Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma

•A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those patients who have a contraindication to undergo an invasive procedure.•The significance of magnetic resonance 3D volumetrics and qualitative imaging feat...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods and programs in biomedicine Vol. 140; pp. 249 - 257
Main Authors: Kanas, Vasileios G., Zacharaki, Evangelia I., Thomas, Ginu A., Zinn, Pascal O., Megalooikonomou, Vasileios, Colen, Rivka R.
Format: Journal Article
Language:English
Published: Ireland Elsevier B.V 01.03.2017
Elsevier
Subjects:
ISSN:0169-2607, 1872-7565, 1872-7565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those patients who have a contraindication to undergo an invasive procedure.•The significance of magnetic resonance 3D volumetrics and qualitative imaging features for predicting MGMT methylation status in glioblastoma was evaluated (73.6% accuracy achieved).•Our analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were associated with the status of MGMT promoter methylation in glioblastoma.•The results of our study provide further evidence of an association between standard preoperative MRI features and MGMT methylation status in glioblastoma. The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively. A retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database. The status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM. The obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.
AbstractList The O -methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively. A retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database. The status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM. The obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.
•A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those patients who have a contraindication to undergo an invasive procedure.•The significance of magnetic resonance 3D volumetrics and qualitative imaging features for predicting MGMT methylation status in glioblastoma was evaluated (73.6% accuracy achieved).•Our analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were associated with the status of MGMT promoter methylation in glioblastoma.•The results of our study provide further evidence of an association between standard preoperative MRI features and MGMT methylation status in glioblastoma. The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively. A retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database. The status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM. The obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.
The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively.BACKGROUND AND OBJECTIVEThe O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively.A retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database.METHODSA retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database.The status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM.RESULTSThe status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM.The obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.CONCLUSIONSThe obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.
Highlights • A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those patients who have a contraindication to undergo an invasive procedure. • The significance of magnetic resonance 3D volumetrics and qualitative imaging features for predicting MGMT methylation status in glioblastoma was evaluated (73.6% accuracy achieved). • Our analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were associated with the status of MGMT promoter methylation in glioblastoma. • The results of our study provide further evidence of an association between standard preoperative MRI features and MGMT methylation status in glioblastoma.
Background and Objective: The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. However, determination of the MGMT promoter methylation status requires tissue obtained via surgical resection or biopsy. The aim of this study was to assess the ability of quantitative and qualitative imaging variables in predicting MGMT methylation status noninvasively.Methods: A retrospective analysis of MR images from GBM patients was conducted. Multivariate prediction models were obtained by machine-learning methods and tested on data from The Cancer Genome Atlas (TCGA) database.Results: The status of MGMT promoter methylation was predicted with an accuracy of up to 73.6%. Experimental analysis showed that the edema/necrosis volume ratio, tumor/necrosis volume ratio, edema volume, and tumor location and enhancement characteristics were the most significant variables in respect to the status of MGMT promoter methylation in GBM.Conclusions: The obtained results provide further evidence of an association between standard preoperative MRI variables and MGMT methylation status in GBM.
Author Kanas, Vasileios G.
Thomas, Ginu A.
Megalooikonomou, Vasileios
Zinn, Pascal O.
Zacharaki, Evangelia I.
Colen, Rivka R.
Author_xml – sequence: 1
  givenname: Vasileios G.
  surname: Kanas
  fullname: Kanas, Vasileios G.
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
– sequence: 2
  givenname: Evangelia I.
  surname: Zacharaki
  fullname: Zacharaki, Evangelia I.
  email: evangelia.zacharaki@centralesupelec.fr
  organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
– sequence: 3
  givenname: Ginu A.
  surname: Thomas
  fullname: Thomas, Ginu A.
  organization: Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
– sequence: 4
  givenname: Pascal O.
  surname: Zinn
  fullname: Zinn, Pascal O.
  organization: Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
– sequence: 5
  givenname: Vasileios
  surname: Megalooikonomou
  fullname: Megalooikonomou, Vasileios
  organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
– sequence: 6
  givenname: Rivka R.
  surname: Colen
  fullname: Colen, Rivka R.
