Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse
Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cel...
Uložené v:
| Vydané v: | Cell reports. Medicine Ročník 5; číslo 3; s. 101471 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
19.03.2024
Elsevier |
| Predmet: | |
| ISSN: | 2666-3791, 2666-3791 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.
[Display omitted]
•Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse
Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo. |
|---|---|
| AbstractList | Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. •Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo. Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. [Display omitted] •Unbiased genetic screen and compound screen identify BRD2 as a vulnerability of DTPs•BET inhibitors suppress outgrowth of DTPs in a broad spectrum of cancer types•BET inhibitors suppress DTEPs through transcriptional repression of GPX2/ALDH3A1/MGST1•BET inhibitors delay tumor relapse Chen et al. uses high-throughput screening approaches to identify BRD2 inhibition as a vulnerability of drug-tolerant persisters (DTPs). They further demonstrate that BET inhibitors suppress the emergence of DTPs in multiple cancer cell lines in vitro and can forestall drug resistance through the eradication of DTPs in vivo. Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. SummaryDrug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy. |
| ArticleNumber | 101471 |
| Author | Jochems, Fleur Kuiken, Hendrik J. Edwards, Finn Qin, Shifan Morris, Ben Venkatesan, Subramanian Beijersbergen, Roderick L. Proost, Natalie Chen, Mengnuo Mainardi, Sara Bernards, René de Rink, Iris Qin, Wenxin Yang, Chen Velds, Arno van Tellingen, Olaf Boeije, Manon Jin, Haojie Wang, Liqin Jansen, Robin A. Schepers, Arnout Koen van der Mijn, J.C. Lieftink, Cor |
| Author_xml | – sequence: 1 givenname: Mengnuo surname: Chen fullname: Chen, Mengnuo organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 2 givenname: Sara surname: Mainardi fullname: Mainardi, Sara organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 3 givenname: Cor surname: Lieftink fullname: Lieftink, Cor organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 4 givenname: Arno surname: Velds fullname: Velds, Arno organization: Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 5 givenname: Iris surname: de Rink fullname: de Rink, Iris organization: Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 6 givenname: Chen surname: Yang fullname: Yang, Chen organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China – sequence: 7 givenname: Hendrik J. surname: Kuiken fullname: Kuiken, Hendrik J. organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 8 givenname: Ben surname: Morris fullname: Morris, Ben organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 9 givenname: Finn surname: Edwards fullname: Edwards, Finn organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 10 givenname: Fleur surname: Jochems fullname: Jochems, Fleur organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 11 givenname: Olaf surname: van Tellingen fullname: van Tellingen, Olaf organization: Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 12 givenname: Manon surname: Boeije fullname: Boeije, Manon organization: Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands – sequence: 13 givenname: Natalie surname: Proost fullname: Proost, Natalie organization: Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands – sequence: 14 givenname: Robin A. surname: Jansen fullname: Jansen, Robin A. organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 15 givenname: Shifan surname: Qin fullname: Qin, Shifan organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 16 givenname: Haojie surname: Jin fullname: Jin, Haojie organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 17 givenname: J.C. surname: Koen van der Mijn fullname: Koen van der Mijn, J.C. organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 18 givenname: Arnout surname: Schepers fullname: Schepers, Arnout organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 19 givenname: Subramanian surname: Venkatesan fullname: Venkatesan, Subramanian organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 20 givenname: Wenxin surname: Qin fullname: Qin, Wenxin organization: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China – sequence: 21 givenname: Roderick L. surname: Beijersbergen fullname: Beijersbergen, Roderick L. organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 22 givenname: Liqin surname: Wang fullname: Wang, Liqin email: l.wang@nki.nl organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands – sequence: 23 givenname: René orcidid: 0000-0001-8677-3423 surname: Bernards fullname: Bernards, René email: r.bernards@nki.nl organization: Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38508142$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUsluFDEQbaEgEkJ-gAPqI5cevPWGEAhFbFIkDoSz5bare2rw2IPtHjF_j1uToBCJcPFSfotVr54WJ847KIrnlKwooc2rzeqXDtsVI0wsBdHSR8UZa5qm4m1PT-6cT4uLGDeEEFZT2nHypDjlXU06KthZka5VmCChm0o_lvvZOghqQIsJIS4lE-apSt7mskvlDkLEmPJaogGXcEQwZVoHP0_rcpydTuidsuUELqvqWBqw6hDLNG99KEO-7CI8Kx6Pyka4uNnPi-8fP1xffq6uvn76cvn-qtJ1w1LF9aCEGnjf1LQH3bSMadIbJlinKIPamHroueJCCaO7JoNHA9BBUwvOedfz8-LdUXc3D1swOn84KCt3AbcqHKRXKP9-cbiWk99LSvqOUyKywssbheB_zhCT3GLUYK1y4OcoWd9mXF03bYa-uGv2x-W21xnQHQE6-BgDjFJjUku_sjfabCqXZOVGLsnKJVl5TDZT2T3qrfqDpDdHEuQW7xGCjBrBaTAYQCdpPD5Mf3uPri061Mr-gAPEjZ9DDjpKKiOTRH5b5m0ZNyYIobRdevf63wL_c_8N3lbooQ |
| CitedBy_id | crossref_primary_10_1186_s13046_024_03161_1 crossref_primary_10_3390_cancers16233944 crossref_primary_10_1093_bib_bbae586 crossref_primary_10_1002_advs_202506950 crossref_primary_10_1152_physrev_00037_2024 crossref_primary_10_1007_s12672_025_03434_x crossref_primary_10_1158_2767_9764_CRC_24_0389 crossref_primary_10_1038_s41568_024_00737_z crossref_primary_10_53941_ijddp_2025_100011 crossref_primary_10_3390_diseases12090207 crossref_primary_10_1038_s41392_024_01891_4 |
| Cites_doi | 10.1016/j.cell.2013.03.036 10.1038/s41467-019-13360-6 10.1016/j.cell.2011.08.017 10.1038/s41588-022-01141-9 10.1038/s41586-022-05443-0 10.1158/1541-7786.MCR-21-0146 10.18632/oncotarget.2397 10.1038/s41588-022-01047-6 10.1038/s41698-022-00337-w 10.3390/cancers13051118 10.1038/s41588-020-00726-6 10.1158/0008-5472.CAN-21-3844 10.1016/j.immuni.2018.03.007 10.1038/s41586-021-03796-6 10.1016/j.ebiom.2023.104483 10.1038/nature24297 10.1016/j.cell.2017.11.009 10.1016/j.celrep.2020.108421 10.1038/s43018-022-00462-2 10.1016/j.celrep.2021.109441 10.1038/nm.4040 10.1016/j.celrep.2015.03.012 10.1158/0008-5472.CAN-21-3695 10.1158/0008-5472.CAN-13-3456 10.1016/j.cell.2010.02.027 10.1016/j.ccell.2020.12.002 10.1016/j.cell.2021.04.048 10.1016/j.chembiol.2021.01.006 10.1038/s41568-022-00450-9 10.1016/j.ccell.2019.12.006 10.1016/j.cell.2020.10.027 10.1016/j.cell.2023.01.020 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024 The Author(s) 2024 |
| Copyright_xml | – notice: 2024 The Author(s) – notice: The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024 The Author(s) 2024 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.xcrm.2024.101471 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2666-3791 |
| EndPage | 101471 |
| ExternalDocumentID | PMC10983104 38508142 10_1016_j_xcrm_2024_101471 S2666379124001174 1_s2_0_S2666379124001174 |
| Genre | Journal Article |
| GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R AAHOK NCXOZ 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c562t-3cba4ab396519ec6722c09d2428a12e5dd5b93a34a4dc86ba4fdee8e654333893 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-3791 |
| IngestDate | Tue Sep 30 17:09:18 EDT 2025 Fri Jul 11 09:35:59 EDT 2025 Wed Feb 19 02:11:12 EST 2025 Sat Nov 29 02:41:30 EST 2025 Tue Nov 18 22:29:41 EST 2025 Sat Dec 21 15:58:49 EST 2024 Sun Feb 23 10:18:53 EST 2025 Tue Aug 26 19:32:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c562t-3cba4ab396519ec6722c09d2428a12e5dd5b93a34a4dc86ba4fdee8e654333893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
