Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse

Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cel...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell reports. Medicine Ročník 5; číslo 3; s. 101471
Hlavní autori: Chen, Mengnuo, Mainardi, Sara, Lieftink, Cor, Velds, Arno, de Rink, Iris, Yang, Chen, Kuiken, Hendrik J., Morris, Ben, Edwards, Finn, Jochems, Fleur, van Tellingen, Olaf, Boeije, Manon, Proost, Natalie, Jansen, Robin A., Qin, Shifan, Jin, Haojie, Koen van der Mijn, J.C., Schepers, Arnout, Venkatesan, Subramanian, Qin, Wenxin, Beijersbergen, Roderick L., Wang, Liqin, Bernards, René
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 19.03.2024
Elsevier
Predmet:
ISSN:2666-3791, 2666-3791
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. [Display omitted] •Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo.
AbstractList Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.
Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. •Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo.
Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. [Display omitted] •Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo.
Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.
SummaryDrug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.
ArticleNumber 101471
Author Jochems, Fleur
Kuiken, Hendrik J.
Edwards, Finn
Qin, Shifan
Morris, Ben
Venkatesan, Subramanian
Beijersbergen, Roderick L.
Proost, Natalie
Chen, Mengnuo
Mainardi, Sara
Bernards, René
de Rink, Iris
Qin, Wenxin
Yang, Chen
Velds, Arno
van Tellingen, Olaf
Boeije, Manon
Jin, Haojie
Wang, Liqin
Jansen, Robin A.
Schepers, Arnout
Koen van der Mijn, J.C.
Lieftink, Cor
Author_xml – sequence: 1
  givenname: Mengnuo
  surname: Chen
  fullname: Chen, Mengnuo
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 2
  givenname: Sara
  surname: Mainardi
  fullname: Mainardi, Sara
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 3
  givenname: Cor
  surname: Lieftink
  fullname: Lieftink, Cor
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 4
  givenname: Arno
  surname: Velds
  fullname: Velds, Arno
  organization: Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 5
  givenname: Iris
  surname: de Rink
  fullname: de Rink, Iris
  organization: Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 6
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 7
  givenname: Hendrik J.
  surname: Kuiken
  fullname: Kuiken, Hendrik J.
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 8
  givenname: Ben
  surname: Morris
  fullname: Morris, Ben
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 9
  givenname: Finn
  surname: Edwards
  fullname: Edwards, Finn
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 10
  givenname: Fleur
  surname: Jochems
  fullname: Jochems, Fleur
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 11
  givenname: Olaf
  surname: van Tellingen
  fullname: van Tellingen, Olaf
  organization: Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 12
  givenname: Manon
  surname: Boeije
  fullname: Boeije, Manon
  organization: Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
– sequence: 13
  givenname: Natalie
  surname: Proost
  fullname: Proost, Natalie
  organization: Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
– sequence: 14
  givenname: Robin A.
  surname: Jansen
  fullname: Jansen, Robin A.
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 15
  givenname: Shifan
  surname: Qin
  fullname: Qin, Shifan
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 16
  givenname: Haojie
  surname: Jin
  fullname: Jin, Haojie
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 17
  givenname: J.C.
  surname: Koen van der Mijn
  fullname: Koen van der Mijn, J.C.
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 18
  givenname: Arnout
  surname: Schepers
  fullname: Schepers, Arnout
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 19
  givenname: Subramanian
  surname: Venkatesan
  fullname: Venkatesan, Subramanian
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 20
  givenname: Wenxin
  surname: Qin
  fullname: Qin, Wenxin
  organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 21
  givenname: Roderick L.
  surname: Beijersbergen
  fullname: Beijersbergen, Roderick L.
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 22
  givenname: Liqin
  surname: Wang
  fullname: Wang, Liqin
  email: l.wang@nki.nl
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
– sequence: 23
  givenname: René
  orcidid: 0000-0001-8677-3423
  surname: Bernards
  fullname: Bernards, René
  email: r.bernards@nki.nl
  organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38508142$$D View this record in MEDLINE/PubMed
BookMark eNqFUsluFDEQbaEgEkJ-gAPqI5cevPWGEAhFbFIkDoSz5bare2rw2IPtHjF_j1uToBCJcPFSfotVr54WJ847KIrnlKwooc2rzeqXDtsVI0wsBdHSR8UZa5qm4m1PT-6cT4uLGDeEEFZT2nHypDjlXU06KthZka5VmCChm0o_lvvZOghqQIsJIS4lE-apSt7mskvlDkLEmPJaogGXcEQwZVoHP0_rcpydTuidsuUELqvqWBqw6hDLNG99KEO-7CI8Kx6Pyka4uNnPi-8fP1xffq6uvn76cvn-qtJ1w1LF9aCEGnjf1LQH3bSMadIbJlinKIPamHroueJCCaO7JoNHA9BBUwvOedfz8-LdUXc3D1swOn84KCt3AbcqHKRXKP9-cbiWk99LSvqOUyKywssbheB_zhCT3GLUYK1y4OcoWd9mXF03bYa-uGv2x-W21xnQHQE6-BgDjFJjUku_sjfabCqXZOVGLsnKJVl5TDZT2T3qrfqDpDdHEuQW7xGCjBrBaTAYQCdpPD5Mf3uPri061Mr-gAPEjZ9DDjpKKiOTRH5b5m0ZNyYIobRdevf63wL_c_8N3lbooQ
CitedBy_id crossref_primary_10_1186_s13046_024_03161_1
crossref_primary_10_3390_cancers16233944
crossref_primary_10_1093_bib_bbae586
crossref_primary_10_1002_advs_202506950
crossref_primary_10_1152_physrev_00037_2024
crossref_primary_10_1007_s12672_025_03434_x
crossref_primary_10_1158_2767_9764_CRC_24_0389
crossref_primary_10_1038_s41568_024_00737_z
crossref_primary_10_53941_ijddp_2025_100011
crossref_primary_10_3390_diseases12090207
crossref_primary_10_1038_s41392_024_01891_4
Cites_doi 10.1016/j.cell.2013.03.036
10.1038/s41467-019-13360-6
10.1016/j.cell.2011.08.017
10.1038/s41588-022-01141-9
10.1038/s41586-022-05443-0
10.1158/1541-7786.MCR-21-0146
10.18632/oncotarget.2397
10.1038/s41588-022-01047-6
10.1038/s41698-022-00337-w
10.3390/cancers13051118
10.1038/s41588-020-00726-6
10.1158/0008-5472.CAN-21-3844
10.1016/j.immuni.2018.03.007
10.1038/s41586-021-03796-6
10.1016/j.ebiom.2023.104483
10.1038/nature24297
10.1016/j.cell.2017.11.009
10.1016/j.celrep.2020.108421
10.1038/s43018-022-00462-2
10.1016/j.celrep.2021.109441
10.1038/nm.4040
10.1016/j.celrep.2015.03.012
10.1158/0008-5472.CAN-21-3695
10.1158/0008-5472.CAN-13-3456
10.1016/j.cell.2010.02.027
10.1016/j.ccell.2020.12.002
10.1016/j.cell.2021.04.048
10.1016/j.chembiol.2021.01.006
10.1038/s41568-022-00450-9
10.1016/j.ccell.2019.12.006
10.1016/j.cell.2020.10.027
10.1016/j.cell.2023.01.020
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.xcrm.2024.101471
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-3791
EndPage 101471
ExternalDocumentID PMC10983104
38508142
10_1016_j_xcrm_2024_101471
S2666379124001174
1_s2_0_S2666379124001174
Genre Journal Article
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
Z5R
AAHOK
NCXOZ
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c562t-3cba4ab396519ec6722c09d2428a12e5dd5b93a34a4dc86ba4fdee8e654333893
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-3791
IngestDate Tue Sep 30 17:09:18 EDT 2025
Fri Jul 11 09:35:59 EDT 2025
Wed Feb 19 02:11:12 EST 2025
Sat Nov 29 02:41:30 EST 2025
Tue Nov 18 22:29:41 EST 2025
Sat Dec 21 15:58:49 EST 2024
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 19:32:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-3cba4ab396519ec6722c09d2428a12e5dd5b93a34a4dc86ba4fdee8e654333893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0001-8677-3423