  organization: Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28254081$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01423323$$DView record in HAL
BookMark eNqFUk1v3CAURFWqZpP2D_RQ-dge7AI22FtVlaKo-ZB2ValNzwjwc8IWwwZwpP33xdkkh0hNT6B5MwOaeUfowHkHCL0nuCKY8M-bSo9bVdF8rwitMOleoQXpWlq2jLMDtMiDZUk5bg_RUYwbjDFljL9Bh7SjrMEdWSCxAhmccdfF-udlqWSEvtBWxmgGo2Uy3hWj78HGYvChWJ-vr4oR0s3O7mcxyTTFYhugN_oeMa64tsar7JH8KN-i14O0Ed49nMfo99n3q9OLcvXj_PL0ZFVqxmkqKabQcIllC0pRDi3GDJOmHnQ3EKoV7xRuO6rrpe4Hqgc19KxnatkN0PIM1cfo0973RlqxDWaUYSe8NOLiZCVmLLvRuqb1Hcncj3vuNvjbCWISo4karJUO_BRFjrBpGpbjytQPD9RJjdA_OT8GmAndnqCDjzHAILRJ99mkII0VBIu5K7ERc1di7koQmn_TZSl9Jn10f1H0dS_KlcCdgSCiNuB0zj-ATqL35mX5t2dybY3LTds_sIO48VNwuSZBRMwC8WveoHmBCK9xQ-rZ4Mu_Df73-l9tQtWS
CitedBy_id crossref_primary_10_1007_s10278_022_00757_x
crossref_primary_10_1177_10732748231169149
crossref_primary_10_1002_jmri_27514
crossref_primary_10_3389_fonc_2023_1185738
crossref_primary_10_3389_fncom_2020_563439
crossref_primary_10_1007_s12553_020_00514_6
crossref_primary_10_1016_j_compbiomed_2022_106159
crossref_primary_10_1093_neuros_nyab103
crossref_primary_10_1155_2022_4667117
crossref_primary_10_1186_s40644_024_00769_6
crossref_primary_10_1093_annonc_mdx034
crossref_primary_10_1186_s12880_020_00545_5
crossref_primary_10_3390_jcm13123460
crossref_primary_10_1146_annurev_biodatasci_022620_015538
crossref_primary_10_1111_jon_12724
crossref_primary_10_3390_biomedicines10102490
crossref_primary_10_3390_cells13211754
crossref_primary_10_1038_s41416_023_02317_8
crossref_primary_10_1186_s12885_018_4114_2
crossref_primary_10_1016_j_currproblcancer_2024_101156
crossref_primary_10_1186_s13550_019_0542_5
crossref_primary_10_1002_ima_23059
crossref_primary_10_1016_j_eij_2024_100583
crossref_primary_10_1002_brb3_3324
crossref_primary_10_1007_s00330_017_5302_1
crossref_primary_10_1038_s41598_019_50849_y
crossref_primary_10_3390_cancers13143611
crossref_primary_10_1109_RBME_2021_3075500
crossref_primary_10_1186_s12868_022_00750_8
crossref_primary_10_1016_j_clineuro_2022_107465
crossref_primary_10_3390_info13030124
crossref_primary_10_3892_ol_2024_14741
crossref_primary_10_1038_s41416_025_03132_z
crossref_primary_10_3390_biomedicines10123205
crossref_primary_10_1007_s00432_023_05566_5
crossref_primary_10_1016_S0169_2607_17_30136_0
crossref_primary_10_1007_s11060_021_03870_z
crossref_primary_10_1155_2020_9258649
crossref_primary_10_1016_j_ejrad_2019_108785
crossref_primary_10_1007_s10143_017_0899_8
crossref_primary_10_1093_neuros_nyab124
crossref_primary_10_3389_fonc_2021_601425
crossref_primary_10_1016_j_compbiomed_2022_106492
crossref_primary_10_1186_s12883_017_0961_8
crossref_primary_10_1007_s10278_017_0009_z
crossref_primary_10_1002_brb3_70175
crossref_primary_10_1007_s00701_019_03966_6
crossref_primary_10_1007_s10143_018_01061_5
crossref_primary_10_1007_s11060_017_2735_y
crossref_primary_10_3390_diagnostics15030251
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1016_j_radonc_2023_109865
crossref_primary_10_1007_s11060_020_03597_3
crossref_primary_10_1016_j_nic_2020_07_002
crossref_primary_10_1088_1361_6560_ab2f44
crossref_primary_10_7717_peerj_cs_584
crossref_primary_10_1038_s41598_022_17707_w
crossref_primary_10_1038_s41598_024_66653_2
crossref_primary_10_1038_s41598_020_60550_0
crossref_primary_10_1016_j_wneu_2019_08_232
crossref_primary_10_1007_s00521_023_08405_3
crossref_primary_10_1148_radiol_2018181928
Cites_doi 10.1007/s11523-010-0153-6
10.1016/j.is.2007.07.002
10.1007/s00234-011-0947-y
10.1136/jmg.38.5.285
10.3174/ajnr.A2939
10.1007/s11060-007-9401-8
10.1056/NEJMoa043330
10.1118/1.4948668
10.1148/radiol.2533090135
10.1200/JCO.2009.23.6497
10.1016/S0022-510X(00)00274-4
10.1002/1097-0142(194811)1:4<634::AID-CNCR2820010410>3.0.CO;2-L
10.1002/stem.1349
10.1007/BF00146086
10.1002/jcc.10234
10.1148/radiol.13120118
10.1007/s00401-012-1016-2
10.1371/journal.pone.0025451
10.1023/A:1010933404324
10.1126/science.290.5500.2319
10.1016/S0004-3702(97)00043-X
10.1371/journal.pone.0041522
10.1162/089976603321780317
10.1002/pbc.20803
10.1148/radiol.14141800
10.1109/TIT.1967.1053964
10.1007/s10278-009-9193-9
10.3171/jns.2001.95.2.0190
10.1056/NEJMoa043331
10.1016/j.ejor.2004.08.004
10.1126/science.290.5500.2323
10.1038/nature07385
10.1016/j.neuroimage.2009.09.049
10.1158/1078-0432.CCR-06-2184
10.1038/sj.bjc.6605127
10.1038/nrneurol.2009.197
10.1586/erm.09.44
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.cmpb.2016.12.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1872-7565
EndPage 257
ExternalDocumentID oai:HAL:hal-01423323v1
28254081
10_1016_j_cmpb_2016_12_018
S0169260716304138
1_s2_0_S0169260716304138
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c562t-202e46a0a7ebb26e70050143fc8f12cb68b0782c39cdf2cfbfd5d5b98fe76cdf3
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397074300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Tue Oct 14 20:05:47 EDT 2025
Thu Oct 02 10:54:03 EDT 2025
Wed Feb 19 02:00:41 EST 2025
Sat Nov 29 07:25:48 EST 2025
Tue Nov 18 22:08:41 EST 2025
Fri Feb 23 02:26:01 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Oct 14 19:32:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
MGMT promoter methylation
Multivariate analysis
Glioblastoma
Prediction model
glioblastoma
prediction model
feature extraction
multivariate analysis
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-202e46a0a7ebb26e70050143fc8f12cb68b0782c39cdf2cfbfd5d5b98fe76cdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28254081
PQID 1874445000
PQPubID 23479
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01423323v1
proquest_miscellaneous_1874445000
pubmed_primary_28254081
crossref_citationtrail_10_1016_j_cmpb_2016_12_018
crossref_primary_10_1016_j_cmpb_2016_12_018
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_12_018
elsevier_clinicalkeyesjournals_1_s2_0_S0169260716304138
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_12_018
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Caruana, Freitag (bib0032) 1994
Zinn, Majadan, Sathyan, Singh, Majumder, Jolesz, Colen (bib0009) 2011; 6
Duda, Hart, Stork (bib0027) 2012
Jolliffe (bib0042) 2002
Karnofsky, Abelmann, Craver, Burchenal (bib0011) 1948; 1
Van der Maaten (bib0036) 2007; 1201
Bruzzone, Eoli, Cuccarini, Grisoli, Valletta, Finocchiaro (bib0050) 2009; 9
Cover, Hart (bib0045) 1967; 13
Liu, Setiono (bib0030) 1996
Schrot, Ma, Greco, Arias, Angelastro (bib0048) 2007; 85
(bib0019) 2008; 455
Hall (bib0029) 1999
Kohavi, John (bib0028) 1997; 97
Channin, Mongkolwat, Kleper, Sepukar, Rubin (bib0021) 2010; 23
Tenenbaum, De Silva, Langford (bib0037) 2000; 290
Scholkopft, Mullert (bib0040) 1999; 1
Laguna, Marti, Martí (bib0033) 2003
Agrafiotis (bib0043) 2003; 24
Lacroix, Abi-Said, Fourney, Gokaslan, Shi, DeMonte, Lang, McCutcheon, Hassenbusch, Holland (bib0053) 2001; 95
Gutman, Cooper, Hwang, Holder, Gao, Aurora, Dunn, Scarpace, Mikkelsen, Jain (bib0012) 2013; 267
John, Langley (bib0046) 1995
Drabycz, Roldan, de Robles, Adler, McIntyre, Magliocco, Cairncross, Mitchell (bib0055) 2010; 49
Zacharaki, Morita, Bhatt, O'Rourke, Melhem, Davatzikos (bib0014) 2012; 33
Roweis, Saul (bib0038) 2000; 290
Breiman (bib0044) 2001; 45
Dunn, Baborie, Alam, Joyce, Moxham, Sibson, Crooks, Husband, Shenoy, Brodbelt (bib0005) 2009; 101
Levner, Drabycz, Roldan, de Robles, Cairncross, Mitchell (bib0058) 2009
Wick, Hartmann, Engel, Stoffels, Felsberg, Stockhammer, Sabel, Koeppen, Ketter, Meyermann (bib0002) 2009; 27
Colen, Vangel, Wang, Gutman, Hwang, Wintermark, Jain, Jilwan-Nicolas, Chen, Raghavan (bib0013) 2014; 7
H.H. Harman. Modern factor analysis. 1960.
Eoli, Menghi, Bruzzone, De Simone, Valletta, Pollo, Bissola, Silvani, Bianchessi, D'Incerti (bib0015) 2007; 13
Stupp, Mason, Van Den Bent, Weller, Fisher, Taphoorn, Belanger, Brandes, Marosi, Bogdahn (bib0006) 2005; 352
Levina, Bickel (bib0035) 2004
Hammoud, Sawaya, Shi, Thall, Leeds (bib0052) 1996; 27
Korfiatis, Kline, Coufalova, Lachance, Parney, Carter, Buckner, Erickson (bib0057) 2016; 43
Wang, Megalooikonomou (bib0026) 2008; 33
Martí, Laguna, Glover (bib0034) 2006; 169
Pope, Sayre, Perlina, Villablanca, Mischel, Cloughesy (bib0051) 2005; 26
Belkin, Niyogi (bib0039) 2003; 15
Prayson, Agamanolis, Cohen, Estes, Kleinschmidt-DeMasters, Abdul-Karim, McClure, Sebek, Vinay (bib0008) 2000; 175
Zinn, Sathyan, Mahajan, Bruyere, Hegi, Majumder, Colen (bib0010) 2012; 7
Eoli, Menghi, Bruzzone, De Simone, Valletta, Pollo, Bissola, Silvani, Bianchessi, D'Incerti (bib0056) 2007; 13
Bady, Sciuscio, Diserens, Bloch, van den Bent, Marosi, Dietrich, Weller, Mariani, Heppner (bib0020) 2012; 124
[
Hegi, Diserens, Gorlia, Hamou, de Tribolet, Weller, Kros, Hainfellner, Mason, Mariani (bib0003) 2005; 352
Donson, Addo‐Yobo, Handler, Gore, Foreman (bib0004) 2007; 48
Ruiz-Ontañon, Orgaz, Aldaz, Elosegui-Artola, Martino, Berciano, Montero, Grande, Nogueira, Diaz-Moralli (bib0054) 2013; 31
Colen, Wang, Singh, Gutman, Zinn (bib0024) 2015; 275
Costello, Plass (bib0049) 2001; 38
Xu, Yan, Chang (bib0031) 1988
Channin, Mongkolwat, Kleper, Rubin (bib0022) 2009; 253
Bartl, Rezankova, Sobisek (bib0025) 2011
Meera Gandhi, Srivatsa (bib0047) 2010; 3
TCIA.
