A computational algorithm to predict shRNA potency

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell Jg. 56; H. 6; S. 796
Hauptverfasser: Knott, Simon R V, Maceli, Ashley, Erard, Nicolas, Chang, Kenneth, Marran, Krista, Zhou, Xin, Gordon, Assaf, Demerdash, Osama El, Wagenblast, Elvin, Kim, Sun, Fellmann, Christof, Hannon, Gregory J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 18.12.2014
Schlagworte:
ISSN:1097-4164, 1097-4164
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.
AbstractList The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.
The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.
Author Maceli, Ashley
Gordon, Assaf
Fellmann, Christof
Erard, Nicolas
Chang, Kenneth
Demerdash, Osama El
Wagenblast, Elvin
Zhou, Xin
Marran, Krista
Kim, Sun
Hannon, Gregory J
Knott, Simon R V
Author_xml – sequence: 1
  givenname: Simon R V
  surname: Knott
  fullname: Knott, Simon R V
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 2
  givenname: Ashley
  surname: Maceli
  fullname: Maceli, Ashley
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 3
  givenname: Nicolas
  surname: Erard
  fullname: Erard, Nicolas
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 4
  givenname: Kenneth
  surname: Chang
  fullname: Chang, Kenneth
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 5
  givenname: Krista
  surname: Marran
  fullname: Marran, Krista
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 6
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 7
  givenname: Assaf
  surname: Gordon
  fullname: Gordon, Assaf
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 8
  givenname: Osama El
  surname: Demerdash
  fullname: Demerdash, Osama El
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 9
  givenname: Elvin
  surname: Wagenblast
  fullname: Wagenblast, Elvin
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 10
  givenname: Sun
  surname: Kim
  fullname: Kim, Sun
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 11
  givenname: Christof
  surname: Fellmann
  fullname: Fellmann, Christof
  organization: Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
– sequence: 12
  givenname: Gregory J
  surname: Hannon
  fullname: Hannon, Gregory J
  organization: Cancer Research UK Cambridge Insitute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB20RE, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25435137$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuOvqPxDp0Utr3qRJk-Oy-AWLgui5pMlbt0vb1CY97L-34AqeZhieGZhLsuh9j4TcAM2Agrw_ZJ1vLbYZo5DPUUaZOCMroLpIc5D54p9fkssQDnQGhdIXZMlEzgXwYkXYJrG-G6ZoYuN70yam_fJjE_ddEn0yjOgaG5Owf3_dJIOP2NvjFTmvTRvw-qRr8vn48LF9TndvTy_bzS61QrKYMmSUu6oWWjnFnJJFpbnklhoF1BZCqUobqBCoQYcKDC9kgbSmMFecqNma3P3uDqP_njDEsmvCfLg1PfoplCC5zrWQQGf09oROVYeuHMamM-Ox_PvJfgAgmVc8
CitedBy_id crossref_primary_10_1038_nature25465
crossref_primary_10_1038_s41586_021_03421_6
crossref_primary_10_1038_s43018_022_00353_6
crossref_primary_10_7554_eLife_49796
crossref_primary_10_1016_j_molcel_2015_08_015
crossref_primary_10_1016_j_stem_2019_09_008
crossref_primary_10_1016_j_biomaterials_2017_05_032
crossref_primary_10_1016_j_ccell_2020_04_006
crossref_primary_10_1016_j_jim_2019_02_002
crossref_primary_10_1016_j_molmet_2019_04_007
crossref_primary_10_1016_j_stem_2021_07_003
crossref_primary_10_1016_j_cels_2016_01_012
crossref_primary_10_1073_pnas_1508821112
crossref_primary_10_1016_j_jprot_2021_104424
crossref_primary_10_3389_fbioe_2022_913728
crossref_primary_10_3390_pharmaceutics15020685
crossref_primary_10_1016_j_omtn_2023_102057
crossref_primary_10_7554_eLife_80447
crossref_primary_10_1038_nm_4475
crossref_primary_10_1186_s12859_017_1697_6
crossref_primary_10_1158_1078_0432_CCR_14_2180
crossref_primary_10_1038_s41576_020_0247_7
crossref_primary_10_7554_eLife_46793
crossref_primary_10_1186_s13059_023_03020_w
crossref_primary_10_1186_s12935_019_0726_0
crossref_primary_10_1038_s41598_022_13783_0
crossref_primary_10_1083_jcb_201809123
crossref_primary_10_1146_annurev_genet_120215_034902
crossref_primary_10_1182_blood_2018_01_828418
crossref_primary_10_1016_j_devcel_2021_10_008
crossref_primary_10_1007_s11240_022_02426_x
crossref_primary_10_1016_j_molmet_2025_102175
