Mechanisms Controlling PD-L1 Expression in Cancer

The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of ca...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell Vol. 76; no. 3; p. 359
Main Authors: Cha, Jong-Ho, Chan, Li-Chuan, Li, Chia-Wei, Hsu, Jennifer L, Hung, Mien-Chie
Format: Journal Article
Language:English
Published: United States 07.11.2019
Subjects:
ISSN:1097-4164, 1097-4164
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T cell immunity. Blocking the PD-L1/PD-1 pathway has consistently shown remarkable anti-tumor effects in patients with advanced cancers and is recognized as the gold standard for developing new immune checkpoint blockade (ICB) and combination therapies. However, the response rates of anti-PD-L1 have been limited in several solid tumors. Therefore, furthering our understanding of the regulatory mechanisms of PD-L1 can bring substantial benefits to patients with cancer by improving the efficacy of current PD-L1/PD-1 blockade or other ICBs. In this review, we provide current knowledge of PD-L1 regulatory mechanisms at the transcriptional, posttranscriptional, post-translational, and extracellular levels, and discuss the implications of these findings in cancer diagnosis and immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1097-4164
1097-4164
DOI:10.1016/j.molcel.2019.09.030