Rubin, Mongkolwat, Channin (bib0023) 2009; 2009
Drabycz, Roldán, De Robles, Adler, McIntyre, Magliocco, Cairncross, Mitchell (bib0017) 2010; 49
Weller, Stupp, Reifenberger, Brandes, van den Bent, Wick, Hegi (bib0001) 2010; 6
Riemenschneider, Hegi, Reifenberger (bib0007) 2010; 5
Moon, Choi, Roh, Lim, Koh (bib0016) 2012; 54
Channin (10.1016/j.cmpb.2016.12.018_bib0021) 2010; 23
Bady (10.1016/j.cmpb.2016.12.018_bib0020) 2012; 124
Ruiz-Ontañon (10.1016/j.cmpb.2016.12.018_bib0054) 2013; 31
Stupp (10.1016/j.cmpb.2016.12.018_bib0006) 2005; 352
Caruana (10.1016/j.cmpb.2016.12.018_bib0032) 1994
Scholkopft (10.1016/j.cmpb.2016.12.018_bib0040) 1999; 1
Hegi (10.1016/j.cmpb.2016.12.018_bib0003) 2005; 352
Riemenschneider (10.1016/j.cmpb.2016.12.018_bib0007) 2010; 5
Hammoud (10.1016/j.cmpb.2016.12.018_bib0052) 1996; 27
Eoli (10.1016/j.cmpb.2016.12.018_bib0015) 2007; 13
Belkin (10.1016/j.cmpb.2016.12.018_bib0039) 2003; 15
Laguna (10.1016/j.cmpb.2016.12.018_bib0033) 2003
Jolliffe (10.1016/j.cmpb.2016.12.018_bib0042) 2002
Wang (10.1016/j.cmpb.2016.12.018_bib0026) 2008; 33
Eoli (10.1016/j.cmpb.2016.12.018_bib0056) 2007; 13
Roweis (10.1016/j.cmpb.2016.12.018_bib0038) 2000; 290
10.1016/j.cmpb.2016.12.018_bib0018
(10.1016/j.cmpb.2016.12.018_bib0019) 2008; 455
Liu (10.1016/j.cmpb.2016.12.018_bib0030) 1996
Agrafiotis (10.1016/j.cmpb.2016.12.018_bib0043) 2003; 24
Breiman (10.1016/j.cmpb.2016.12.018_bib0044) 2001; 45
Colen (10.1016/j.cmpb.2016.12.018_bib0013) 2014; 7
Donson (10.1016/j.cmpb.2016.12.018_bib0004) 2007; 48
Channin (10.1016/j.cmpb.2016.12.018_bib0022) 2009; 253
John (10.1016/j.cmpb.2016.12.018_bib0046) 1995
Martí (10.1016/j.cmpb.2016.12.018_bib0034) 2006; 169
Kohavi (10.1016/j.cmpb.2016.12.018_bib0028) 1997; 97
Zacharaki (10.1016/j.cmpb.2016.12.018_bib0014) 2012; 33
10.1016/j.cmpb.2016.12.018_bib0041
Cover (10.1016/j.cmpb.2016.12.018_bib0045) 1967; 13
Weller (10.1016/j.cmpb.2016.12.018_bib0001) 2010; 6
Pope (10.1016/j.cmpb.2016.12.018_bib0051) 2005; 26
Korfiatis (10.1016/j.cmpb.2016.12.018_bib0057) 2016; 43
Drabycz (10.1016/j.cmpb.2016.12.018_bib0017) 2010; 49
Prayson (10.1016/j.cmpb.2016.12.018_bib0008) 2000; 175
Drabycz (10.1016/j.cmpb.2016.12.018_bib0055) 2010; 49
Levina (10.1016/j.cmpb.2016.12.018_bib0035) 2004
Van der Maaten (10.1016/j.cmpb.2016.12.018_bib0036) 2007; 1201
Bruzzone (10.1016/j.cmpb.2016.12.018_bib0050) 2009; 9
Karnofsky (10.1016/j.cmpb.2016.12.018_bib0011) 1948; 1
Xu (10.1016/j.cmpb.2016.12.018_bib0031) 1988
Costello (10.1016/j.cmpb.2016.12.018_bib0049) 2001; 38
Hall (10.1016/j.cmpb.2016.12.018_bib0029) 1999
Zinn (10.1016/j.cmpb.2016.12.018_bib0010) 2012; 7
Rubin (10.1016/j.cmpb.2016.12.018_bib0023) 2009; 2009
Colen (10.1016/j.cmpb.2016.12.018_bib0024) 2015; 275
Duda (10.1016/j.cmpb.2016.12.018_bib0027) 2012
Meera Gandhi (10.1016/j.cmpb.2016.12.018_bib0047) 2010; 3
Bartl (10.1016/j.cmpb.2016.12.018_bib0025) 2011
Zinn (10.1016/j.cmpb.2016.12.018_bib0009) 2011; 6
Dunn (10.1016/j.cmpb.2016.12.018_bib0005) 2009; 101
Tenenbaum (10.1016/j.cmpb.2016.12.018_bib0037) 2000; 290
Lacroix (10.1016/j.cmpb.2016.12.018_bib0053) 2001; 95
Levner (10.1016/j.cmpb.2016.12.018_bib0058) 2009
Wick (10.1016/j.cmpb.2016.12.018_bib0002) 2009; 27
Schrot (10.1016/j.cmpb.2016.12.018_bib0048) 2007; 85
Moon (10.1016/j.cmpb.2016.12.018_bib0016) 2012; 54
Gutman (10.1016/j.cmpb.2016.12.018_bib0012) 2013; 267
References_xml – start-page: 338
  year: 1995
  end-page: 345
  ident: bib0046
  article-title: Estimating Continuous Distributions in Bayesian Classifiers
– volume: 275
  start-page: 215
  year: 2015
  end-page: 227
  ident: bib0024
  article-title: Glioblastoma: imaging genomic mapping reveals sex-specific oncogenic associations of cell death
  publication-title: Radiology
– volume: 33
  start-page: 1065
  year: 2012
  end-page: 1071
  ident: bib0014
  article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
  publication-title: Am. J. Neuroradiol.