crossref_primary_10_1016_j_virs_2024_05_001
crossref_primary_10_15252_embr_202153691
crossref_primary_10_1007_s12015_024_10836_x
crossref_primary_10_1016_j_celrep_2024_114747
crossref_primary_10_1038_nature24993
crossref_primary_10_1016_j_ymeth_2016_04_003
crossref_primary_10_1016_j_molcel_2017_06_030
crossref_primary_10_1083_jcb_201802144
crossref_primary_10_1093_nar_gky546
crossref_primary_10_1111_jdi_13646
crossref_primary_10_7554_eLife_25607
crossref_primary_10_1016_j_molmet_2019_09_009
crossref_primary_10_1111_febs_13248
crossref_primary_10_3389_fnmol_2018_00178
crossref_primary_10_1158_2159_8290_CD_20_1202
crossref_primary_10_1172_JCI172436
crossref_primary_10_1016_j_omtn_2023_102038
crossref_primary_10_1038_mt_2015_113
crossref_primary_10_1093_narmme_ugaf030
crossref_primary_10_1523_JNEUROSCI_0254_18_2018
crossref_primary_10_1016_j_it_2015_03_007
crossref_primary_10_1371_journal_pbio_2003213
crossref_primary_10_26508_lsa_201900623
crossref_primary_10_3390_cells10030523
crossref_primary_10_1038_s41467_022_29822_3
crossref_primary_10_1016_j_nlm_2015_07_005
crossref_primary_10_1038_s41467_017_00772_5
crossref_primary_10_1038_nbt_3807
crossref_primary_10_1172_JCI94840
crossref_primary_10_1038_s41467_020_15188_x
crossref_primary_10_1016_j_neuron_2025_03_035
crossref_primary_10_1126_science_aao4227
crossref_primary_10_1093_nar_gkaa1260
crossref_primary_10_1016_j_celrep_2023_112791
crossref_primary_10_1016_j_neuron_2019_08_035
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2014.10.025
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 25435137
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 21143
– fundername: NIGMS NIH HHS
  grantid: R01 GM062534
– fundername: NCI NIH HHS
  grantid: P01 CA013106
– fundername: NIGMS NIH HHS
  grantid: R37 GM062534
– fundername: NCI NIH HHS
  grantid: P30 CA045508
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
7-5
AAEDT
AAEDW
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c562t-2e203dbf598d82d867b9363c0a810c7588b9a1be10aede81a3767e0f01f59d5f2
IEDL.DBID 7X8
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346653500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Sun Sep 28 11:43:41 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-2e203dbf598d82d867b9363c0a810c7588b9a1be10aede81a3767e0f01f59d5f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.molcel.2014.10.025
PMID 25435137
PQID 1639495610
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1639495610
pubmed_primary_25435137
PublicationCentury 2000
PublicationDate 2014-12-18
PublicationDateYYYYMMDD 2014-12-18
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2014
SSID ssj0014589
Score 2.44399
Snippet The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 796
SubjectTerms Algorithms
Base Sequence
Cell Line, Tumor
Computer Simulation
Consensus Sequence
Gene Knockdown Techniques
Humans
MicroRNAs - genetics
Models, Genetic
Molecular Sequence Data
RNA, Small Interfering - genetics
Software
Title A computational algorithm to predict shRNA potency
URI https://www.ncbi.nlm.nih.gov/pubmed/25435137
https://www.proquest.com/docview/1639495610
Volume 56
WOSCitedRecordID wos000346653500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBaTdqkTU6yiIsXyyIKeytJmrrCblu3Vdh_b6btsidB8NJTE8okmX4z32Q-hG5IJN05cEGO5j73mNTMkym3nnHYVjMZMqpasYkojsV4LEddwq3qyiqXPrFx1GlhIEd-53CDBDBPyX356YFqFLCrnYTGOuoFDsrAro7GKxaB8UYCD0hWzwEPtrw619R3zYqpsUA-UHYL9V0-_x1kNj-b4e5_P3MP7XQwEw_afbGP1mx-gLZa4cnFIfIH2DRyDl0qEKvpu5ulnsxwXeByDuxNjavJSzzAZQGwenGE3oaPrw9PXqee4Owc-rXnW58Eqc64FKnwUxFGWgZhYIgSlBgXJggtFdWWEmVTK6iCvi6WZIS6ISnP_GO0kRe5PUXYveYiaGkZpZZJxQTT0LfdhEHjEngfXS-NkbjdCZSDym3xVSUrc_TRSWvRpGzbaCRwDZ_TIDr7w-hztA0LBXUkVFygXubOpr1Em-a7_qjmV82yu2c8ev4BhWG0SQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+algorithm+to+predict+shRNA+potency&rft.jtitle=Molecular+cell&rft.au=Knott%2C+Simon+R+V&rft.au=Maceli%2C+Ashley&rft.au=Erard%2C+Nicolas&rft.au=Chang%2C+Kenneth&rft.date=2014-12-18&rft.eissn=1097-4164&rft.volume=56&rft.issue=6&rft.spage=796&rft_id=info:doi/10.1016%2Fj.molcel.2014.10.025&rft_id=info%3Apmid%2F25435137&rft_id=info%3Apmid%2F25435137&rft.externalDocID=25435137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon