc.2023.104839_bib1) 2005; vol. 22
Zimmermann (10.1016/j.jbc.2023.104839_bib22) 2006; 1757
Kawakami (10.1016/j.jbc.2023.104839_bib42) 2009; 106
Kurisu (10.1016/j.jbc.2023.104839_bib15) 2003; 302
Krivanek (10.1016/j.jbc.2023.104839_bib46) 2007; 1767
Broser (10.1016/j.jbc.2023.104839_bib21) 2011; 286
Shen (10.1016/j.jbc.2023.104839_bib49) 2000; 39
Guskov (10.1016/j.jbc.2023.104839_bib26) 2009; 16
Sugo (10.1016/j.jbc.2023.104839_bib43) 2021; 118
Shen (10.1016/j.jbc.2023.104839_bib2) 2015; 66
Koike (10.1016/j.jbc.2023.104839_bib34) 1996; 37
Koua (10.1016/j.jbc.2023.104839_bib60) 2013; 110
Kamiya (10.1016/j.jbc.2023.104839_bib50) 2003; 100
References_xml – volume: 110
  start-page: 3889
  year: 2013
  end-page: 3894
  ident: bib60
  article-title: Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 251
  start-page: 161
  year: 1989
  end-page: 166
  ident: bib30
  article-title: Interaction of exogenous quinones with photosystem II in inside-out thylakoids
  publication-title: FEBS Lett.
– volume: 40
  start-page: 11912
  year: 2001
  end-page: 11922
  ident: bib9
  article-title: Kinetics of electron transfer from Q
  publication-title: Biochemistry
– volume: 44
  start-page: 12780
  year: 2005
  end-page: 12789
  ident: bib47
  article-title: Secondary quinone in Photosystem II of
  publication-title: Biochemistry
– volume: 110
  start-page: 954
  year: 2013
  end-page: 959
  ident: bib11
  article-title: Mechanism of proton-coupled quinone reduction in Photosystem II
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 597
  year: 1995
  end-page: 605
  ident: bib32
  article-title: Mechanism of electron flow through the Q
  publication-title: Plant Cell Physiol.
– volume: 66
  start-page: 23
  year: 2015
  end-page: 48
  ident: bib2
  article-title: The Structure of photosystem II and the mechanism of water oxidation in photosynthesis
  publication-title: Annu. Rev. Plant Biol.
– volume: 39
  start-page: 14739
  year: 2000
  end-page: 14744
  ident: bib49
  article-title: Crystallization and the crystal properties of the oxygen-evolving photosystem II from
  publication-title: Biochemistry
– volume: 1767
  start-page: 404
  year: 2007
  end-page: 413
  ident: bib61
  article-title: Purification, crystallization and X-ray diffraction analyses of the
  publication-title: Biochim. Biophys. Acta
– volume: 8
  year: 2017
  ident: bib25
  article-title: Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex
  publication-title: Nat. Commun.
– volume: 37
  start-page: 976
  year: 1996
  end-page: 982
  ident: bib33
  article-title: Mechanisms of electron flow through the Q
  publication-title: Plant Cell Physiol.
– volume: 172
  start-page: 2217
  year: 2021
  end-page: 2225
  ident: bib18
  article-title: The hydrophobicity of mutations targeting D1:Val219 modifies formate and diuron binding in the quinone-Fe-acceptor complex of Photosystem II
  publication-title: Physiol. Plant.
– volume: 106
  start-page: 8567
  year: 2009
  end-page: 8572
  ident: bib42
  article-title: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 46
  start-page: 1091
  year: 2007
  end-page: 1105
  ident: bib48
  article-title: Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome
  publication-title: Biochemistry
– volume: 563
  start-page: 421
  year: 2018
  end-page: 425
  ident: bib28
  article-title: Structures of the intermediates of Kok’s photosynthetic water oxidation clock
  publication-title: Nature
– volume: 302
  start-page: 1009
  year: 2003
  end-page: 1014
  ident: bib15
  article-title: Structure of the cytochrome
  publication-title: Science
– volume: 131
  start-page: 15
  year: 2017
  end-page: 30
  ident: bib24
  article-title: The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations
  publication-title: Photosynth. Res.
– volume: 4
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib7
  article-title: High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams
  publication-title: Commun. Biol.