OpenAccessLink http://dx.doi.org/10.1016/j.xcrm.2024.101471
PMID 38508142
PQID 2973105567
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983104
proquest_miscellaneous_2973105567
pubmed_primary_38508142
crossref_citationtrail_10_1016_j_xcrm_2024_101471
crossref_primary_10_1016_j_xcrm_2024_101471
elsevier_sciencedirect_doi_10_1016_j_xcrm_2024_101471
elsevier_clinicalkeyesjournals_1_s2_0_S2666379124001174
elsevier_clinicalkey_doi_10_1016_j_xcrm_2024_101471
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports. Medicine
PublicationTitleAlternate Cell Rep Med
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kuang, Liu, Xie, Tang, Kang (bib25) 2021; 28
Delmore, Issa, Lemieux, Rahl, Shi, Jacobs, Kastritis, Gilpatrick, Paranal, Qi (bib20) 2011; 146
Shen, Vagner, Robert (bib6) 2020; 183
Raha, Wilson, Peng, Peterson, Yue, Evangelista, Wilson, Merchant, Settleman (bib26) 2014; 74
Wang, Jin, Jochems, Wang, Lieftink, Martinez, De Conti, Edwards, de Oliveira, Schepers (bib18) 2022; 3
Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib32) 2021; 184
Tyner, Haderk, Kumaraswamy, Baughn, Van Ness, Liu, Marathe, Alumkal, Bivona, Chan (bib9) 2022; 82
Schepers, Jochems, Lieftink, Wang, Pogacar, Leite de Oliveira, De Conti, Beijersbergen, Bernards (bib15) 2021; 19
Lovén, Hoke, Lin, Lau, Orlando, Vakoc, Bradner, Lee, Young (bib21) 2013; 153
Shen, Faouzi, Bastide, Martineau, Malka-Mahieu, Fu, Sun, Mateus, Routier, Roy (bib22) 2019; 10
Patel, Minn (bib30) 2018; 48
Jochems, Thijssen, De Conti, Jansen, Pogacar, Groot, Wang, Schepers, Wang, Jin (bib31) 2021; 36
Hata, Niederst, Archibald, Gomez-Caraballo, Siddiqui, Mulvey, Maruvka, Ji, Bhang, Krishnamurthy Radhakrishna (bib12) 2016; 22
Oren, Tsabar, Cuoco, Amir-Zilberstein, Cabanos, Hütter, Hu, Thakore, Tabaka, Fulco (bib4) 2021; 596
Kim, Hashimoto, Markosyan, Tyurin, Tyurina, Kar, Fu, Sehgal, Garcia-Gerique, Kossenkov (bib28) 2022; 612
Kurppa, Liu, To, Zhang, Fan, Vajdi, Knelson, Xie, Lim, Cejas (bib7) 2020; 37
Shen, Faouzi, Souquere, Roy, Routier, Libenciuc, André, Pierron, Scoazec, Robert (bib11) 2020; 33
Wilson, Nicholes, Bustos, Lin, Song, Stephan, Kirkpatrick, Settleman (bib10) 2014; 5
Wang, Lankhorst, Bernards (bib29) 2022; 22
De Conti, Dias, Bernards (bib2) 2021; 13
Blakely, Pazarentzos, Olivas, Asthana, Yan, Tan, Hrustanovic, Chan, Lin, Neel (bib8) 2015; 11
Zhao, Jia, Mahmut, Deik, Jeanfavre, Clish, Sankaran (bib27) 2023; 186
Marsolier, Prompsy, Durand, Lyne, Landragin, Trouchet, Bento, Eisele, Foulon, Baudre (bib5) 2022; 54
Sharma, Lee, Li, Quinlan, Takahashi, Maheswaran, McDermott, Azizian, Zou, Fischbach (bib3) 2010; 141
Palmer, Sorger (bib13) 2017; 171
Karki, Angardi, Mier, Orman (bib23) 2021; 8
Kinker, Greenwald, Tal, Orlova, Cuoco, McFarland, Warren, Rodman, Roth, Bender (bib33) 2020; 52
Dhanyamraju, Schell, Amin, Robertson (bib1) 2022; 82
Dhimolea, de Matos Simoes, Kansara, Al'Khafaji, Bouyssou, Weng, Sharma, Raja, Awate, Shirasaki (bib19) 2021; 39
Dias, Friskes, Wang, Neto, Gemert, Mourragui, Kuiken, Mainardi, Alvarez-Villanueva, Lieftink (bib16) 2023
Zhang, Tan, Huang, Wei (bib24) 2023; 89