– volume: 6
  start-page: e25451
  year: 2011
  ident: bib0009
  article-title: Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
  publication-title: PLoS One
– volume: 7
  start-page: e41522
  year: 2012
  ident: bib0010
  article-title: A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature
  publication-title: PLoS One
– volume: 49
  start-page: 1398
  year: 2010
  end-page: 1405
  ident: bib0055
  article-title: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
  publication-title: Neuroimage
– volume: 49
  start-page: 1398
  year: 2010
  end-page: 1405
  ident: bib0017
  article-title: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
  publication-title: Neuroimage
– start-page: 706
  year: 1988
  end-page: 708
  ident: bib0031
  article-title: Best First Strategy for Feature Selection
– year: 2012
  ident: bib0027
  article-title: Pattern Classification
– volume: 253
  start-page: 590
  year: 2009
  end-page: 592
  ident: bib0022
  article-title: The annotation and image mark-up project 1
  publication-title: Radiology
– volume: 9
  start-page: 709
  year: 2009
  end-page: 720
  ident: bib0050
  article-title: Genetic signature of adult gliomas and correlation with MRI features
  publication-title: Expert review of molecular diagnostics
– volume: 455
  start-page: 1061
  year: 2008
  end-page: 1068
  ident: bib0019
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib0037
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 175
  start-page: 33
  year: 2000
  end-page: 39
  ident: bib0008
  article-title: Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading
  publication-title: J. Neurol. Sci.
– year: 1999
  ident: bib0029
  article-title: Correlation-Based Feature Selection for Machine Learning
– reference: H.H. Harman. Modern factor analysis. 1960.
– volume: 48
  start-page: 403
  year: 2007
  end-page: 407
  ident: bib0004
  article-title: MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma
  publication-title: Pediatr. Blood Cancer
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: bib0039
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
– reference: ] TCIA.
– volume: 1
  start-page: 23
  year: 1999
  end-page: 25
  ident: bib0040
  article-title: Fisher discriminant analysis with kernels
  publication-title: Neural networks for signal processing IX
– reference: [
– year: 2003
  ident: bib0033
  article-title: Scatter Search: Methodology and Implementations in C
– volume: 267
  start-page: 560
  year: 2013
  end-page: 569
  ident: bib0012
  article-title: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set
  publication-title: Radiology
– volume: 3
  year: 2010
  ident: bib0047
  article-title: Adaptive machine learning algorithm (AMLA) using J48 classifier for an NIDS environment
  publication-title: Adv. Comput. Sci. Technol.
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib0038
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 2009
  start-page: 106
  year: 2009
  ident: bib0023
  article-title: A semantic image annotation model to enable integrative translational research
  publication-title: Summit Translat. Bioinforma.
– volume: 43
  start-page: 2835
  year: 2016
  end-page: 2844
  ident: bib0057
  article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
  publication-title: Med. Phys.
– volume: 54
  start-page: 555
  year: 2012
  end-page: 563
  ident: bib0016
  article-title: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging
  publication-title: Neuroradiology
– volume: 95
  start-page: 190
  year: 2001
  end-page: 198
  ident: bib0053
  article-title: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival
  publication-title: J. Neurosurg.
– start-page: 26
  year: 2011
  end-page: 35
  ident: bib0025
  article-title: Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis
  publication-title: Rough Sets and Knowledge Technology
– volume: 7
  start-page: 30
  year: 2014
  ident: bib0013
  article-title: Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project
  publication-title: BMC Med. Genet.
– start-page: 777
  year: 2004
  end-page: 784
  ident: bib0035
  article-title: Maximum likelihood estimation of intrinsic dimension
  publication-title: Advances in neural information processing systems
– start-page: 522
  year: 2009
  end-page: 530
  ident: bib0058
  article-title: Predicting MGMT methylation status of glioblastomas from MRI texture
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 6
  start-page: 39
  year: 2010
  end-page: 51
  ident: bib0001
  article-title: MGMT promoter methylation in malignant gliomas: ready for personalized medicine?
  publication-title: Nat. Rev. Neurol.
– volume: 13
  start-page: 2606
  year: 2007
  end-page: 2613
  ident: bib0015
  article-title: Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival
  publication-title: Clin. Cancer Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0044
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 319
  year: 1996
  end-page: 327
  ident: bib0030
  article-title: A Probabilistic Approach to Feature Selection-a Filter Solution
– year: 2002
  ident: bib0042
  article-title: Principal Component Analysis
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib0028
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 5
  start-page: 161
  year: 2010
  end-page: 165
  ident: bib0007
  article-title: MGMT promoter methylation in malignant gliomas
  publication-title: Target. Oncol.
– volume: 169
  start-page: 359
  year: 2006
  end-page: 372
  ident: bib0034
  article-title: Principles of scatter search
  publication-title: Eur. J. Oper. Res.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0045
  article-title: Nearest neighbor pattern classification
  publication-title: Inf. Theory IEEE Trans.
– volume: 31
  start-page: 1075
  year: 2013
  end-page: 1085
  ident: bib0054
  article-title: and others. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue
  publication-title: Stem Cells
– volume: 13
  start-page: 2606
  year: 2007
  end-page: 2613
  ident: bib0056
  article-title: and others. Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival
  publication-title: Clin. Cancer Res.
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  ident: bib0006
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N. Engl. J. Med.
– volume: 26
  start-page: 2466
  year: 2005
  end-page: 2474
  ident: bib0051
  article-title: MR imaging correlates of survival in patients with high-grade gliomas
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 27
  start-page: 5874
  year: 2009
  end-page: 5880
  ident: bib0002
  article-title: NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide
  publication-title: J. Clin. Oncol.
– volume: 27
  start-page: 65
  year: 1996
  end-page: 73
  ident: bib0052
  article-title: Prognostic significance of preoperative MRI scans in glioblastoma multiforme
  publication-title: J. Neurooncol.
– volume: 33
  start-page: 115
  year: 2008
  end-page: 132
  ident: bib0026
  article-title: A dimensionality reduction technique for efficient time series similarity analysis
  publication-title: Inf. Syst.
– volume: 101
  start-page: 124
  year: 2009
  end-page: 131
  ident: bib0005
  article-title: Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy
  publication-title: Br. J. Cancer.
– volume: 1
  start-page: 634
  year: 1948
  end-page: 656
  ident: bib0011
  article-title: The use of the nitrogen mustards in the palliative treatment of carcinoma.
  publication-title: Cancer
– volume: 23
  start-page: 217
  year: 2010
  end-page: 225
  ident: bib0021
  article-title: The caBIG™ annotation and image markup project
  publication-title: J. Digit. Imaging
– volume: 352
  start-page: 997
  year: 2005
  end-page: 1003
  ident: bib0003
  article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma
  publication-title: N. Engl. J. Med.
– volume: 1201
  start-page: 62
  year: 2007
  ident: bib0036
  article-title: An introduction to dimensionality reduction using matlab
  publication-title: Report
– volume: 38
  start-page: 285
  year: 2001
  end-page: 303
  ident: bib0049
  article-title: Methylation matters
  publication-title: J. Med. Genet.
– volume: 24
  start-page: 1215
  year: 2003
  end-page: 1221
  ident: bib0043
  article-title: Stochastic proximity embedding
  publication-title: J. Comput. Chem.
– start-page: 28
  year: 1994
  end-page: 36
  ident: bib0032
  article-title: Greedy Attribute Selection
– volume: 124
  start-page: 547
  year: 2012
  end-page: 560
  ident: bib0020
  article-title: and others. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status
  publication-title: Acta Neuropathol.
– volume: 85
  start-page: 149
  year: 2007
  end-page: 157
  ident: bib0048
  article-title: Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme
  publication-title: J. Neurooncol.
– start-page: 522
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0058
  article-title: Predicting MGMT methylation status of glioblastomas from MRI texture
– volume: 5
  start-page: 161
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0007
  article-title: MGMT promoter methylation in malignant gliomas
  publication-title: Target. Oncol.
  doi: 10.1007/s11523-010-0153-6
– volume: 33
  start-page: 115
  issue: 1
  year: 2008
  ident: 10.1016/j.cmpb.2016.12.018_bib0026
  article-title: A dimensionality reduction technique for efficient time series similarity analysis
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2007.07.002
– volume: 54
  start-page: 555
  issue: 6
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.018_bib0016
  article-title: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging
  publication-title: Neuroradiology
  doi: 10.1007/s00234-011-0947-y
– volume: 38
  start-page: 285
  issue: 5
  year: 2001
  ident: 10.1016/j.cmpb.2016.12.018_bib0049
  article-title: Methylation matters
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.38.5.285
– volume: 33
  start-page: 1065
  issue: 6
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.018_bib0014
  article-title: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2939
– volume: 85
  start-page: 149
  issue: 2
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.018_bib0048
  article-title: Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-007-9401-8
– volume: 352
  start-page: 987
  issue: 10
  year: 2005
  ident: 10.1016/j.cmpb.2016.12.018_bib0006
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa043330
– volume: 43
  start-page: 2835
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.018_bib0057
  article-title: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
  publication-title: Med. Phys.
  doi: 10.1118/1.4948668
– volume: 253
  start-page: 590
  issue: 3
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0022
  article-title: The annotation and image mark-up project 1
  publication-title: Radiology
  doi: 10.1148/radiol.2533090135
– volume: 27
  start-page: 5874
  issue: 35
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0002
  article-title: NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2009.23.6497
– volume: 3
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0047
  article-title: Adaptive machine learning algorithm (AMLA) using J48 classifier for an NIDS environment
  publication-title: Adv. Comput. Sci. Technol.
– volume: 175
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.cmpb.2016.12.018_bib0008
  article-title: Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading
  publication-title: J. Neurol. Sci.
  doi: 10.1016/S0022-510X(00)00274-4
– volume: 1
  start-page: 634
  issue: 4
  year: 1948
  ident: 10.1016/j.cmpb.2016.12.018_bib0011
  article-title: The use of the nitrogen mustards in the palliative treatment of carcinoma. With particular reference to bronchogenic carcinoma
  publication-title: Cancer
  doi: 10.1002/1097-0142(194811)1:4<634::AID-CNCR2820010410>3.0.CO;2-L
– volume: 31
  start-page: 1075
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2016.12.018_bib0054
  article-title: and others. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue
  publication-title: Stem Cells
  doi: 10.1002/stem.1349
– volume: 27
  start-page: 65
  issue: 1
  year: 1996
  ident: 10.1016/j.cmpb.2016.12.018_bib0052
  article-title: Prognostic significance of preoperative MRI scans in glioblastoma multiforme
  publication-title: J. Neurooncol.
  doi: 10.1007/BF00146086
– volume: 26
  start-page: 2466
  issue: 10
  year: 2005
  ident: 10.1016/j.cmpb.2016.12.018_bib0051
  article-title: MR imaging correlates of survival in patients with high-grade gliomas
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 24
  start-page: 1215
  issue: 10
  year: 2003
  ident: 10.1016/j.cmpb.2016.12.018_bib0043
  article-title: Stochastic proximity embedding
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10234
– start-page: 777
  year: 2004
  ident: 10.1016/j.cmpb.2016.12.018_bib0035
  article-title: Maximum likelihood estimation of intrinsic dimension
– volume: 267
  start-page: 560
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.12.018_bib0012
  article-title: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set
  publication-title: Radiology
  doi: 10.1148/radiol.13120118
– volume: 124
  start-page: 547
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.018_bib0020
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1016-2
– volume: 6
  start-page: e25451
  issue: 10
  year: 2011
  ident: 10.1016/j.cmpb.2016.12.018_bib0009
  article-title: Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025451
– start-page: 28
  year: 1994
  ident: 10.1016/j.cmpb.2016.12.018_bib0032
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cmpb.2016.12.018_bib0044
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.cmpb.2016.12.018_bib0037
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– year: 2012
  ident: 10.1016/j.cmpb.2016.12.018_bib0027
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 10.1016/j.cmpb.2016.12.018_bib0028
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 7
  start-page: 30
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2016.12.018_bib0013
  article-title: Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project
  publication-title: BMC Med. Genet.
– volume: 7
  start-page: e41522
  issue: 8
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.018_bib0010
  article-title: A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041522
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.cmpb.2016.12.018_bib0039
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume: 48
  start-page: 403
  issue: 4
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.018_bib0004
  article-title: MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma
  publication-title: Pediatr. Blood Cancer
  doi: 10.1002/pbc.20803
– volume: 1
  start-page: 23
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2016.12.018_bib0040
  article-title: Fisher discriminant analysis with kernels
  publication-title: Neural networks for signal processing IX
– year: 2003
  ident: 10.1016/j.cmpb.2016.12.018_bib0033
– volume: 275
  start-page: 215
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2016.12.018_bib0024
  article-title: Glioblastoma: imaging genomic mapping reveals sex-specific oncogenic associations of cell death
  publication-title: Radiology
  doi: 10.1148/radiol.14141800
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.cmpb.2016.12.018_bib0045
  article-title: Nearest neighbor pattern classification
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.1967.1053964
– volume: 23
  start-page: 217
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0021
  article-title: The caBIG™ annotation and image markup project
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-009-9193-9
– volume: 95
  start-page: 190
  issue: 2
  year: 2001
  ident: 10.1016/j.cmpb.2016.12.018_bib0053
  article-title: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2001.95.2.0190
– volume: 352
  start-page: 997
  issue: 10
  year: 2005
  ident: 10.1016/j.cmpb.2016.12.018_bib0003
  article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa043331
– start-page: 706
  year: 1988
  ident: 10.1016/j.cmpb.2016.12.018_bib0031
– volume: 169
  start-page: 359
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpb.2016.12.018_bib0034
  article-title: Principles of scatter search
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.08.004
– volume: 2009
  start-page: 106
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0023
  article-title: A semantic image annotation model to enable integrative translational research
  publication-title: Summit Translat. Bioinforma.
– start-page: 319
  year: 1996
  ident: 10.1016/j.cmpb.2016.12.018_bib0030
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.cmpb.2016.12.018_bib0038
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 455
  start-page: 1061
  issue: 7216
  year: 2008
  ident: 10.1016/j.cmpb.2016.12.018_bib0019
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 49
  start-page: 1398
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0017
  article-title: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.049
– start-page: 26
  year: 2011
  ident: 10.1016/j.cmpb.2016.12.018_bib0025
  article-title: Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis
– volume: 13
  start-page: 2606
  issue: 9
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.018_bib0015
  article-title: Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2184
– year: 1999
  ident: 10.1016/j.cmpb.2016.12.018_bib0029
– ident: 10.1016/j.cmpb.2016.12.018_bib0041
– volume: 101
  start-page: 124
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0005
  article-title: Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy
  publication-title: Br. J. Cancer.
  doi: 10.1038/sj.bjc.6605127
– volume: 13
  start-page: 2606
  issue: 9
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.018_bib0056
  article-title: and others. Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2184
– volume: 6
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0001
  article-title: MGMT promoter methylation in malignant gliomas: ready for personalized medicine?
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.197
– volume: 1201
  start-page: 62
  issue: 07-07
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.018_bib0036
  article-title: An introduction to dimensionality reduction using matlab
  publication-title: Report
– year: 2002
  ident: 10.1016/j.cmpb.2016.12.018_bib0042
– start-page: 338
  year: 1995
  ident: 10.1016/j.cmpb.2016.12.018_bib0046
– volume: 49
  start-page: 1398
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.018_bib0055
  article-title: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.049
– ident: 10.1016/j.cmpb.2016.12.018_bib0018
– volume: 9
  start-page: 709
  issue: 7
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.018_bib0050
  article-title: Genetic signature of adult gliomas and correlation with MRI features
  publication-title: Expert review of molecular diagnostics
  doi: 10.1586/erm.09.44
SSID ssj0002556
Score 2.4599354
Snippet •A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those patients who...
Highlights • A noninvasive and reliable surrogate method of determining MGMT status could serve to complement brain tumor biopsy or as an alternative in those...
The O -methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma...
The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma...
Background and Objective: The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Computer Science
DNA Methylation
DNA Modification Methylases - genetics
DNA Modification Methylases - metabolism
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
Feature extraction
Female
Glioblastoma
Glioblastoma - diagnostic imaging
Glioblastoma - genetics
Humans
Internal Medicine
Machine Learning
Magnetic Resonance Imaging
Male
Medical Imaging
MGMT promoter methylation
Middle Aged
Multivariate analysis
Other
Prediction model
Promoter Regions, Genetic
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Young Adult
Title Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716304138
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716304138
https://dx.doi.org/10.1016/j.cmpb.2016.12.018
https://www.ncbi.nlm.nih.gov/pubmed/28254081
https://www.proquest.com/docview/1874445000
https://inria.hal.science/hal-01423323
Volume 140
WOSCitedRecordID wos000397074300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DiFeEJ-jfEwBIV6qTG2-7DxOqGODtptQh6q9WI7jjEwlLUtbjT-G_5W72E5X2MZ44CWqrFyS-n6-O5_vg5C3KaNJoAR1QdZ1XFiJvpukkrrSDyLh-zShmtN9Ohyy8Tg-ajR-2lyY5YQWBbu4iGf_ldUwBszG1Nl_YHf9UBiA38B0uALb4Xorxvets2Pw-cBFJZW2JZrIGBOkuV11v6nqMLQHHwajqov0Dx0Th66F-aLE0gFpLm0g5OkknybwjPnUSHFb2sC0hDB9qEtTdaCK-KribHVy_9rh_SdR6ByyL6IEiZRPy1V7rxOBSWBCd9JGG_9UTXKxcuzqaKbKlZ8Xi5Ub9iTXVviRKBFyh5ddGaAe61guI30ZBXM_1M0jdtQVY1Zk6xJPVujqoqd_KAPtlzjbkd9mCQbxRZXj14j7tcrbw0O-d9zv81FvPHo3--5iUzI8vDcdWjbIpkfDmDXJ5u5Bb_yxVvVYvw139PYbTVaWDiD8_bXXWT4bXzEE97r9TWXnjB6Q-2aD4uxqYD0kDVU8IncHhouPCbf4cmp8Oev4cjS-HMCXg_hyLuHL0fhyVvhy8sK5jK8n5HivN3q_75ouHa4E23kOa89TsK47gqok8SJFsaQQWOGZZFnXk0nEEjRDpR_LNPNklmRpmIZJzDJFIxjyn5JmMS3UM-JkYahYx5dMhiKQYQyEKU0zIbIgCIOAtUjXziCXpoQ9dlKZcBureMZx1jnOOu96HGa9Rdo1zUwXcLnxbt8yhtvUZFCmHCB1IxW9ikqVRiyUvMtLuBNDKaPYw5KOkd8B8xEow5rSmLzalP3rG98Aauo_hDXi93f7HMdg7j3f9_xlt0VeW1BxUBp4EigKNV3A52DTiwB7obTIlkZb_SxMZg9go_D8FtQvyL3VOn5JmvPzhXpF7sjlPC_Pt8kGHbNts2Z-AaU77ko
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+MRI-based+classification+models+for+MGMT+methylation+status+prediction+in+glioblastoma&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Kanas%2C+Vasileios+G&rft.au=Zacharaki%2C+Evangelia+I&rft.au=Thomas%2C+Ginu+A&rft.au=Zinn%2C+Pascal+O&rft.date=2017-03-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=140&rft.spage=249&rft_id=info:doi/10.1016%2Fj.cmpb.2016.12.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260716X0017X%2Fcov150h.gif