– volume: 1817
  start-page: 1134
  year: 2012
  end-page: 1151
  ident: bib13
  article-title: Photosystem II and the unique role of bicarbonate: a historical perspective
  publication-title: Biochim. Biophys. Acta
– volume: 893
  start-page: 138
  year: 1987
  end-page: 148
  ident: bib38
  article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the Q
  publication-title: Biochim. Biophys. Acta
– volume: 118
  year: 2021
  ident: bib43
  article-title: Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 41
  year: 1993
  end-page: 53
  ident: bib35
  article-title: Functional characterization of a purified homogeneous photosystem II core complex with high oxygen evolution capacity from spinach
  publication-title: Photosynth. Res.
– volume: 92
  start-page: 217
  year: 2007
  end-page: 224
  ident: bib23
  article-title: Inhibitors in the functional dissection of the photosynthetic electron transport system
  publication-title: Photosynth. Res.
– volume: 59
  start-page: 4336
  year: 2020
  end-page: 4343
  ident: bib12
  article-title: Protonation state of a key histidine ligand in the iron–quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy
  publication-title: Biochemistry
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib56
  article-title: Phenix: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 98
  start-page: 159
  year: 2008
  end-page: 167
  ident: bib20
  article-title: Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor Q
  publication-title: Photosynth. Res.
– volume: 84
  start-page: 1349
  year: 2008
  end-page: 1358
  ident: bib16
  article-title: Structure-function of the cytochrome
  publication-title: Photochem. Photobiol.
– volume: 11
  start-page: 1160
  year: 2010
  end-page: 1171
  ident: bib45
  article-title: Recent progress in the crystallographic studies of photosystem II
  publication-title: Chemphyschem
– volume: 473
  start-page: 55
  year: 2011
  end-page: 60
  ident: bib4
  article-title: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å
  publication-title: Nature
– volume: 10
  start-page: 1688
  year: 2020
  ident: bib17
  article-title: Novel action targets of natural product gliotoxin in photosynthetic apparatus
  publication-title: Front. Plant Sci.
– volume: 517
  start-page: 99
  year: 2015
  end-page: 103
  ident: bib5
  article-title: Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses
  publication-title: Nature
– volume: 1817
  start-page: 1208
  year: 2012
  end-page: 1212
  ident: bib31
  article-title: Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors
  publication-title: Biochim. Biophys. Acta
– volume: 409
  year: 2020
  ident: bib3
  article-title: Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts
  publication-title: Coord. Chem. Rev.
– volume: 1
  start-page: 161
  year: 2008
  end-page: 166
  ident: bib41
  article-title: X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II
  publication-title: Energy Environ. Sci.
– volume: 286
  start-page: 15964
  year: 2011
  end-page: 15972
  ident: bib21
  article-title: Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 1022
  year: 1997
  end-page: 1025
  ident: bib52
  article-title: Molrep: an automated program for molecular replacement
  publication-title: J. Appl. Crystallogr.
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib58
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 117
  start-page: 12624
  year: 2020
  end-page: 12635
  ident: bib29
  article-title: Untangling the sequence of events during the S
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 45
  start-page: 581
  year: 2012
  end-page: 586
  ident: bib55
  article-title: Graphical tools for macromolecular crystallography in PHENIX
  publication-title: J. Appl. Crystallogr.
– volume: 15
  start-page: 285
  year: 2014
  end-page: 295
  ident: bib40
  article-title: Structure/function/dynamics of photosystem II plastoquinone binding sites
  publication-title: Curr. Protein Pept. Sci.
– volume: 100
  start-page: 98
  year: 2003
  end-page: 103
  ident: bib50
  article-title: Crystal structure of oxygen-evolving photosystem II from
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1767
  start-page: 520
  year: 2007
  end-page: 527
  ident: bib46
  article-title: Spare quinones in the Q
  publication-title: Biochim. Biophys. Acta
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib57
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 49
  start-page: 5445
  year: 2010
  end-page: 5454
  ident: bib19
  article-title: Structures and binding sites of phenolic herbicides in the Q
  publication-title: Biochemistry
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: bib53
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 63
  start-page: 171
  year: 2000
  ident: bib14
  article-title: Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments
  publication-title: Photosynth. Res.
– volume: 16
  start-page: 334
  year: 2009
  end-page: 342
  ident: bib26
  article-title: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride
  publication-title: Nat. Struct. Mol. Biol.
– volume: 32
  start-page: 1825
  year: 1993
  end-page: 1832
  ident: bib44
  article-title: Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II
  publication-title: Biochemistry
– volume: 1757
  start-page: 106
  year: 2006
  end-page: 114
  ident: bib22
  article-title: Herbicide binding and thermal stability of photosystem II isolated from
  publication-title: Biochim. Biophys. Acta
– volume: 1827
  start-page: 471
  year: 2013
  end-page: 483
  ident: bib39
  article-title: Biphasic reduction of cytochrome
  publication-title: Biochim. Biophys. Acta
– volume: 53
  start-page: 240
  year: 1997
  end-page: 255
  ident: bib54
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 26
  start-page: 795
  year: 1993
  end-page: 800
  ident: bib51
  article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
  publication-title: J. Appl. Crystallogr.
– volume: 37
  start-page: 983
  year: 1996
  end-page: 988
  ident: bib34
  article-title: Mechanism of electron flow through the Q
  publication-title: Plant Cell Physiol.
– volume: 893
  start-page: 126
  year: 1987
  end-page: 137
  ident: bib37
  article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the Q
  publication-title: Biochim. Biophys. Acta
– volume: 1817
  start-page: 44
  year: 2012
  end-page: 65
  ident: bib8
  article-title: Light-induced quinone reduction in photosystem II
  publication-title: Biochim. Biophys. Acta
– volume: 851
  start-page: 416
  year: 1986
  end-page: 423
  ident: bib36
  article-title: Photoreductant-induced oxidation of Fe
  publication-title: Biochim. Biophys. Acta
– volume: vol. 22
  start-page: 1
  year: 2005
  end-page: 786
  ident: bib1
  article-title: Photosystem II: the light-driven water:plastoquinone oxidoreductase
  publication-title: Advances in Photosynthesis and Respiration
– volume: 119
  year: 2022
  ident: bib6
  article-title: High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium,
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 543
  start-page: 131
  year: 2017
  end-page: 135
  ident: bib27
  article-title: Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL
  publication-title: Nature
– volume: 293
  start-page: 14786
  year: 2018
  end-page: 14797
  ident: bib59
  article-title: Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in
  publication-title: J. Biol. Chem.
– volume: 116
  start-page: 19458
  year: 2019
  end-page: 19463
  ident: bib10
  article-title: Energetics of the exchangeable quinone, Q
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 92
  start-page: 217
  year: 2007
  ident: 10.1016/j.jbc.2023.104839_bib23
  article-title: Inhibitors in the functional dissection of the photosynthetic electron transport system
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-007-9213-x
– volume: 116
  start-page: 19458
  year: 2019
  ident: 10.1016/j.jbc.2023.104839_bib10
  article-title: Energetics of the exchangeable quinone, QB, in Photosystem II
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1910675116
– volume: 1
  start-page: 161
  year: 2008
  ident: 10.1016/j.jbc.2023.104839_bib41
  article-title: X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b810067p
– volume: 1817
  start-page: 1134
  year: 2012
  ident: 10.1016/j.jbc.2023.104839_bib13
  article-title: Photosystem II and the unique role of bicarbonate: a historical perspective
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.04.003
– volume: 172
  start-page: 2217
  year: 2021
  ident: 10.1016/j.jbc.2023.104839_bib18
  article-title: The hydrophobicity of mutations targeting D1:Val219 modifies formate and diuron binding in the quinone-Fe-acceptor complex of Photosystem II
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13469
– volume: 251
  start-page: 161
  year: 1989
  ident: 10.1016/j.jbc.2023.104839_bib30
  article-title: Interaction of exogenous quinones with photosystem II in inside-out thylakoids
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(89)81447-4
– volume: 119
  year: 2022
  ident: 10.1016/j.jbc.2023.104839_bib6
  article-title: High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2116765118
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.jbc.2023.104839_bib58
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 46
  start-page: 1091
  year: 2007
  ident: 10.1016/j.jbc.2023.104839_bib48
  article-title: Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559
  publication-title: Biochemistry
  doi: 10.1021/bi0613022
– volume: 10
  start-page: 1688
  year: 2020
  ident: 10.1016/j.jbc.2023.104839_bib17
  article-title: Novel action targets of natural product gliotoxin in photosynthetic apparatus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01688
– volume: 37
  start-page: 976
  year: 1996
  ident: 10.1016/j.jbc.2023.104839_bib33
  article-title: Mechanisms of electron flow through the QB site in photosystem II. 3. Effects of the presence of membrane structure on the redox reactions at the QB site
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029047
– volume: 37
  start-page: 983
  year: 1996
  ident: 10.1016/j.jbc.2023.104839_bib34
  article-title: Mechanism of electron flow through the QB site in photosystem II. 4. Reaction mechanism of plastoquinone derivatives at the QB site in spinach photosystem II membrane fragments