Hangauer, Viswanathan, Ryan, Bole, Eaton, Matov, Galeas, Dhruv, Berens, Schreiber (bib17) 2017; 551
Criscione, Martin, Oien, Gorthi, Miragaia, Zhang, Chen, Karl, Mendler, Markovets (bib14) 2022; 6
Barkley, Moncada, Pour, Liberman, Dryg, Werba, Wang, Baron, Rao, Xia (bib34) 2022; 54
De Conti (10.1016/j.xcrm.2024.101471_bib2) 2021; 13
Zhao (10.1016/j.xcrm.2024.101471_bib27) 2023; 186
Hao (10.1016/j.xcrm.2024.101471_bib32) 2021; 184
Wang (10.1016/j.xcrm.2024.101471_bib29) 2022; 22
Shen (10.1016/j.xcrm.2024.101471_bib11) 2020; 33
Kuang (10.1016/j.xcrm.2024.101471_bib25) 2021; 28
Marsolier (10.1016/j.xcrm.2024.101471_bib5) 2022; 54
Karki (10.1016/j.xcrm.2024.101471_bib23) 2021; 8
Zhang (10.1016/j.xcrm.2024.101471_bib24) 2023; 89
Barkley (10.1016/j.xcrm.2024.101471_bib34) 2022; 54
Dhanyamraju (10.1016/j.xcrm.2024.101471_bib1) 2022; 82
Sharma (10.1016/j.xcrm.2024.101471_bib3) 2010; 141
Patel (10.1016/j.xcrm.2024.101471_bib30) 2018; 48
Tyner (10.1016/j.xcrm.2024.101471_bib9) 2022; 82
Jochems (10.1016/j.xcrm.2024.101471_bib31) 2021; 36
Kinker (10.1016/j.xcrm.2024.101471_bib33) 2020; 52
Shen (10.1016/j.xcrm.2024.101471_bib22) 2019; 10
Schepers (10.1016/j.xcrm.2024.101471_bib15) 2021; 19
Dhimolea (10.1016/j.xcrm.2024.101471_bib19) 2021; 39
Hangauer (10.1016/j.xcrm.2024.101471_bib17) 2017; 551
Delmore (10.1016/j.xcrm.2024.101471_bib20) 2011; 146
Hata (10.1016/j.xcrm.2024.101471_bib12) 2016; 22
Palmer (10.1016/j.xcrm.2024.101471_bib13) 2017; 171
Kurppa (10.1016/j.xcrm.2024.101471_bib7) 2020; 37
Raha (10.1016/j.xcrm.2024.101471_bib26) 2014; 74
Criscione (10.1016/j.xcrm.2024.101471_bib14) 2022; 6
Lovén (10.1016/j.xcrm.2024.101471_bib21) 2013; 153
Shen (10.1016/j.xcrm.2024.101471_bib6) 2020; 183
Blakely (10.1016/j.xcrm.2024.101471_bib8) 2015; 11
Oren (10.1016/j.xcrm.2024.101471_bib4) 2021; 596
Kim (10.1016/j.xcrm.2024.101471_bib28) 2022; 612
Dias (10.1016/j.xcrm.2024.101471_bib16) 2023
Wilson (10.1016/j.xcrm.2024.101471_bib10) 2014; 5
Wang (10.1016/j.xcrm.2024.101471_bib18) 2022; 3
References_xml – volume: 153
  start-page: 320
  year: 2013
  end-page: 334
  ident: bib21
  article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers
  publication-title: Cell
– volume: 596
  start-page: 576
  year: 2021
  end-page: 582
  ident: bib4
  article-title: Cycling cancer persister cells arise from lineages with distinct programs
  publication-title: Nature
– volume: 22
  start-page: 262
  year: 2016
  end-page: 269
  ident: bib12
  article-title: Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition
  publication-title: Nat. Med.
– volume: 5
  start-page: 7328
  year: 2014
  end-page: 7341
  ident: bib10
  article-title: Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition
  publication-title: Oncotarget
– volume: 54
  start-page: 459
  year: 2022
  end-page: 468
  ident: bib5
  article-title: H3K27me3 conditions chemotolerance in triple-negative breast cancer
  publication-title: Nat. Genet.
– volume: 183
  start-page: 860
  year: 2020
  end-page: 874
  ident: bib6
  article-title: Persistent Cancer Cells: The Deadly Survivors
  publication-title: Cell
– volume: 74
  start-page: 3579
  year: 2014
  end-page: 3590
  ident: bib26
  article-title: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation
  publication-title: Cancer Res.
– volume: 19
  start-page: 1613
  year: 2021
  end-page: 1621
  ident: bib15
  article-title: Identification of Autophagy-Related Genes as Targets for Senescence Induction Using a Customizable CRISPR-Based Suicide Switch Screen
  publication-title: Mol. Cancer Res.
– volume: 39
  start-page: 240
  year: 2021
  end-page: 256.e11
  ident: bib19
  article-title: An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence
  publication-title: Cancer Cell
– volume: 612
  start-page: 338
  year: 2022
  end-page: 346
  ident: bib28
  article-title: Ferroptosis of tumour neutrophils causes immune suppression in cancer
  publication-title: Nature
– volume: 8
  year: 2021
  ident: bib23
  article-title: A Transient Metabolic State in Melanoma Persister Cells Mediated by Chemotherapeutic Treatments
  publication-title: Front. Mol. Biosci.
– volume: 13
  year: 2021
  ident: bib2
  article-title: Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells
  publication-title: Cancers
– volume: 6
  start-page: 95
  year: 2022
  ident: bib14
  article-title: The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells
  publication-title: NPJ Precis. Oncol.
– volume: 82
  start-page: 1448
  year: 2022
  end-page: 1460
  ident: bib9
  article-title: Understanding Drug Sensitivity and Tackling Resistance in Cancer
  publication-title: Cancer Res.
– volume: 146
  start-page: 904
  year: 2011
  end-page: 917
  ident: bib20
  article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc
  publication-title: Cell
– volume: 10
  start-page: 5713
  year: 2019
  ident: bib22
  article-title: An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells
  publication-title: Nat. Commun.
– volume: 33
  year: 2020
  ident: bib11
  article-title: Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation
  publication-title: Cell Rep.
– volume: 11
  start-page: 98
  year: 2015
  end-page: 110
  ident: bib8
  article-title: NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer
  publication-title: Cell Rep.
– volume: 22
  start-page: 340
  year: 2022
  end-page: 355
  ident: bib29
  article-title: Exploiting senescence for the treatment of cancer
  publication-title: Nat. Rev. Cancer
– volume: 52
  start-page: 1208
  year: 2020
  end-page: 1218
  ident: bib33
  article-title: Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity
  publication-title: Nat. Genet.
– volume: 171
  start-page: 1678
  year: 2017
  end-page: 1691.e13
  ident: bib13
  article-title: Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy
  publication-title: Cell
– volume: 54
  start-page: 1192
  year: 2022
  end-page: 1201
  ident: bib34
  article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment
  publication-title: Nat. Genet.
– volume: 37
  start-page: 104
  year: 2020
  end-page: 122.e12
  ident: bib7
  article-title: Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway
  publication-title: Cancer Cell
– volume: 3
  start-page: 1284
  year: 2022
  end-page: 1299
  ident: bib18
  article-title: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis
  publication-title: Nat. Cancer
– volume: 48
  start-page: 417
  year: 2018
  end-page: 433
  ident: bib30
  article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies
  publication-title: Immunity
– volume: 28
  start-page: 765
  year: 2021
  end-page: 775.e5
  ident: bib25
  article-title: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells
  publication-title: Cell Chem. Biol.
– volume: 186
  start-page: 732
  year: 2023
  end-page: 747.e16
  ident: bib27
  article-title: Human hematopoietic stem cell vulnerability to ferroptosis
  publication-title: Cell
– volume: 89
  year: 2023
  ident: bib24
  article-title: Redox signaling in drug-tolerant persister cells as an emerging therapeutic target
  publication-title: EBioMedicine
– year: 2023
  ident: bib16
  article-title: Paradoxical activation of oncogenic signaling as a cancer treatment strategy
  publication-title: bioRxiv
– volume: 551
  start-page: 247
  year: 2017
  end-page: 250
  ident: bib17
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  ident: bib32
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– volume: 36
  year: 2021
  ident: bib31
  article-title: The Cancer SENESCopedia: A delineation of cancer cell senescence
  publication-title: Cell Rep.
– volume: 82
  start-page: 2503
  year: 2022
  end-page: 2514
  ident: bib1
  article-title: Drug-Tolerant Persister Cells in Cancer Therapy Resistance
  publication-title: Cancer Res.
– volume: 141
  start-page: 69
  year: 2010
  end-page: 80
  ident: bib3
  article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations
  publication-title: Cell
– volume: 153
  start-page: 320
  year: 2013
  ident: 10.1016/j.xcrm.2024.101471_bib21
  article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.036
– volume: 10
  start-page: 5713
  year: 2019
  ident: 10.1016/j.xcrm.2024.101471_bib22
  article-title: An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13360-6
– volume: 146
  start-page: 904
  year: 2011
  ident: 10.1016/j.xcrm.2024.101471_bib20
  article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.017
– volume: 54
  start-page: 1192
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib34
  article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01141-9
– volume: 612
  start-page: 338
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib28
  article-title: Ferroptosis of tumour neutrophils causes immune suppression in cancer
  publication-title: Nature
  doi: 10.1038/s41586-022-05443-0
– volume: 19
  start-page: 1613
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib15
  article-title: Identification of Autophagy-Related Genes as Targets for Senescence Induction Using a Customizable CRISPR-Based Suicide Switch Screen
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-21-0146
– volume: 5
  start-page: 7328
  year: 2014
  ident: 10.1016/j.xcrm.2024.101471_bib10
  article-title: Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2397
– volume: 54
  start-page: 459
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib5
  article-title: H3K27me3 conditions chemotolerance in triple-negative breast cancer
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01047-6
– volume: 8
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib23
  article-title: A Transient Metabolic State in Melanoma Persister Cells Mediated by Chemotherapeutic Treatments
  publication-title: Front. Mol. Biosci.
– volume: 6
  start-page: 95
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib14
  article-title: The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-022-00337-w
– volume: 13
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib2
  article-title: Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells
  publication-title: Cancers
  doi: 10.3390/cancers13051118
– volume: 52
  start-page: 1208
  year: 2020
  ident: 10.1016/j.xcrm.2024.101471_bib33
  article-title: Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00726-6
– volume: 82
  start-page: 2503
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib1
  article-title: Drug-Tolerant Persister Cells in Cancer Therapy Resistance
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-3844
– volume: 48
  start-page: 417
  year: 2018
  ident: 10.1016/j.xcrm.2024.101471_bib30
  article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.007
– volume: 596
  start-page: 576
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib4
  article-title: Cycling cancer persister cells arise from lineages with distinct programs
  publication-title: Nature
  doi: 10.1038/s41586-021-03796-6
– year: 2023
  ident: 10.1016/j.xcrm.2024.101471_bib16
  article-title: Paradoxical activation of oncogenic signaling as a cancer treatment strategy
  publication-title: bioRxiv
– volume: 89
  year: 2023
  ident: 10.1016/j.xcrm.2024.101471_bib24
  article-title: Redox signaling in drug-tolerant persister cells as an emerging therapeutic target
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2023.104483
– volume: 551
  start-page: 247
  year: 2017
  ident: 10.1016/j.xcrm.2024.101471_bib17
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
  doi: 10.1038/nature24297
– volume: 171
  start-page: 1678
  year: 2017
  ident: 10.1016/j.xcrm.2024.101471_bib13
  article-title: Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.009
– volume: 33
  year: 2020
  ident: 10.1016/j.xcrm.2024.101471_bib11
  article-title: Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108421
– volume: 3
  start-page: 1284
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib18
  article-title: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00462-2
– volume: 36
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib31
  article-title: The Cancer SENESCopedia: A delineation of cancer cell senescence
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109441
– volume: 22
  start-page: 262
  year: 2016
  ident: 10.1016/j.xcrm.2024.101471_bib12
  article-title: Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition
  publication-title: Nat. Med.
  doi: 10.1038/nm.4040
– volume: 11
  start-page: 98
  year: 2015
  ident: 10.1016/j.xcrm.2024.101471_bib8
  article-title: NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.012
– volume: 82
  start-page: 1448
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib9
  article-title: Understanding Drug Sensitivity and Tackling Resistance in Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-3695
– volume: 74
  start-page: 3579
  year: 2014
  ident: 10.1016/j.xcrm.2024.101471_bib26
  article-title: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3456
– volume: 141
  start-page: 69
  year: 2010
  ident: 10.1016/j.xcrm.2024.101471_bib3
  article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.027
– volume: 39
  start-page: 240
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib19
  article-title: An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.12.002
– volume: 184
  start-page: 3573
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib32
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 28
  start-page: 765
  year: 2021
  ident: 10.1016/j.xcrm.2024.101471_bib25
  article-title: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2021.01.006
– volume: 22
  start-page: 340
  year: 2022
  ident: 10.1016/j.xcrm.2024.101471_bib29
  article-title: Exploiting senescence for the treatment of cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-022-00450-9
– volume: 37
  start-page: 104
  year: 2020
  ident: 10.1016/j.xcrm.2024.101471_bib7
  article-title: Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.12.006
– volume: 183
  start-page: 860
  year: 2020
  ident: 10.1016/j.xcrm.2024.101471_bib6
  article-title: Persistent Cancer Cells: The Deadly Survivors
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.027
– volume: 186
  start-page: 732
  year: 2023
  ident: 10.1016/j.xcrm.2024.101471_bib27
  article-title: Human hematopoietic stem cell vulnerability to ferroptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2023.01.020
SSID ssj0002511830
Score 2.3415692
Snippet Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop...
SummaryDrug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101471
SubjectTerms Advanced Basic Science
Humans
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Neoplasm Recurrence, Local - drug therapy
Neoplasm Recurrence, Local - genetics
Title Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666379124001174
https://www.clinicalkey.es/playcontent/1-s2.0-S2666379124001174
https://dx.doi.org/10.1016/j.xcrm.2024.101471
https://www.ncbi.nlm.nih.gov/pubmed/38508142
https://www.proquest.com/docview/2973105567
https://pubmed.ncbi.nlm.nih.gov/PMC10983104
Volume 5
WOSCitedRecordID wos001220720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511830
  issn: 2666-3791
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511830
  issn: 2666-3791
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0JcEG_KowoS4lKlyvtxRNWuOJSCRHfVm-XYDmRVkpJHVS78Dn4uHttJ2u6yLAcuUeTadZP5Oh6Pv5lB6E3i0thKeGj6MYMSZolvRn5ITIdYHmc2JaFk-Z7Pwvk8Wi7jT4PBrzYWZrMK8zzabuP1fxW1aBPChtDZfxB396WiQdwLoYurELu43kzwktutycybZgVppSUDNlP5ZVnZfDHrYiWac5m2uAJJl9U4Y4o5xFlXvQdWPe0sFPNxmdIZ0kr-qMZ1860oZSjMutrPdwDeQH0UMVEHQTtn91MdDQJs2rwpeoc4xAWzrHVSdzyhjKfiWaTKnhYdkficr5gqo1zmxa7jwvGAuaXVo9RvwjQIhH5Txbom_Io2raD9HRy6O8oWygyr-i2X1gHlkriYbGkJ6QYcb9J33k-6Pf-IT89mM7w4WS7err-bUI8Mzu11cZYjdMsJ_RjIgh9-9t47uTGThWy6X6wjshR58HDeP1k9l3c1h-TcHWtncR_d09sU452C1wM04PlDdKcV5iNUdygzitQ4QBk07aHM6FFm9CgzNMqMHmVGizJDocyQKDM0yh6js9OTxfS9qQt4mFSY1bXp0oR4JHHjQOwTOA1Cx6FWzIRVGBHb4T5jfhK7xPWIx2gUiM4p4zziEO_sgiX9BB3nRc6fISNgHgsCL3WsWNigxCJRTInYbKSBzVM7okNkty8YU53dHoqsrHBLY7zAIBQMQsFKKEM07sasVW6Xa3u7rdxwG7Us1lksIHftqPCqUbzSGqPCNq4cbOHPACTAEZC6bTv0hsjvRmprWFm5f53xdQsqLJYKOP8jOS-aCssydZA8Kxyipwpk3XO7kdip2Z4zRNEe_LoOkIZ-_5M8-yrT0dtWDNUKvec3mPgFuturgpfouC4b_grdpps6q8oROgqX0Ui6xUby__YbQmgFWA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+of+vulnerabilities+of+drug-tolerant+persisters+identified+through+functional+genetics+delays+tumor+relapse&rft.jtitle=Cell+reports.+Medicine&rft.au=Chen%2C+Mengnuo&rft.au=Mainardi%2C+Sara&rft.au=Lieftink%2C+Cor&rft.au=Velds%2C+Arno&rft.date=2024-03-19&rft.issn=2666-3791&rft.eissn=2666-3791&rft.volume=5&rft.issue=3&rft.spage=101471&rft_id=info:doi/10.1016%2Fj.xcrm.2024.101471&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379123X00044%2Fcov150h.gif