| ORCID | 0000-0001-8677-3423 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.xcrm.2024.101471 |
| PMID | 38508142 |
| PQID | 2973105567 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983104 proquest_miscellaneous_2973105567 pubmed_primary_38508142 crossref_citationtrail_10_1016_j_xcrm_2024_101471 crossref_primary_10_1016_j_xcrm_2024_101471 elsevier_sciencedirect_doi_10_1016_j_xcrm_2024_101471 elsevier_clinicalkeyesjournals_1_s2_0_S2666379124001174 elsevier_clinicalkey_doi_10_1016_j_xcrm_2024_101471 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-19 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports. Medicine |
| PublicationTitleAlternate | Cell Rep Med |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kuang, Liu, Xie, Tang, Kang (bib25) 2021; 28 Delmore, Issa, Lemieux, Rahl, Shi, Jacobs, Kastritis, Gilpatrick, Paranal, Qi (bib20) 2011; 146 Shen, Vagner, Robert (bib6) 2020; 183 Raha, Wilson, Peng, Peterson, Yue, Evangelista, Wilson, Merchant, Settleman (bib26) 2014; 74 Wang, Jin, Jochems, Wang, Lieftink, Martinez, De Conti, Edwards, de Oliveira, Schepers (bib18) 2022; 3 Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib32) 2021; 184 Tyner, Haderk, Kumaraswamy, Baughn, Van Ness, Liu, Marathe, Alumkal, Bivona, Chan (bib9) 2022; 82 Schepers, Jochems, Lieftink, Wang, Pogacar, Leite de Oliveira, De Conti, Beijersbergen, Bernards (bib15) 2021; 19 Lovén, Hoke, Lin, Lau, Orlando, Vakoc, Bradner, Lee, Young (bib21) 2013; 153 Shen, Faouzi, Bastide, Martineau, Malka-Mahieu, Fu, Sun, Mateus, Routier, Roy (bib22) 2019; 10 Patel, Minn (bib30) 2018; 48 Jochems, Thijssen, De Conti, Jansen, Pogacar, Groot, Wang, Schepers, Wang, Jin (bib31) 2021; 36 Hata, Niederst, Archibald, Gomez-Caraballo, Siddiqui, Mulvey, Maruvka, Ji, Bhang, Krishnamurthy Radhakrishna (bib12) 2016; 22 Oren, Tsabar, Cuoco, Amir-Zilberstein, Cabanos, Hütter, Hu, Thakore, Tabaka, Fulco (bib4) 2021; 596 Kim, Hashimoto, Markosyan, Tyurin, Tyurina, Kar, Fu, Sehgal, Garcia-Gerique, Kossenkov (bib28) 2022; 612 Kurppa, Liu, To, Zhang, Fan, Vajdi, Knelson, Xie, Lim, Cejas (bib7) 2020; 37 Shen, Faouzi, Souquere, Roy, Routier, Libenciuc, André, Pierron, Scoazec, Robert (bib11) 2020; 33 Wilson, Nicholes, Bustos, Lin, Song, Stephan, Kirkpatrick, Settleman (bib10) 2014; 5 Wang, Lankhorst, Bernards (bib29) 2022; 22 De Conti, Dias, Bernards (bib2) 2021; 13 Blakely, Pazarentzos, Olivas, Asthana, Yan, Tan, Hrustanovic, Chan, Lin, Neel (bib8) 2015; 11 Zhao, Jia, Mahmut, Deik, Jeanfavre, Clish, Sankaran (bib27) 2023; 186 Marsolier, Prompsy, Durand, Lyne, Landragin, Trouchet, Bento, Eisele, Foulon, Baudre (bib5) 2022; 54 Sharma, Lee, Li, Quinlan, Takahashi, Maheswaran, McDermott, Azizian, Zou, Fischbach (bib3) 2010; 141 Palmer, Sorger (bib13) 2017; 171 Karki, Angardi, Mier, Orman (bib23) 2021; 8 Kinker, Greenwald, Tal, Orlova, Cuoco, McFarland, Warren, Rodman, Roth, Bender (bib33) 2020; 52 Dhanyamraju, Schell, Amin, Robertson (bib1) 2022; 82 Dhimolea, de Matos Simoes, Kansara, Al'Khafaji, Bouyssou, Weng, Sharma, Raja, Awate, Shirasaki (bib19) 2021; 39 Dias, Friskes, Wang, Neto, Gemert, Mourragui, Kuiken, Mainardi, Alvarez-Villanueva, Lieftink (bib16) 2023 Zhang, Tan, Huang, Wei (bib24) 2023; 89 Hangauer, Viswanathan, Ryan, Bole, Eaton, Matov, Galeas, Dhruv, Berens, Schreiber (bib17) 2017; 551 Criscione, Martin, Oien, Gorthi, Miragaia, Zhang, Chen, Karl, Mendler, Markovets (bib14) 2022; 6 Barkley, Moncada, Pour, Liberman, Dryg, Werba, Wang, Baron, Rao, Xia (bib34) 2022; 54 De Conti (10.1016/j.xcrm.2024.101471_bib2) 2021; 13 Zhao (10.1016/j.xcrm.2024.101471_bib27) 2023; 186 Hao (10.1016/j.xcrm.2024.101471_bib32) 2021; 184 Wang (10.1016/j.xcrm.2024.101471_bib29) 2022; 22 Shen (10.1016/j.xcrm.2024.101471_bib11) 2020; 33 Kuang (10.1016/j.xcrm.2024.101471_bib25) 2021; 28 Marsolier (10.1016/j.xcrm.2024.101471_bib5) 2022; 54 Karki (10.1016/j.xcrm.2024.101471_bib23) 2021; 8 Zhang (10.1016/j.xcrm.2024.101471_bib24) 2023; 89 Barkley (10.1016/j.xcrm.2024.101471_bib34) 2022; 54 Dhanyamraju (10.1016/j.xcrm.2024.101471_bib1) 2022; 82 Sharma (10.1016/j.xcrm.2024.101471_bib3) 2010; 141 Patel (10.1016/j.xcrm.2024.101471_bib30) 2018; 48 Tyner (10.1016/j.xcrm.2024.101471_bib9) 2022; 82 Jochems (10.1016/j.xcrm.2024.101471_bib31) 2021; 36 Kinker (10.1016/j.xcrm.2024.101471_bib33) 2020; 52 Shen (10.1016/j.xcrm.2024.101471_bib22) 2019; 10 Schepers (10.1016/j.xcrm.2024.101471_bib15) 2021; 19 Dhimolea (10.1016/j.xcrm.2024.101471_bib19) 2021; 39 Hangauer (10.1016/j.xcrm.2024.101471_bib17) 2017; 551 Delmore (10.1016/j.xcrm.2024.101471_bib20) 2011; 146 Hata (10.1016/j.xcrm.2024.101471_bib12) 2016; 22 Palmer (10.1016/j.xcrm.2024.101471_bib13) 2017; 171 Kurppa (10.1016/j.xcrm.2024.101471_bib7) 2020; 37 Raha (10.1016/j.xcrm.2024.101471_bib26) 2014; 74 Criscione (10.1016/j.xcrm.2024.101471_bib14) 2022; 6 Lovén (10.1016/j.xcrm.2024.101471_bib21) 2013; 153 Shen (10.1016/j.xcrm.2024.101471_bib6) 2020; 183 Blakely (10.1016/j.xcrm.2024.101471_bib8) 2015; 11 Oren (10.1016/j.xcrm.2024.101471_bib4) 2021; 596 Kim (10.1016/j.xcrm.2024.101471_bib28) 2022; 612 Dias (10.1016/j.xcrm.2024.101471_bib16) 2023 Wilson (10.1016/j.xcrm.2024.101471_bib10) 2014; 5 Wang (10.1016/j.xcrm.2024.101471_bib18) 2022; 3 |
| References_xml | – volume: 153 start-page: 320 year: 2013 end-page: 334 ident: bib21 article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers publication-title: Cell – volume: 596 start-page: 576 year: 2021 end-page: 582 ident: bib4 article-title: Cycling cancer persister cells arise from lineages with distinct programs publication-title: Nature – volume: 22 start-page: 262 year: 2016 end-page: 269 ident: bib12 article-title: Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition publication-title: Nat. Med. – volume: 5 start-page: 7328 year: 2014 end-page: 7341 ident: bib10 article-title: Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition publication-title: Oncotarget – volume: 54 start-page: 459 year: 2022 end-page: 468 ident: bib5 article-title: H3K27me3 conditions chemotolerance in triple-negative breast cancer publication-title: Nat. Genet. – volume: 183 start-page: 860 year: 2020 end-page: 874 ident: bib6 article-title: Persistent Cancer Cells: The Deadly Survivors publication-title: Cell – volume: 74 start-page: 3579 year: 2014 end-page: 3590 ident: bib26 article-title: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation publication-title: Cancer Res. – volume: 19 start-page: 1613 year: 2021 end-page: 1621 ident: bib15 article-title: Identification of Autophagy-Related Genes as Targets for Senescence Induction Using a Customizable CRISPR-Based Suicide Switch Screen publication-title: Mol. Cancer Res. – volume: 39 start-page: 240 year: 2021 end-page: 256.e11 ident: bib19 article-title: An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence publication-title: Cancer Cell – volume: 612 start-page: 338 year: 2022 end-page: 346 ident: bib28 article-title: Ferroptosis of tumour neutrophils causes immune suppression in cancer publication-title: Nature – volume: 8 year: 2021 ident: bib23 article-title: A Transient Metabolic State in Melanoma Persister Cells Mediated by Chemotherapeutic Treatments publication-title: Front. Mol. Biosci. – volume: 13 year: 2021 ident: bib2 article-title: Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells publication-title: Cancers – volume: 6 start-page: 95 year: 2022 ident: bib14 article-title: The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells publication-title: NPJ Precis. Oncol. – volume: 82 start-page: 1448 year: 2022 end-page: 1460 ident: bib9 article-title: Understanding Drug Sensitivity and Tackling Resistance in Cancer publication-title: Cancer Res. – volume: 146 start-page: 904 year: 2011 end-page: 917 ident: bib20 article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc publication-title: Cell – volume: 10 start-page: 5713 year: 2019 ident: bib22 article-title: An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells publication-title: Nat. Commun. – volume: 33 year: 2020 ident: bib11 article-title: Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation publication-title: Cell Rep. – volume: 11 start-page: 98 year: 2015 end-page: 110 ident: bib8 article-title: NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer publication-title: Cell Rep. – volume: 22 start-page: 340 year: 2022 end-page: 355 ident: bib29 article-title: Exploiting senescence for the treatment of cancer publication-title: Nat. Rev. Cancer – volume: 52 start-page: 1208 year: 2020 end-page: 1218 ident: bib33 article-title: Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity publication-title: Nat. Genet. – volume: 171 start-page: 1678 year: 2017 end-page: 1691.e13 ident: bib13 article-title: Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy publication-title: Cell – volume: 54 start-page: 1192 year: 2022 end-page: 1201 ident: bib34 article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment publication-title: Nat. Genet. – volume: 37 start-page: 104 year: 2020 end-page: 122.e12 ident: bib7 article-title: Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway publication-title: Cancer Cell – volume: 3 start-page: 1284 year: 2022 end-page: 1299 ident: bib18 article-title: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis publication-title: Nat. Cancer – volume: 48 start-page: 417 year: 2018 end-page: 433 ident: bib30 article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies publication-title: Immunity – volume: 28 start-page: 765 year: 2021 end-page: 775.e5 ident: bib25 article-title: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells publication-title: Cell Chem. Biol. – volume: 186 start-page: 732 year: 2023 end-page: 747.e16 ident: bib27 article-title: Human hematopoietic stem cell vulnerability to ferroptosis publication-title: Cell – volume: 89 year: 2023 ident: bib24 article-title: Redox signaling in drug-tolerant persister cells as an emerging therapeutic target publication-title: EBioMedicine – year: 2023 ident: bib16 article-title: Paradoxical activation of oncogenic signaling as a cancer treatment strategy publication-title: bioRxiv – volume: 551 start-page: 247 year: 2017 end-page: 250 ident: bib17 article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition publication-title: Nature – volume: 184 start-page: 3573 year: 2021 end-page: 3587.e29 ident: bib32 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell – volume: 36 year: 2021 ident: bib31 article-title: The Cancer SENESCopedia: A delineation of cancer cell senescence publication-title: Cell Rep. – volume: 82 start-page: 2503 year: 2022 end-page: 2514 ident: bib1 article-title: Drug-Tolerant Persister Cells in Cancer Therapy Resistance publication-title: Cancer Res. – volume: 141 start-page: 69 year: 2010 end-page: 80 ident: bib3 article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations publication-title: Cell – volume: 153 start-page: 320 year: 2013 ident: 10.1016/j.xcrm.2024.101471_bib21 article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers publication-title: Cell doi: 10.1016/j.cell.2013.03.036 – volume: 10 start-page: 5713 year: 2019 ident: 10.1016/j.xcrm.2024.101471_bib22 article-title: An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-13360-6 – volume: 146 start-page: 904 year: 2011 ident: 10.1016/j.xcrm.2024.101471_bib20 article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc publication-title: Cell doi: 10.1016/j.cell.2011.08.017 – volume: 54 start-page: 1192 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib34 article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment publication-title: Nat. Genet. doi: 10.1038/s41588-022-01141-9 – volume: 612 start-page: 338 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib28 article-title: Ferroptosis of tumour neutrophils causes immune suppression in cancer publication-title: Nature doi: 10.1038/s41586-022-05443-0 – volume: 19 start-page: 1613 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib15 