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029048
– volume: 106
  start-page: 8567
  year: 2009
  ident: 10.1016/j.jbc.2023.104839_bib42
  article-title: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0812797106
– volume: 39
  start-page: 14739
  year: 2000
  ident: 10.1016/j.jbc.2023.104839_bib49
  article-title: Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus
  publication-title: Biochemistry
  doi: 10.1021/bi001402m
– volume: 45
  start-page: 581
  year: 2012
  ident: 10.1016/j.jbc.2023.104839_bib55
  article-title: Graphical tools for macromolecular crystallography in PHENIX
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889812017293
– volume: 893
  start-page: 138
  year: 1987
  ident: 10.1016/j.jbc.2023.104839_bib38
  article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the QB binding site. II. Blockage by inhibitors and their effects on the Fe(III) EPR spectra
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(87)90033-8
– volume: 44
  start-page: 12780
  year: 2005
  ident: 10.1016/j.jbc.2023.104839_bib47
  article-title: Secondary quinone in Photosystem II of Thermosynechococcus elongatus: semiquinone−iron EPR signals and temperature dependence of electron transfer
  publication-title: Biochemistry
  doi: 10.1021/bi051000k
– volume: vol. 22
  start-page: 1
  year: 2005
  ident: 10.1016/j.jbc.2023.104839_bib1
  article-title: Photosystem II: the light-driven water:plastoquinone oxidoreductase
  doi: 10.1007/1-4020-4254-X
– volume: 40
  start-page: 11912
  year: 2001
  ident: 10.1016/j.jbc.2023.104839_bib9
  article-title: Kinetics of electron transfer from QA to QB in photosystem II
  publication-title: Biochemistry
  doi: 10.1021/bi010852r
– volume: 63
  start-page: 171
  year: 2000
  ident: 10.1016/j.jbc.2023.104839_bib14
  article-title: Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments
  publication-title: Photosynth. Res.
  doi: 10.1023/A:1006303510458
– volume: 1757
  start-page: 106
  year: 2006
  ident: 10.1016/j.jbc.2023.104839_bib22
  article-title: Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2005.12.002
– volume: 517
  start-page: 99
  year: 2015
  ident: 10.1016/j.jbc.2023.104839_bib5
  article-title: Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses
  publication-title: Nature
  doi: 10.1038/nature13991
– volume: 35
  start-page: 41
  year: 1993
  ident: 10.1016/j.jbc.2023.104839_bib35
  article-title: Functional characterization of a purified homogeneous photosystem II core complex with high oxygen evolution capacity from spinach
  publication-title: Photosynth. Res.
  doi: 10.1007/BF02185410
– volume: 110
  start-page: 954
  year: 2013
  ident: 10.1016/j.jbc.2023.104839_bib11
  article-title: Mechanism of proton-coupled quinone reduction in Photosystem II
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1212957110
– volume: 473
  start-page: 55
  year: 2011
  ident: 10.1016/j.jbc.2023.104839_bib4
  article-title: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å
  publication-title: Nature
  doi: 10.1038/nature09913
– volume: 1827
  start-page: 471
  year: 2013
  ident: 10.1016/j.jbc.2023.104839_bib39
  article-title: Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2013.01.007
– volume: 50
  start-page: 760
  year: 1994
  ident: 10.1016/j.jbc.2023.104839_bib53
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444994003112
– volume: 563
  start-page: 421
  year: 2018
  ident: 10.1016/j.jbc.2023.104839_bib28
  article-title: Structures of the intermediates of Kok’s photosynthetic water oxidation clock
  publication-title: Nature
  doi: 10.1038/s41586-018-0681-2
– volume: 302
  start-page: 1009
  year: 2003
  ident: 10.1016/j.jbc.2023.104839_bib15
  article-title: Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity
  publication-title: Science
  doi: 10.1126/science.1090165
– volume: 893
  start-page: 126
  year: 1987
  ident: 10.1016/j.jbc.2023.104839_bib37
  article-title: Light-induced oxidation of the acceptor-side Fe(II) of Photosystem II by exogenous quinones acting through the QB binding site. I. Quinones, kinetics and pH-dependence
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(87)90032-6
– volume: 84
  start-page: 1349
  year: 2008
  ident: 10.1016/j.jbc.2023.104839_bib16
  article-title: Structure-function of the cytochrome b6f complex
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2008.00444.x
– volume: 118
  year: 2021
  ident: 10.1016/j.jbc.2023.104839_bib43
  article-title: Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2103203118
– volume: 543
  start-page: 131
  year: 2017
  ident: 10.1016/j.jbc.2023.104839_bib27
  article-title: Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL
  publication-title: Nature
  doi: 10.1038/nature21400
– volume: 8
  year: 2017
  ident: 10.1016/j.jbc.2023.104839_bib25
  article-title: Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15214
– volume: 36
  start-page: 597
  year: 1995
  ident: 10.1016/j.jbc.2023.104839_bib32
  article-title: Mechanism of electron flow through the QB site in photosystem II. 1. Kinetics of the reduction of electron acceptors at the QB and plastoquinone sites in photosystem II particles from the cyanobacterium Synechococcus vulcanus
  publication-title: Plant Cell Physiol.