article-title: Identification of Autophagy-Related Genes as Targets for Senescence Induction Using a Customizable CRISPR-Based Suicide Switch Screen publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-21-0146 – volume: 5 start-page: 7328 year: 2014 ident: 10.1016/j.xcrm.2024.101471_bib10 article-title: Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition publication-title: Oncotarget doi: 10.18632/oncotarget.2397 – volume: 54 start-page: 459 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib5 article-title: H3K27me3 conditions chemotolerance in triple-negative breast cancer publication-title: Nat. Genet. doi: 10.1038/s41588-022-01047-6 – volume: 8 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib23 article-title: A Transient Metabolic State in Melanoma Persister Cells Mediated by Chemotherapeutic Treatments publication-title: Front. Mol. Biosci. – volume: 6 start-page: 95 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib14 article-title: The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-022-00337-w – volume: 13 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib2 article-title: Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells publication-title: Cancers doi: 10.3390/cancers13051118 – volume: 52 start-page: 1208 year: 2020 ident: 10.1016/j.xcrm.2024.101471_bib33 article-title: Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity publication-title: Nat. Genet. doi: 10.1038/s41588-020-00726-6 – volume: 82 start-page: 2503 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib1 article-title: Drug-Tolerant Persister Cells in Cancer Therapy Resistance publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-3844 – volume: 48 start-page: 417 year: 2018 ident: 10.1016/j.xcrm.2024.101471_bib30 article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies publication-title: Immunity doi: 10.1016/j.immuni.2018.03.007 – volume: 596 start-page: 576 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib4 article-title: Cycling cancer persister cells arise from lineages with distinct programs publication-title: Nature doi: 10.1038/s41586-021-03796-6 – year: 2023 ident: 10.1016/j.xcrm.2024.101471_bib16 article-title: Paradoxical activation of oncogenic signaling as a cancer treatment strategy publication-title: bioRxiv – volume: 89 year: 2023 ident: 10.1016/j.xcrm.2024.101471_bib24 article-title: Redox signaling in drug-tolerant persister cells as an emerging therapeutic target publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104483 – volume: 551 start-page: 247 year: 2017 ident: 10.1016/j.xcrm.2024.101471_bib17 article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition publication-title: Nature doi: 10.1038/nature24297 – volume: 171 start-page: 1678 year: 2017 ident: 10.1016/j.xcrm.2024.101471_bib13 article-title: Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy publication-title: Cell doi: 10.1016/j.cell.2017.11.009 – volume: 33 year: 2020 ident: 10.1016/j.xcrm.2024.101471_bib11 article-title: Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108421 – volume: 3 start-page: 1284 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib18 article-title: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis publication-title: Nat. Cancer doi: 10.1038/s43018-022-00462-2 – volume: 36 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib31 article-title: The Cancer SENESCopedia: A delineation of cancer cell senescence publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109441 – volume: 22 start-page: 262 year: 2016 ident: 10.1016/j.xcrm.2024.101471_bib12 article-title: Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition publication-title: Nat. Med. doi: 10.1038/nm.4040 – volume: 11 start-page: 98 year: 2015 ident: 10.1016/j.xcrm.2024.101471_bib8 article-title: NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.03.012 – volume: 82 start-page: 1448 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib9 article-title: Understanding Drug Sensitivity and Tackling Resistance in Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-3695 – volume: 74 start-page: 3579 year: 2014 ident: 10.1016/j.xcrm.2024.101471_bib26 article-title: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3456 – volume: 141 start-page: 69 year: 2010 ident: 10.1016/j.xcrm.2024.101471_bib3 article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations publication-title: Cell doi: 10.1016/j.cell.2010.02.027 – volume: 39 start-page: 240 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib19 article-title: An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.12.002 – volume: 184 start-page: 3573 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib32 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 28 start-page: 765 year: 2021 ident: 10.1016/j.xcrm.2024.101471_bib25 article-title: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2021.01.006 – volume: 22 start-page: 340 year: 2022 ident: 10.1016/j.xcrm.2024.101471_bib29 article-title: Exploiting senescence for the treatment of cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00450-9 – volume: 37 start-page: 104 year: 2020 ident: 10.1016/j.xcrm.2024.101471_bib7 article-title: Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.12.006 – volume: 183 start-page: 860 year: 2020 ident: 10.1016/j.xcrm.2024.101471_bib6 article-title: Persistent Cancer Cells: The Deadly Survivors publication-title: Cell doi: 10.1016/j.cell.2020.10.027 – volume: 186 start-page: 732 year: 2023 ident: 10.1016/j.xcrm.2024.101471_bib27 article-title: Human hematopoietic stem cell vulnerability to ferroptosis publication-title: Cell doi: 10.1016/j.cell.2023.01.020 |
| SSID | ssj0002511830 |
| Score | 2.3415692 |
| Snippet | Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop... SummaryDrug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101471 |
| SubjectTerms | Advanced Basic Science Humans Lung Neoplasms - drug therapy Lung Neoplasms - genetics Neoplasm Recurrence, Local - drug therapy Neoplasm Recurrence, Local - genetics |
| Title | Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666379124001174 https://www.clinicalkey.es/playcontent/1-s2.0-S2666379124001174 https://dx.doi.org/10.1016/j.xcrm.2024.101471 https://www.ncbi.nlm.nih.gov/pubmed/38508142 https://www.proquest.com/docview/2973105567 https://pubmed.ncbi.nlm.nih.gov/PMC10983104 |
| Volume | 5 |
| WOSCitedRecordID | wos001220720500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511830 issn: 2666-3791 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511830 issn: 2666-3791 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0JcEG_KowoS4lKlyvtxRNWuOJSCRHfVm-XYDmRVkpJHVS78Dn4uHttJ2u6yLAcuUeTadZP5Oh6Pv5lB6E3i0thKeGj6MYMSZolvRn5ITIdYHmc2JaFk-Z7Pwvk8Wi7jT4PBrzYWZrMK8zzabuP1fxW1aBPChtDZfxB396WiQdwLoYurELu43kzwktutycybZgVppSUDNlP5ZVnZfDHrYiWac5m2uAJJl9U4Y4o5xFlXvQdWPe0sFPNxmdIZ0kr-qMZ1860oZSjMutrPdwDeQH0UMVEHQTtn91MdDQJs2rwpeoc4xAWzrHVSdzyhjKfiWaTKnhYdkficr5gqo1zmxa7jwvGAuaXVo9RvwjQIhH5Txbom_Io2raD9HRy6O8oWygyr-i2X1gHlkriYbGkJ6QYcb9J33k-6Pf-IT89mM7w4WS7err-bUI8Mzu11cZYjdMsJ_RjIgh9-9t47uTGThWy6X6wjshR58HDeP1k9l3c1h-TcHWtncR_d09sU452C1wM04PlDdKcV5iNUdygzitQ4QBk07aHM6FFm9CgzNMqMHmVGizJDocyQKDM0yh6js9OTxfS9qQt4mFSY1bXp0oR4JHHjQOwTOA1Cx6FWzIRVGBHb4T5jfhK7xPWIx2gUiM4p4zziEO_sgiX9BB3nRc6fISNgHgsCL3WsWNigxCJRTInYbKSBzVM7okNkty8YU53dHoqsrHBLY7zAIBQMQsFKKEM07sasVW6Xa3u7rdxwG7Us1lksIHftqPCqUbzSGqPCNq4cbOHPACTAEZC6bTv0hsjvRmprWFm5f53xdQsqLJYKOP8jOS-aCssydZA8Kxyipwpk3XO7kdip2Z4zRNEe_LoOkIZ-_5M8-yrT0dtWDNUKvec3mPgFuturgpfouC4b_grdpps6q8oROgqX0Ui6xUby__YbQmgFWA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+of+vulnerabilities+of+drug-tolerant+persisters+identified+through+functional+genetics+delays+tumor+relapse&rft.jtitle=Cell+reports.+Medicine&rft.au=Chen%2C+Mengnuo&rft.au=Mainardi%2C+Sara&rft.au=Lieftink%2C+Cor&rft.au=Velds%2C+Arno&rft.date=2024-03-19&rft.issn=2666-3791&rft.eissn=2666-3791&rft.volume=5&rft.issue=3&rft.spage=101471&rft_id=info:doi/10.1016%2Fj.xcrm.2024.101471&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379123X00044%2Fcov150h.gif |