– volume: 53
  start-page: 240
  year: 1997
  ident: 10.1016/j.jbc.2023.104839_bib54
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444996012255
– volume: 16
  start-page: 334
  year: 2009
  ident: 10.1016/j.jbc.2023.104839_bib26
  article-title: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1559
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.jbc.2023.104839_bib56
  article-title: Phenix: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 1817
  start-page: 1208
  year: 2012
  ident: 10.1016/j.jbc.2023.104839_bib31
  article-title: Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.03.038
– volume: 409
  year: 2020
  ident: 10.1016/j.jbc.2023.104839_bib3
  article-title: Water-oxidizing complex in Photosystem II: its structure and relation to manganese-oxide based catalysts
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213183
– volume: 851
  start-page: 416
  year: 1986
  ident: 10.1016/j.jbc.2023.104839_bib36
  article-title: Photoreductant-induced oxidation of Fe2+ in the electron-acceptor complex of photosystem II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(86)90078-2
– volume: 26
  start-page: 795
  year: 1993
  ident: 10.1016/j.jbc.2023.104839_bib51
  article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889893005588
– volume: 98
  start-page: 159
  year: 2008
  ident: 10.1016/j.jbc.2023.104839_bib20
  article-title: Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor QA in photosystem II as studied by Fourier transform infrared spectroscopy
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-008-9302-5
– volume: 110
  start-page: 3889
  year: 2013
  ident: 10.1016/j.jbc.2023.104839_bib60
  article-title: Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1219922110
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.jbc.2023.104839_bib57
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 4
  start-page: 1
  year: 2021
  ident: 10.1016/j.jbc.2023.104839_bib7
  article-title: High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01919-3
– volume: 11
  start-page: 1160
  year: 2010
  ident: 10.1016/j.jbc.2023.104839_bib45
  article-title: Recent progress in the crystallographic studies of photosystem II
  publication-title: Chemphyschem
  doi: 10.1002/cphc.200900901
– volume: 32
  start-page: 1825
  year: 1993
  ident: 10.1016/j.jbc.2023.104839_bib44
  article-title: Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial photosystem II
  publication-title: Biochemistry
  doi: 10.1021/bi00058a017
– volume: 66
  start-page: 23
  year: 2015
  ident: 10.1016/j.jbc.2023.104839_bib2
  article-title: The Structure of photosystem II and the mechanism of water oxidation in photosynthesis
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120129
– volume: 1817
  start-page: 44
  year: 2012
  ident: 10.1016/j.jbc.2023.104839_bib8
  article-title: Light-induced quinone reduction in photosystem II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2011.05.021
– volume: 293
  start-page: 14786
  year: 2018
  ident: 10.1016/j.jbc.2023.104839_bib59
  article-title: Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.004304
– volume: 1767
  start-page: 520
  year: 2007
  ident: 10.1016/j.jbc.2023.104839_bib46
  article-title: Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2007.02.013
– volume: 30
  start-page: 1022
  year: 1997
  ident: 10.1016/j.jbc.2023.104839_bib52
  article-title: Molrep: an automated program for molecular replacement
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889897006766
– volume: 1767
  start-page: 404
  year: 2007
  ident: 10.1016/j.jbc.2023.104839_bib61
  article-title: Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2007.01.007
– volume: 59
  start-page: 4336
  year: 2020
  ident: 10.1016/j.jbc.2023.104839_bib12
  article-title: Protonation state of a key histidine ligand in the iron–quinone complex of photosystem II as revealed by light-induced ATR-FTIR spectroscopy
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.0c00810
– volume: 49
  start-page: 5445
  year: 2010
  ident: 10.1016/j.jbc.2023.104839_bib19
  article-title: Structures and binding sites of phenolic herbicides in the QB pocket of photosystem II
  publication-title: Biochemistry
  doi: 10.1021/bi100639q
– volume: 15
  start-page: 285
  year: 2014
  ident: 10.1016/j.jbc.2023.104839_bib40
  article-title: Structure/function/dynamics of photosystem II plastoquinone binding sites
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203715666140327104802
– volume: 131
  start-page: 15
  year: 2017
  ident: 10.1016/j.jbc.2023.104839_bib24
  article-title: The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-016-0292-4
– volume: 286
  start-page: 15964
  year: 2011
  ident: 10.1016/j.jbc.2023.104839_bib21
  article-title: Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.215970
– volume: 100
  start-page: 98
  year: 2003
  ident: 10.1016/j.jbc.2023.104839_bib50
  article-title: Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0135651100
– volume: 117
  start-page: 12624
  year: 2020
  ident: 10.1016/j.jbc.2023.104839_bib29
  article-title: Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2000529117
SSID ssj0000491
Score 2.47496
Snippet Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the...
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to Q , a plastoquinone molecule bound to the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104839
SubjectTerms Benzoquinones
crystal structure
electron acceptor
electron transfer
Electron Transport
Electrons
Oxidants
Oxygen - metabolism
photosynthesis
Photosystem II
Photosystem II Protein Complex - metabolism
Plastoquinone - chemistry
Plastoquinone - metabolism
Quinones - metabolism
structural biology
Water - chemistry
Title Structural insights into the action mechanisms of artificial electron acceptors in photosystem II
URI https://dx.doi.org/10.1016/j.jbc.2023.104839
https://www.ncbi.nlm.nih.gov/pubmed/37209822
https://www.proquest.com/docview/2816757711
https://pubmed.ncbi.nlm.nih.gov/PMC10300377
Volume 299
WOSCitedRecordID wos001166336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6gWAvCDY-ysdkJMQDKFPitLXzOCoQfWCa6JDKU2QnrppuSSpapvHj-G_c648kGzABEi9R1cRJ5HPiXMf3nkPIizCaRwOuMkAgywN4BeggmYcyiDQAPswBFzk3ZhP86EjMZslxr_fd18Kcn_GqEhcXyeq_Qg3_AdhYOvsXcDcnhT_gN4AOW4Adtn8E_NQowjo1jTXOvTHlyoWYzhm81FjwW6xLk8iBJ3FCEt4VBw7EfBd04sE080W9qa3m8-vJpBvPtpVlJqa1kk5WdMQ7yTVDuixlbkLV6aKolkXzGVqeymVRmj2f6_WiOG12TX3pCHA4-OiK1twnChY36aybTlUADledRNQ3Rd3ciM0p8XbAzoWzOxKaPBJmNd4PtB2pIXbEMoRZdyhn1mzJcZb_8hVhv1YsD5YKFSxZjKvcwgoqddixKg090MMHFQ7bt2WTw3j8YYwWbWHM-Ra5wfgwifyM3gcCA2fY6O7eL6qb9MIrl98ht_y1fhch_TwDuprI24mMTu6SOw5-emipeI_0dLVL9g4ruanLb_QlNUnGpq93ye2xR2OPyJap1DOVIlMpMJVaptKWqbSe05ap1DOVNkyFtrTDVDqZ3Cef3r09Gb8PnONHkEEcvgnEKMmiuVCCDTTnOk-GKuM8iqSSQkouYhlnUnGpmBzlOlLMGHLAm0PnuEScxA_IdlVX-hGh0CehZCoPRywbhFoJCVOhhKsoybORGoo-CX0vp5mTw0dXlrPU5z0uU8AoRYxSi1GfvGqarKwWzHUHDzx0qQtmbZCaAhGva_bcw5wCHLh6Jytdf12nTEQwucfe6JOHFvbmLjx1-kRcIkRzAIrIX95TFQsjJu85_Pjfmz4hO-1T_5RsA3n0M3IzO98U6y_7ZIvPxL55Mn4AJL30Yg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+insights+into+the+action+mechanisms+of+artificial+electron+acceptors+in+photosystem+II&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Kamada%2C+Shinji&rft.au=Nakajima%2C+Yoshiki&rft.au=Shen%2C+Jian-Ren&rft.date=2023-07-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=299&rft.issue=7&rft_id=info:doi/10.1016%2Fj.jbc.2023.104839&rft_id=info%3Apmid%2F37209822&rft.externalDocID=PMC10300377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon