Materials used to simulate physical properties of human skin

Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of hu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skin research and technology Jg. 22; H. 1; S. 3 - 14
Hauptverfasser: Dąbrowska, A. K., Rotaru, G.-M., Derler, S., Spano, F., Camenzind, M., Annaheim, S., Stämpfli, R., Schmid, M., Rossi, R. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.02.2016
John Wiley & Sons, Inc
Schlagworte:
ISSN:0909-752X, 1600-0846, 1600-0846
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin–material interactions. Methods The literature databases Web of Science, PubMed and Google Scholar were searched using the terms ‘skin model’, ‘skin phantom’, ‘skin equivalent’, ‘synthetic skin’, ‘skin substitute’, ‘artificial skin’, ‘skin replica’, and ‘skin model substrate.’ Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. Results It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano‐ and micro‐fillers can be incorporated in the skin models to tune their physical properties. Conclusion While numerous physical skin models have been reported, most developments are research field‐specific and based on trial‐and‐error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.
AbstractList Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin–material interactions. Methods The literature databases Web of Science, PubMed and Google Scholar were searched using the terms ‘skin model’, ‘skin phantom’, ‘skin equivalent’, ‘synthetic skin’, ‘skin substitute’, ‘artificial skin’, ‘skin replica’, and ‘skin model substrate.’ Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. Results It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano‐ and micro‐fillers can be incorporated in the skin models to tune their physical properties. Conclusion While numerous physical skin models have been reported, most developments are research field‐specific and based on trial‐and‐error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.
Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. Methods The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. Results It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. Conclusion While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.BACKGROUNDFor many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions.PURPOSEThis article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions.The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.METHODSThe literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties.RESULTSIt was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties.While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.CONCLUSIONWhile numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.
Author Stämpfli, R.
Spano, F.
Camenzind, M.
Rotaru, G.-M.
Rossi, R. M.
Dąbrowska, A. K.
Derler, S.
Annaheim, S.
Schmid, M.
Author_xml – sequence: 1
  givenname: A. K.
  surname: Dąbrowska
  fullname: Dąbrowska, A. K.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 2
  givenname: G.-M.
  surname: Rotaru
  fullname: Rotaru, G.-M.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 3
  givenname: S.
  surname: Derler
  fullname: Derler, S.
  email: siegfried.derler@empa.ch
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 4
  givenname: F.
  surname: Spano
  fullname: Spano, F.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 5
  givenname: M.
  surname: Camenzind
  fullname: Camenzind, M.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 6
  givenname: S.
  surname: Annaheim
  fullname: Annaheim, S.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 7
  givenname: R.
  surname: Stämpfli
  fullname: Stämpfli, R.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 8
  givenname: M.
  surname: Schmid
  fullname: Schmid, M.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 9
  givenname: R. M.
  surname: Rossi
  fullname: Rossi, R. M.
  organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26096898$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtKAzEUhoMotlUXvoAMuNHF2FwmyQTcSPGG9YIXFDchZlKaOpeaZNC-vdG2LkSzCefwfT-HvwdW66Y2AGwjeIDi63sXDhDGhK6ALmIQpjDP2CroQgFFyil-6oCe9xMIIRWIrIMOZlCwXORdcHipgnFWlT5pvSmS0CTeVm0Zt8l0PPNWqzKZumZqXLDGJ80oGbeVqhP_autNsDaKptla_Bvg4eT4fnCWDq9PzwdHw1RThmnKXvgoM1RAyKjgIotDIQoiKNZYc4YJUipOouDMMM0zLYgQGHGuC4pVnpENsDfPjYe8tcYHWVmvTVmq2jStl4jTDOY0z_KI7v5CJ03r6njdF0UERJzgSO0sqPalMoWcOlspN5PLXiLQnwPaNd47M5LaBhVsUwenbCkRlF_Ny9i8_G4-Gvu_jGXoX-wi_d2WZvY_KO9u75dGOjesD-bjx1DuVTJOOJWPV6fyeUBub3J0IYfkE753nxY
CitedBy_id crossref_primary_10_1002_admi_201800635
crossref_primary_10_1109_TOH_2021_3076052
crossref_primary_10_1155_2023_5589845
crossref_primary_10_1007_s13346_021_00897_7
crossref_primary_10_1002_smll_201805453
crossref_primary_10_1007_s42235_021_0031_1
crossref_primary_10_1177_09544062231209824
crossref_primary_10_2147_CWCMR_S284180
crossref_primary_10_1016_j_ijbiomac_2024_137142
crossref_primary_10_1016_j_irbm_2025_100904
crossref_primary_10_1016_j_scijus_2021_12_006
crossref_primary_10_1145_3678504
crossref_primary_10_1016_j_eml_2019_100479
crossref_primary_10_1186_s40494_021_00636_8
crossref_primary_10_1002_lsm_23279
crossref_primary_10_1109_JSEN_2020_2997293
crossref_primary_10_1088_1361_6463_ab1119
crossref_primary_10_1002_advs_202308560
crossref_primary_10_1007_s10570_020_03215_5
crossref_primary_10_1016_j_optlaseng_2021_106823
crossref_primary_10_1016_j_cis_2021_102383
crossref_primary_10_1016_j_progpolymsci_2025_101934
crossref_primary_10_1016_j_jddst_2024_105887
crossref_primary_10_1128_spectrum_00892_23
crossref_primary_10_1016_j_ajic_2021_10_040
crossref_primary_10_1155_2023_5588525
crossref_primary_10_1111_ics_13004
crossref_primary_10_1088_1361_6439_ad1e36
crossref_primary_10_3390_s25164974
crossref_primary_10_1002_admt_202101364
crossref_primary_10_1109_TBME_2020_3024632
crossref_primary_10_1088_1757_899X_888_1_012065
crossref_primary_10_1016_j_eml_2021_101299
crossref_primary_10_1002_adma_202204168
crossref_primary_10_1016_j_heliyon_2024_e25395
crossref_primary_10_1109_ACCESS_2025_3547230
crossref_primary_10_1063_5_0093301
crossref_primary_10_1515_teme_2017_0113
crossref_primary_10_7759_cureus_68477
crossref_primary_10_3390_jmmp9020063
crossref_primary_10_3390_molecules30030664
crossref_primary_10_1016_j_scijus_2022_02_008
crossref_primary_10_1002_cnm_3591
crossref_primary_10_1016_j_heliyon_2023_e16228
crossref_primary_10_1002_advs_202309006
crossref_primary_10_1016_j_ejpb_2020_07_005
crossref_primary_10_3389_fmech_2024_1446479
crossref_primary_10_1186_s12909_023_04861_6
crossref_primary_10_1080_15376494_2023_2250782
crossref_primary_10_1039_D1NR04508C
crossref_primary_10_1007_s40964_025_01285_0
crossref_primary_10_1097_SIH_0000000000000509
crossref_primary_10_1002_jbm_b_34517
crossref_primary_10_1002_macp_202400491
crossref_primary_10_1016_j_medengphy_2025_104314
crossref_primary_10_1002_fam_2677
crossref_primary_10_1002_pat_6251
crossref_primary_10_1080_09546634_2019_1638882
crossref_primary_10_1109_TBME_2024_3370263
crossref_primary_10_1145_3593239
crossref_primary_10_1021_acsapm_4c03358
crossref_primary_10_1016_j_hansur_2024_101709
crossref_primary_10_1017_S1431927621012010
crossref_primary_10_1016_j_actbio_2023_02_001
crossref_primary_10_1016_j_cap_2022_04_002
crossref_primary_10_1016_j_jpor_2018_07_005
crossref_primary_10_3390_pharmaceutics13010033
crossref_primary_10_1016_j_mechmat_2023_104559
crossref_primary_10_1016_j_cap_2021_04_003
crossref_primary_10_1016_j_ijbiomac_2023_127641
crossref_primary_10_1016_j_chemosphere_2022_133909
crossref_primary_10_1088_1361_6463_ac1623
crossref_primary_10_1002_mabi_202200323
crossref_primary_10_1002_VIW_20210012
crossref_primary_10_3390_s25030952
crossref_primary_10_1016_j_jmbbm_2024_106651
crossref_primary_10_1016_j_carbpol_2025_123446
crossref_primary_10_3390_s24092847
crossref_primary_10_17977_um038v8i22025p170
crossref_primary_10_1002_advs_202309509
crossref_primary_10_1088_1741_2552_abbd50
crossref_primary_10_1088_1748_3190_accda8
crossref_primary_10_1016_j_bioadv_2023_213659
crossref_primary_10_1016_j_triboint_2016_05_018
crossref_primary_10_1039_D4CC06078D
crossref_primary_10_3390_ma14071807
crossref_primary_10_1111_srt_12419
crossref_primary_10_1007_s40799_018_0255_0
crossref_primary_10_1016_j_carbpol_2019_115014
crossref_primary_10_1177_0954411919864786
crossref_primary_10_1016_j_matdes_2025_114090
crossref_primary_10_1109_TIM_2024_3476597
crossref_primary_10_1016_j_forsciint_2024_112072
crossref_primary_10_1038_srep35289
crossref_primary_10_1016_j_polymertesting_2023_107970
crossref_primary_10_1038_s41598_021_04718_2
crossref_primary_10_1016_j_forsciint_2023_111653
crossref_primary_10_1016_j_eurpolymj_2019_06_004
crossref_primary_10_1038_s41598_021_94018_6
crossref_primary_10_3390_pharmaceutics13030341
crossref_primary_10_3390_beverages11010011
crossref_primary_10_3390_cosmetics12030117
crossref_primary_10_3389_fbioe_2023_1196174
crossref_primary_10_1002_smtd_202500183
crossref_primary_10_1016_j_jmbbm_2023_106090
crossref_primary_10_1177_1099800420941151
crossref_primary_10_1111_exd_14396
crossref_primary_10_1002_mabi_202000195
crossref_primary_10_1111_srt_12424
crossref_primary_10_1007_s10528_021_10114_2
crossref_primary_10_1002_jcp_70006
crossref_primary_10_1007_s13659_025_00509_8
crossref_primary_10_3390_mi13030478
crossref_primary_10_1016_j_biotri_2021_100184
crossref_primary_10_3390_membranes11010026
crossref_primary_10_1007_s11831_023_10003_4
crossref_primary_10_1016_j_jmbbm_2022_105424
crossref_primary_10_1097_DSS_0000000000002522
crossref_primary_10_1007_s12221_019_8603_y
crossref_primary_10_1016_j_biomaterials_2024_122632
crossref_primary_10_3390_app131810105
crossref_primary_10_1002_adhm_202501894
crossref_primary_10_1111_iwj_14056
crossref_primary_10_1080_00450618_2023_2187085
crossref_primary_10_1109_TMECH_2022_3218806
crossref_primary_10_1002_dro2_70029
crossref_primary_10_1002_btm2_10413
crossref_primary_10_1002_admt_202300037
crossref_primary_10_1002_admt_202401616
crossref_primary_10_1017_pds_2021_49
crossref_primary_10_1089_wound_2019_0997
crossref_primary_10_1109_JSEN_2024_3409877
crossref_primary_10_1016_j_jddst_2021_102355
crossref_primary_10_1007_s40544_020_0472_2
crossref_primary_10_3390_nano10040628
crossref_primary_10_7759_cureus_66566
crossref_primary_10_3390_app15169015
crossref_primary_10_1016_j_triboint_2017_01_027
crossref_primary_10_3390_coatings12040436
crossref_primary_10_3390_s22155525
crossref_primary_10_1016_j_ejmp_2025_104987
crossref_primary_10_1111_srt_12926
crossref_primary_10_1111_ics_12773
crossref_primary_10_1111_iwj_13650
crossref_primary_10_1016_j_eurpolymj_2023_112475
crossref_primary_10_3762_bjnano_13_43
crossref_primary_10_1016_j_microc_2022_107973
crossref_primary_10_1371_journal_pone_0248099
crossref_primary_10_1080_00085030_2020_1767855
crossref_primary_10_1002_advs_202400271
crossref_primary_10_1111_srt_13069
crossref_primary_10_1016_j_matlet_2019_06_107
crossref_primary_10_1108_IR_10_2020_0234
crossref_primary_10_1007_s12221_024_00649_7
crossref_primary_10_1016_j_ijbiomac_2025_145467
crossref_primary_10_1002_adhm_202001800
Cites_doi 10.1007/s11249-007-9206-0
10.1177/0040517506053910
10.1109/TMTT.2011.2176746
10.1364/AO.30.004507
10.1016/j.foodhyd.2011.02.007
10.1117/12.477778
10.1088/0967-3334/26/2/011
10.1016/j.forsciint.2012.02.008
10.1364/AO.49.001707
10.1088/0031-9155/43/9/003
10.1007/s11249-011-9854-y
10.1016/j.ultrasmedbio.2004.07.016
10.1016/j.measurement.2012.11.009
10.1177/0040517514542864
10.1016/j.ijimpeng.2004.11.010
10.1039/c0sm01123a
10.3390/s130607902
10.1364/AO.42.003109
10.1117/12.2068500
10.1111/j.1600-0846.2007.00229.x
10.1016/j.forsciint.2003.11.036
10.1259/0007-1285-50-599-814
10.1002/lsm.10151
10.1016/j.ijpharm.2006.07.034
10.1002/jbm.b.32694
10.1002/lsm.1900120510
10.1007/s10103-009-0724-x
10.1111/j.1600-0846.2010.00437.x
10.5254/1.3538382
10.1163/156856107782844783
10.1117/12.2006235
10.1088/0031-9155/55/4/018
10.1351/pac200779101801
10.1002/jps.22257
10.1007/s00484-013-0687-2
10.1111/j.1556-4029.2008.00908.x
10.1007/s11249-009-9411-0
10.1039/C3RA45678A
10.1364/BOE.3.001381
10.1016/j.triboint.2010.12.004
10.1007/s11249-011-9840-4
10.1002/pen.20637
10.1364/OE.14.009770
10.1088/0031-9155/43/11/014
10.1111/sms.12117
10.1016/j.wear.2004.12.026
10.1126/science.1206157
10.1007/978-3-662-08585-1
10.1016/0032-3861(83)90001-0
10.1177/004051759906900306
10.1002/fam.938
10.1098/rsif.2009.0403
10.1016/j.jmbbm.2013.04.024
10.1002/lsm.1044
10.1002/mrm.1910370230
10.1016/j.sna.2012.01.037
10.1109/58.656639
10.1097/00006534-199307000-00028
10.1088/0031-9155/37/4/012
10.1016/j.ijpharm.2008.09.056
10.1016/j.ijpharm.2005.07.005
10.1016/j.jmbbm.2015.02.014
10.1364/OL.33.002263
10.1117/12.881604
10.1007/s12650-011-0074-1
10.1088/0031-9155/42/10/011
10.1088/0031-9155/52/20/N02
10.1016/j.sna.2007.06.007
10.1007/s00339-008-4803-9
10.1007/s11029-011-9192-z
10.1117/12.907109
10.1117/12.228896
10.1117/1.3369003
10.1007/s12024-009-9090-z
10.1016/j.jss.2006.02.016
10.1109/MRA.2012.2184198
10.1016/j.forsciint.2004.06.039
10.1007/s00414-009-0363-6
10.1016/j.jcis.2013.02.026
10.1007/BF02594089
10.1080/09205063.2013.848327
10.1016/j.pmatsci.2006.11.001
10.1111/j.1524-4725.2005.31904
10.1016/j.wear.2006.11.031
10.1007/s12024-007-0029-y
10.1088/0031-9155/52/14/012
10.1111/1523-1747.ep12462031
10.1002/lsm.20124
10.1002/app.1966.070101204
10.3109/9781420003307
10.1088/0967-3334/34/6/723
10.1111/j.1600-0846.2007.00264.x
10.1117/1.2335429
10.1039/c3lc41231h
10.1115/1.1992528
10.1088/0967-3334/29/2/002
10.1088/0031-9155/53/18/010
10.1080/10402004.2010.496068
10.1046/j.0412-5463.2001.00123.x
10.1111/ics.12008
10.1177/004051750007000612
10.1016/j.ijpharm.2006.03.015
ContentType Journal Article
Copyright 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1111/srt.12235
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1600-0846
EndPage 14
ExternalDocumentID 3912968561
26096898
10_1111_srt_12235
SRT12235
ark_67375_WNG_ZC3RP81K_L
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAKAS
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c5625-6b7f4e5900659794f4ed9d3952c2c76231aa3959d76e6c74c93992177cd52a843
IEDL.DBID DRFUL
ISICitedReferencesCount 193
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370302100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0909-752X
1600-0846
IngestDate Sun Sep 28 05:10:28 EDT 2025
Sat Nov 29 14:43:28 EST 2025
Thu Apr 03 07:00:48 EDT 2025
Sat Nov 29 07:51:43 EST 2025
Tue Nov 18 22:17:53 EST 2025
Wed Jan 22 16:27:01 EST 2025
Tue Nov 11 03:32:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords properties of skin
physical skin models
human skin
simulation of skin
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5625-6b7f4e5900659794f4ed9d3952c2c76231aa3959d76e6c74c93992177cd52a843
Notes ark:/67375/WNG-ZC3RP81K-L
istex:D5D6690274B79D5B29081D41EAFF235240DF30E7
ArticleID:SRT12235
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4374-3950
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/srt.12235
PMID 26096898
PQID 1753901732
PQPubID 1106343
PageCount 12
ParticipantIDs proquest_miscellaneous_1754085848
proquest_journals_1753901732
pubmed_primary_26096898
crossref_citationtrail_10_1111_srt_12235
crossref_primary_10_1111_srt_12235
wiley_primary_10_1111_srt_12235_SRT12235
istex_primary_ark_67375_WNG_ZC3RP81K_L
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Copenhagen
PublicationTitle Skin research and technology
PublicationTitleAlternate Skin Res Technol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Pikkula BM, Domankevitz Y, Tunnell JW, Anvari B. Cryogen spray cooling: effects of cryogen film on heat removal and light transmission. Proc Soc Photo Opt Ins 2002; 4609: 50-56.
Bordier C, Andraud C, Charron E, Lafait J, Anastasiadou M, De Martino A. Illustration of a bimodal system in Intralipid-20% by polarized light scattering: experiments and modeling. Appl Phys A Mater 2009; 94: 347-355.
Bhushan B, Wei GH, Haddad P. Friction and wear studies of human hair and skin. Wear 2005; 259: 1012-1021.
Jermann R, Toumiat M, Imfeld D. Development of an in vitro efficacy test for self-tanning formulations. Int J Cosmet Sci 2002; 24: 35-42.
Adams MJ, Briscoe BJ, Johnson SA. Friction and lubrication of human skin. Tribol Lett 2007; 26: 239-253.
Yoo HS, Hu YS, Kim EA. Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Text Res J 2000; 70: 542-549.
Nebuya S, Noshiro M, Brown BH, Smallwood RH, Milnes P. Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes. Physiol Meas 2005; 26: S111-S118.
Bush MA, Miller RG, Bush PJ, Dorion RBJ. Biomechanical factors in human dermal bitemarks in a Cadaver model. J Forensic Sci 2009; 54: 167-176.
Levier RR, Harrison MC, Cook RR, Lane TH. What is silicone. Plast Reconstr Surg 1993; 92: 163-167.
Pravdin AB, Utz SR, Kochubey VI. Physical modeling of human skin optical properties using milk and erythrocytes mixtures. Proc SPIE 1995; 2627 Optical Biopsies: 221-226.
Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011; 100: 59-74.
Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm 2006; 327: 6-11.
Perdekamp MG, Pollak S, Thierauf A, Strassburger E, Hunzinger M, Vennemann B. Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Legal Med 2009; 123: 419-425.
Steenbergen W, de Mul F. Application of a novel laser Doppler tester including a sustainable tissue phantom. Proc SPIE 1998; 3252 Optical Diagnostics of Biological Fluids III: 14-25.
Camenzind MA, Dale DJ, Rossi RM. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard. Fire Mater 2007; 31: 285-295.
Jachowicz J, McMullen R, Prettypaul D. Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Res Technol 2007; 13: 299-309.
Weder M, Brühwiler PA, Laib A. X-ray tomography measurements of the moisture distribution in multilayered clothing systems. Text Res J 2006; 76: 18-26.
Demura K, Morikawa S, Murakami K, Sato K, Shiomi H, Naka S, Kurumi Y, Inubushi T, Tani T. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res 2006; 135: 179-186.
Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm 2006; 318: 49-54.
FIFA. FIFA quality concept for football turf. Handbook of test methods. Zurich: January ed, 2012.
Bait N, Grassl B, Derail C, Benaboura A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 2011; 7: 2025-2032.
Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloid 2011; 25: 1813-1827.
Bir CA, Resslar M, Stewart S. Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int 2012; 220: 126-129.
Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm 2005; 303: 81-87.
Hull EL, Nichols MG, Foster TH. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 1998; 43: 3381-3404.
Cottenden DJ, Cottenden AM. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics*. J Mech Behav Biomed 2013; 28: 410-426.
Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53: 4995-5009.
Colas A, Curtis J. Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine. San Diego: Elsevier Academic Press, 2004: 80-85.
Serup J, Jemec GB, Grove GL. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press, 2006.
Flock ST, Jacques SL, Wilson BC, Star WM, Vangemert MJC. Optical-properties of intralipid - a phantom medium for light-propagation studies. Lasers Surg Med 1992; 12: 510-519.
Aleman J, Chadwick AV, He J et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 2007; 79: 1801-1827.
Shergold OA, Fleck NA. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomech Eng 2005; 127: 838-848.
Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G. A solid tissue phantom for photon migration studies. Phys Med Biol 1997; 42: 1971-1979.
Price BD, Gibson AP, Tan LT, Royle GJ. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Phys Med Biol 2010; 55: 1177-1188.
Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 2012; 100: 1451-1457.
Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF. Stretchable and conformable metal-polymer piezoresistive hybrid system. Sensor Actuators A Phys 2012; 186: 191-197.
Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 2006; 32: 1384-1402.
Renvoise J, Burlot D, Marin G, Derail C. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 2009; 368: 83-88.
Nishidate I, Sasaoka K, Yuasa T, Niizeki K, Maeda T, Aizu Y. Visualizing of skin chromophore concentrations by use of RGB images. Opt Lett 2008; 33: 2263-2265.
Mazzoli A, Munaretto R, Scalise L. Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements. Laser Med Sci 2010; 25: 403-410.
Elleuch K, Elleuch R, Zahouani H. Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym Eng Sci 2006; 46: 1715-1720.
Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. J Biomater Sci Polym Ed 2014; 25: 181-202.
Chahat N, Zhadobov M, Sauleau R, Alekseev SI. New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics. IEEE Trans Microwave Theory 2012; 60: 827-832.
Madsen SJ, Patterson MS, Wilson BC. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys Med Biol 1992; 37: 985-993.
White DR, Martin RJ. Epoxy-resin based tissue substitutes. Br J Radiol 1977; 50: 814-821.
Gabriel C. Tissue equivalent material for hand phantoms. Phys Med Biol 2007; 52: 4205-4210.
Stampfli R, Bruhwiler PA, Rechsteiner I, Meyer VR, Rossi RM. X-ray tomographic investigation of water distribution in textiles under compression - Possibilities for data presentation. Measurement 2013; 46: 1212-1219.
Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 1966; 10: 1837-&.
Mandal S, Song G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Text Res J 2015; 85: 101-112.
Zimmerli T, Weder MS. Protection and comfort - A sweating torso for the simultaneous measurement of protective and comfort properties of PPE. Am Soc Test Mater 1997; 1273: 271-280.
Yudovsky D, Pilon L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 2010; 49: 1707-1719.
Massaro A, Spano F, Missori M, Malvindi MA, Cazzato P, Cingolani R, Athanassioud A. Flexible nanocomposites with all-optical tactile sensing capability. Rsc Adv 2014; 4: 2820-2825.
Allardice JT, Abulafi AM, Webb DG, Williams NS. Standardization of intralipid for light-scattering in clinical photodynamic therapy. Laser Med Sci 1992; 7: 461-465.
Muskopf JW, McCollister SB. Epoxy resins. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 1987.
Agache PG, Humbert P. Measuring the skin: non-invasive investigations, physiology, normal constants. Berlin: Springer, 2004.
Kim JO. Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes. Text Res J 1999; 69: 193-202.
Derler S, Schrade U, Gerhardt LC. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 2007; 263: 1112-1116.
Whittle K, Kieser J, Ichim I, Swain M, Waddell N, Livingstone V, Taylor M. The biomechanical modelling of non-ballistic skin wounding: blunt-force injury. Forensic Sci Med Pathol 2008; 4: 33-39.
Gerhardt LC, Schiller A, Muller B, Spencer ND, Derler S. Fabrication, characterisation and tribological investigation of artificial skin surface lipid films. Tribol Lett 2009; 34: 81-93.
Bjellerup M. Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent. Dermatol Surg 2005; 31: 11
2010; 16
2010; 15
1997; 44
2003; 4960
2006; 32
1997; 42
2014; 25
2014; 24
2008; 33
2007; 79
1992; 7
2004; 30
1997; 1273
2010; 25
2009; 94
2008; 29
2015; 85
1987
1
2009; 123
1995; 2627
1996; 69
2006; 327
2010; 7
1983; 24
2003; 42
2009; 368
2012; 186
2012; 220
2012; 100
2004; 141
2000; 70
1992; 37
2001; 28
2008; 53
1988; 90
2007; 13
2011; 7
2003; 32
2010; 49
2006; 46
1997; 37
2005; 127
2002; 4609
2012; 45
2012; 60
2010; 55
2010; 53
2013; 28
2006; 76
2005; 259
2013; 20
2007; 263
2011; 14
2008; 4
2005; 26
2007; 31
1998; 43
2008; 143
1966; 10
1992; 12
2006; 135
2015; 46
2014; 4
2009; 54
2013; 13
2005; 303
2013; 398
2005; 31
2014; 58
2011; 25
2007; 21
2007; 26
2005; 36
2006; 6084
2011; 333
2005; 150
2006; 318
2012
2013; 46
2006; 11
1991; 30
2006; 14
1999; 69
2008; 14
2006
2004
2007; 52
2009; 34
2012; 3
2013; 35
2013; 34
1993; 92
2002; 24
3590
1977; 50
2011; 44
2009; 5
2011; 47
1969
2011; 100
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
Jindra NM (e_1_2_14_41_1) 2006; 6084
Colas A (e_1_2_14_57_1) 2004
e_1_2_14_107_1
e_1_2_14_103_1
FIFA (e_1_2_14_67_1) 2012
e_1_2_14_85_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_47_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
Zimmerli T (e_1_2_14_99_1) 1997; 1273
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_104_1
Muskopf JW (e_1_2_14_83_1) 1987
e_1_2_14_84_1
Wang FM (e_1_2_14_97_1)
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
Glicksman M (e_1_2_14_21_1) 1969
Pikkula BM (e_1_2_14_86_1) 2002; 4609
e_1_2_14_116_1
Torres JH (e_1_2_14_89_1); 3590
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_101_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_102_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
Steenbergen W (e_1_2_14_48_1)
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_18_1
References_xml – reference: Derler S, Schrade U, Gerhardt LC. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 2007; 263: 1112-1116.
– reference: Kozlov PV, Burdygina GI. The structure and properties of solid gelatin and the principles of their modification. Polymer 1983; 24: 651-666.
– reference: Jindra NM, Figueroa MA, Chavey LJ, Zohner JJ, Rockwell BA. An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom - art. no. 60840D. Optical Interactions with Tissue and Cells XVII 2006; 6084: D840-D840.
– reference: Hall TJ, Bilgen M, Insana MF, Krouskop TA. Phantom materials for elastography. IEEE Trans Ultrason Ferroelec Freq Contr 1997; 44: 1355-1365.
– reference: Birgersson U, Birgersson E, Nicander I, Ollmar S. A methodology for extracting the electrical properties of human skin. Physiol Meas 2013; 34: 723-736.
– reference: Bjellerup M. Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent. Dermatol Surg 2005; 31: 1107-1111.
– reference: Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol 2004; 30: 1419-1422.
– reference: Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm 2005; 303: 81-87.
– reference: Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 2006; 32: 1384-1402.
– reference: Allardice JT, Abulafi AM, Webb DG, Williams NS. Standardization of intralipid for light-scattering in clinical photodynamic therapy. Laser Med Sci 1992; 7: 461-465.
– reference: Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM. Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 2014; 58: 7-15.
– reference: Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloid 2011; 25: 1813-1827.
– reference: Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 2012; 100: 1451-1457.
– reference: Pikkula BM, Domankevitz Y, Tunnell JW, Anvari B. Cryogen spray cooling: effects of cryogen film on heat removal and light transmission. Proc Soc Photo Opt Ins 2002; 4609: 50-56.
– reference: Torres JH, Anvari B, Tanenbaum BS, Milner TE, Yu JC, Nelson JS. Internal temperature measurements in response to cryogen spray cooling of a skin phantom. Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX: 3590: 11-19.
– reference: Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 1998; 43: 2465-2478.
– reference: Derler S, Gerhardt LC. Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin. Tribol Lett 2012; 45: 1-27.
– reference: Jussila J. Preparing ballistic gelatine - review and proposal for a standard method. Forensic Sci Int 2004; 141: 91-98.
– reference: Madsen SJ, Patterson MS, Wilson BC. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys Med Biol 1992; 37: 985-993.
– reference: Bir CA, Resslar M, Stewart S. Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int 2012; 220: 126-129.
– reference: Cottenden DJ, Cottenden AM. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics*. J Mech Behav Biomed 2013; 28: 410-426.
– reference: Mandal S, Song G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Text Res J 2015; 85: 101-112.
– reference: Stampfli R, Bruhwiler PA, Rechsteiner I, Meyer VR, Rossi RM. X-ray tomographic investigation of water distribution in textiles under compression - Possibilities for data presentation. Measurement 2013; 46: 1212-1219.
– reference: Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011; 100: 59-74.
– reference: AbdouSabet S, Puydak RC, Rader CP. Dynamically vulcanized thermoplastic elastomers. Rubber Chem Technol 1996; 69: 476-494.
– reference: Chen S, Bhushan B. Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy. J Colloid Interf Sci 2013; 398: 247-254.
– reference: Morales-Hurtado M, Zeng X, Gonzalez-Rodriguez P, Ten Elshof J, van der Heide E. A new water absorbable mechanical Epidermal skin equivalent: the combination of Hydrophobic PDMS and Hydrophilic PVA Hydrogel. J Mech Behav Biomed 2015; 46: 305-317.
– reference: de Bruin DM, Bremmer RH, Kodach VM, de Kinkelder R, van Marle J, van Leeuwen TG, Faber DJ. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties. J Biomed Opt 2010; 15: 025001-1-025001-10.
– reference: Bordier C, Andraud C, Charron E, Lafait J, Anastasiadou M, De Martino A. Illustration of a bimodal system in Intralipid-20% by polarized light scattering: experiments and modeling. Appl Phys A Mater 2009; 94: 347-355.
– reference: Serup J, Jemec GB, Grove GL. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press, 2006.
– reference: Gibson A, Yusof RM, Dehghani H, Riley J, Everdell N, Richards R, Hebden JC, Schweiger M, Arridge SR, Delpy DT. Optical tomography of a realistic neonatal head phantom. Appl Optics 2003; 42: 3109-3116.
– reference: van Staveren HJ, Moes CJ, van Marie J, Prahl SA, van Gemert MJ. Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl Opt 1991; 30: 4507-4514.
– reference: Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G. A solid tissue phantom for photon migration studies. Phys Med Biol 1997; 42: 1971-1979.
– reference: Lamouche G, Kennedy BF, Kennedy KM, Bisaillon CE, Curatolo A, Campbell G, Pazos V, Sampson DD. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed Opt Express 2012; 3: 1381-1398.
– reference: Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53: 4995-5009.
– reference: Levier RR, Harrison MC, Cook RR, Lane TH. What is silicone. Plast Reconstr Surg 1993; 92: 163-167.
– reference: Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 1966; 10: 1837-&.
– reference: Muskopf JW, McCollister SB. Epoxy resins. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 1987.
– reference: White DR, Martin RJ. Epoxy-resin based tissue substitutes. Br J Radiol 1977; 50: 814-821.
– reference: Adams MJ, Briscoe BJ, Johnson SA. Friction and lubrication of human skin. Tribol Lett 2007; 26: 239-253.
– reference: Guerra C, Schwartz CJ. Development of a synthetic skin simulant platform for the investigation of dermal blistering mechanics. Tribol Lett 2011; 44: 223-228.
– reference: Nishidate I, Sasaoka K, Yuasa T, Niizeki K, Maeda T, Aizu Y. Visualizing of skin chromophore concentrations by use of RGB images. Opt Lett 2008; 33: 2263-2265.
– reference: Kim DH, Lu NS, Ma R et al. Epidermal Electronics. Science 2011; 333: 838-843.
– reference: FIFA. FIFA quality concept for football turf. Handbook of test methods. Zurich: January ed, 2012.
– reference: Hou LL, Hagen J, Wang X, Papautsky I, Naik R, Kelley-Loughnane N, Heikenfeld J. Artificial microfluidic skin for in vitro perspiration simulation and testing. Lab Chip 2013; 13: 1868-1875.
– reference: Gabriel C. Tissue equivalent material for hand phantoms. Phys Med Biol 2007; 52: 4205-4210.
– reference: Weder M, Brühwiler PA, Laib A. X-ray tomography measurements of the moisture distribution in multilayered clothing systems. Text Res J 2006; 76: 18-26.
– reference: Edris A, Choi B, Aguilar G, Nelson JS. Measurements of laser light attenuation following cryogen spray cooling spurt termination. Laser Surg Med 2003; 32: 143-147.
– reference: Jussila J, Leppaniemi A, Paronen M, Kulomaki E. Ballistic skin simulant. Forensic Sci Int 2005; 150: 63-71.
– reference: Elleuch K, Elleuch R, Zahouani H. Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym Eng Sci 2006; 46: 1715-1720.
– reference: Wang F, Annaheim S, Morrissey M, Rossi R. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand J Med Sci Spor 2014; 24: e129-e139.
– reference: Agache PG, Humbert P. Measuring the skin: non-invasive investigations, physiology, normal constants. Berlin: Springer, 2004.
– reference: Nebuya S, Noshiro M, Brown BH, Smallwood RH, Milnes P. Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes. Physiol Meas 2005; 26: S111-S118.
– reference: Bond JR, Barry BW. Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human-skin. J Invest Dermatol 1988; 90: 810-813.
– reference: Koehler MJ, Vogel T, Elsner P, König K, Bückle R, Kaatz M. In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography. Skin Res Technol 2010; 16: 259-264.
– reference: Colas A, Curtis J. Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine. San Diego: Elsevier Academic Press, 2004: 80-85.
– reference: Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 2007; 52: 915-1015.
– reference: Shergold OA, Fleck NA. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomech Eng 2005; 127: 838-848.
– reference: Renvoise J, Burlot D, Marin G, Derail C. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 2009; 368: 83-88.
– reference: Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm 2006; 318: 49-54.
– reference: Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm 2006; 327: 6-11.
– reference: Jermann R, Toumiat M, Imfeld D. Development of an in vitro efficacy test for self-tanning formulations. Int J Cosmet Sci 2002; 24: 35-42.
– reference: Nishidate I, Maeda T, Niizeki K, Aizu Y. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method. Sensors-Basel 2013; 13: 7902-7915.
– reference: Tomimoto M. The frictional pattern of tactile sensations in anthropomorphic fingertip. Tribol Int 2011; 44: 1340-1347.
– reference: Massaro A, Spano F, Missori M, Malvindi MA, Cazzato P, Cingolani R, Athanassioud A. Flexible nanocomposites with all-optical tactile sensing capability. Rsc Adv 2014; 4: 2820-2825.
– reference: Chahat N, Zhadobov M, Sauleau R, Alekseev SI. New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics. IEEE Trans Microwave Theory 2012; 60: 827-832.
– reference: Chu KC, Rutt BK. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magnet Reson Med 1997; 37: 314-319.
– reference: Kim JO. Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes. Text Res J 1999; 69: 193-202.
– reference: Price BD, Gibson AP, Tan LT, Royle GJ. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Phys Med Biol 2010; 55: 1177-1188.
– reference: Demura K, Morikawa S, Murakami K, Sato K, Shiomi H, Naka S, Kurumi Y, Inubushi T, Tani T. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res 2006; 135: 179-186.
– reference: Bush MA, Miller RG, Bush PJ, Dorion RBJ. Biomechanical factors in human dermal bitemarks in a Cadaver model. J Forensic Sci 2009; 54: 167-176.
– reference: Pogue BW, Patterson MS. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 2006; 11: 041102-1-041102-16.
– reference: Yudovsky D, Pilon L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 2010; 49: 1707-1719.
– reference: Hwang HY. Piezoelectric particle-reinforced polyurethane for tactile sensing robot skin. Mech Compos Mater 2011; 47: 137-144.
– reference: Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7: 229-258.
– reference: Lualdi M, Colombo A, Farina B, Tomatis S, Marchesini R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med 2001; 28: 237-243.
– reference: Bhushan B, Wei GH, Haddad P. Friction and wear studies of human hair and skin. Wear 2005; 259: 1012-1021.
– reference: Zell K, Sperl JI, Vogel MW, Niessner R, Haisch C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys Med Biol 2007; 52: N475-N484.
– reference: Maiden N. Historical overview of wound ballistics research. Forensic Sci Med Pat 2009; 5: 85-89.
– reference: Manohar S, Kharine A, van Hespen JCG, Steenbergen W, de Mul FFM, van Leeuwen TG. Photoacoustic imaging of inhomogeneities embedded in breast tissue phantoms. Proc SPIE 2003; 4960 Biomedical Optoacoustics IV: 64-75.
– reference: Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF. Stretchable and conformable metal-polymer piezoresistive hybrid system. Sensor Actuators A Phys 2012; 186: 191-197.
– reference: Kirkpatrick SJ, Wang RK, Duncan DD, Kulesz-Martin M, Lee K. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt Express 2006; 14: 9770-9779.
– reference: Hull EL, Nichols MG, Foster TH. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 1998; 43: 3381-3404.
– reference: Aleman J, Chadwick AV, He J et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 2007; 79: 1801-1827.
– reference: Gerhardt LC, Schiller A, Muller B, Spencer ND, Derler S. Fabrication, characterisation and tribological investigation of artificial skin surface lipid films. Tribol Lett 2009; 34: 81-93.
– reference: Zimmerli T, Weder MS. Protection and comfort - A sweating torso for the simultaneous measurement of protective and comfort properties of PPE. Am Soc Test Mater 1997; 1273: 271-280.
– reference: Yoo HS, Hu YS, Kim EA. Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Text Res J 2000; 70: 542-549.
– reference: Lir I, Haber M, Dodiuk-Kenig H. Skin surface model material as a substrate for adhesion-to-skin testing. J Adhes Sci Technol 2007; 21: 1497-1512.
– reference: Cho J, Byun H, Lee S, Kim JK. Temperature distribution in deep tissue phantom during laser irradiation at 1,064 nm measured by thermocouples and thermal imaging technique. J Visual-Japan 2011; 14: 265-272.
– reference: Perdekamp MG, Pollak S, Thierauf A, Strassburger E, Hunzinger M, Vennemann B. Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Legal Med 2009; 123: 419-425.
– reference: Mazzoli A, Munaretto R, Scalise L. Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements. Laser Med Sci 2010; 25: 403-410.
– reference: Steenbergen W, de Mul F. Application of a novel laser Doppler tester including a sustainable tissue phantom. Proc SPIE 1998; 3252 Optical Diagnostics of Biological Fluids III: 14-25.
– reference: Pravdin AB, Utz SR, Kochubey VI. Physical modeling of human skin optical properties using milk and erythrocytes mixtures. Proc SPIE 1995; 2627 Optical Biopsies: 221-226.
– reference: Whittle K, Kieser J, Ichim I, Swain M, Waddell N, Livingstone V, Taylor M. The biomechanical modelling of non-ballistic skin wounding: blunt-force injury. Forensic Sci Med Pathol 2008; 4: 33-39.
– reference: Glicksman M. Gum technology in the food industry. New York: Academic Press, 1969.
– reference: Nakatani M, Fukuda T, Sasamoto H, Arakawa N, Otaka H, Kawasoe T, Omata S. Relationship between perceived softness of bilayered skin models and their mechanical properties measured with a dual-sensor probe. Int J Cosmet Sci 2013; 35: 84-88.
– reference: Bait N, Grassl B, Derail C, Benaboura A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 2011; 7: 2025-2032.
– reference: Massaro A, Spano F, Cazzato P, La Tegola C, Cingolani R, Athanassiou A. Robot tactile sensing gold nanocomposites as highly sensitive real-time optical pressure sensors. IEEE Robot Autom Mag 2013; 20: 82-90.
– reference: Psikuta A, Richards M, Fiala D. Single-sector thermophysiological human simulator. Physiol Meas 2008; 29: 181-192.
– reference: Gerhardt LC, Mattle N, Schrade GU, Spencer ND, Derler S. Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements. Skin Res Technol 2008; 14: 77-88.
– reference: Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. J Biomater Sci Polym Ed 2014; 25: 181-202.
– reference: Van Der Heide E, Lossie CM, Van Bommel KJC, Reinders SAF, Lenting HBM. Experimental investigation of a polymer coating in sliding contact with skin-equivalent silicone rubber in an aqueous environment. Tribol Trans 2010; 53: 842-847.
– reference: Ramirez-San-Juan JC, Aguilar G, Tuqan AT, Kelly KM, Nelson JS. Skin model surface temperatures during single and multiple cryogen spurts used in laser dermatologic surgery. Lasers Surg Med 2005; 36: 141-146.
– reference: Flock ST, Jacques SL, Wilson BC, Star WM, Vangemert MJC. Optical-properties of intralipid - a phantom medium for light-propagation studies. Lasers Surg Med 1992; 12: 510-519.
– reference: Jachowicz J, McMullen R, Prettypaul D. Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Res Technol 2007; 13: 299-309.
– reference: Camenzind MA, Dale DJ, Rossi RM. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard. Fire Mater 2007; 31: 285-295.
– reference: Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis. Sensor Actuators A Phys 2008; 143: 20-28.
– volume: 44
  start-page: 223
  year: 2011
  end-page: 228
  article-title: Development of a synthetic skin simulant platform for the investigation of dermal blistering mechanics
  publication-title: Tribol Lett
– volume: 4
  start-page: 2820
  year: 2014
  end-page: 2825
  article-title: Flexible nanocomposites with all‐optical tactile sensing capability
  publication-title: Rsc Adv
– volume: 100
  start-page: 1451
  year: 2012
  end-page: 1457
  article-title: A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications
  publication-title: J Biomed Mater Res, Part B
– start-page: 78980Z‐1
  end-page: 78980Z‐11
– volume: 7
  start-page: 2025
  year: 2011
  end-page: 2032
  article-title: Hydrogel nanocomposites as pressure‐sensitive adhesives for skin‐contact applications
  publication-title: Soft Matter
– volume: 12
  start-page: 510
  year: 1992
  end-page: 519
  article-title: Optical‐properties of intralipid ‐ a phantom medium for light‐propagation studies
  publication-title: Lasers Surg Med
– volume: 79
  start-page: 1801
  year: 2007
  end-page: 1827
  article-title: Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic‐organic hybrid materials (IUPAC Recommendations 2007)
  publication-title: Pure Appl Chem
– volume: 13
  start-page: 7902
  year: 2013
  end-page: 7915
  article-title: Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method
  publication-title: Sensors‐Basel
– volume: 318
  start-page: 49
  year: 2006
  end-page: 54
  article-title: Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro
  publication-title: Int J Pharm
– volume: 333
  start-page: 838
  year: 2011
  end-page: 843
  article-title: Epidermal Electronics
  publication-title: Science
– volume: 42
  start-page: 3109
  year: 2003
  end-page: 3116
  article-title: Optical tomography of a realistic neonatal head phantom
  publication-title: Appl Optics
– volume: 4609
  start-page: 50
  year: 2002
  end-page: 56
  article-title: Cryogen spray cooling: effects of cryogen film on heat removal and light transmission
  publication-title: Proc Soc Photo Opt Ins
– volume: 85
  start-page: 101
  year: 2015
  end-page: 112
  article-title: Thermal sensors for performance evaluation of protective clothing against heat and fire: a review
  publication-title: Text Res J
– volume: 29
  start-page: 181
  year: 2008
  end-page: 192
  article-title: Single‐sector thermophysiological human simulator
  publication-title: Physiol Meas
– volume: 3
  start-page: 1381
  year: 2012
  end-page: 1398
  article-title: Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography
  publication-title: Biomed Opt Express
– volume: 46
  start-page: 305
  year: 2015
  end-page: 317
  article-title: A new water absorbable mechanical Epidermal skin equivalent: the combination of Hydrophobic PDMS and Hydrophilic PVA Hydrogel
  publication-title: J Mech Behav Biomed
– volume: 35
  start-page: 84
  year: 2013
  end-page: 88
  article-title: Relationship between perceived softness of bilayered skin models and their mechanical properties measured with a dual‐sensor probe
  publication-title: Int J Cosmet Sci
– volume: 49
  start-page: 1707
  year: 2010
  end-page: 1719
  article-title: Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance
  publication-title: Appl Opt
– volume: 135
  start-page: 179
  year: 2006
  end-page: 186
  article-title: An easy‐to‐use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies
  publication-title: J Surg Res
– volume: 58
  start-page: 7
  year: 2014
  end-page: 15
  article-title: Prediction of human core body temperature using non‐invasive measurement methods
  publication-title: Int J Biometeorol
– volume: 150
  start-page: 63
  year: 2005
  end-page: 71
  article-title: Ballistic skin simulant
  publication-title: Forensic Sci Int
– volume: 55
  start-page: 1177
  year: 2010
  end-page: 1188
  article-title: An elastically compressible phantom material with mechanical and x‐ray attenuation properties equivalent to breast tissue
  publication-title: Phys Med Biol
– volume: 30
  start-page: 1419
  year: 2004
  end-page: 1422
  article-title: Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound
  publication-title: Ultrasound Med Biol
– year: 1969
– start-page: 858412‐1
  end-page: 858412‐9
– start-page: 80
  year: 2004
  end-page: 85
– volume: 92
  start-page: 163
  year: 1993
  end-page: 167
  article-title: What is silicone
  publication-title: Plast Reconstr Surg
– volume: 15
  start-page: 025001‐1
  year: 2010
  end-page: 025001‐10
  article-title: Optical phantoms of varying geometry based on thin building blocks with controlled optical properties
  publication-title: J Biomed Opt
– volume: 1273
  start-page: 271
  year: 1997
  end-page: 280
  article-title: Protection and comfort ‐ A sweating torso for the simultaneous measurement of protective and comfort properties of PPE
  publication-title: Am Soc Test Mater
– volume: 7
  start-page: 229
  year: 2010
  end-page: 258
  article-title: A review of tissue‐engineered skin bioconstructs available for skin reconstruction
  publication-title: J R Soc Interface
– volume: 123
  start-page: 419
  year: 2009
  end-page: 425
  article-title: Experimental simulation of reentry shots using a skin‐gelatine composite model
  publication-title: Int J Legal Med
– volume: 13
  start-page: 299
  year: 2007
  end-page: 309
  article-title: Indentometric analysis of in vivo skin and comparison with artificial skin models
  publication-title: Skin Res Technol
– volume: 70
  start-page: 542
  year: 2000
  end-page: 549
  article-title: Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model
  publication-title: Text Res J
– start-page: 82291J‐1
  end-page: 82291J‐7
– volume: 220
  start-page: 126
  year: 2012
  end-page: 129
  article-title: Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions
  publication-title: Forensic Sci Int
– volume: 368
  start-page: 83
  year: 2009
  end-page: 88
  article-title: Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin
  publication-title: Int J Pharm
– volume: 303
  start-page: 81
  year: 2005
  end-page: 87
  article-title: Assessment of drug permeability distributions in two different model skins
  publication-title: Int J Pharm
– volume: 4960
  start-page: 64
  year: 2003
  end-page: 75
  article-title: Photoacoustic imaging of inhomogeneities embedded in breast tissue phantoms
  publication-title: Proc SPIE
– volume: 32
  start-page: 143
  year: 2003
  end-page: 147
  article-title: Measurements of laser light attenuation following cryogen spray cooling spurt termination
  publication-title: Laser Surg Med
– volume: 25
  start-page: 403
  year: 2010
  end-page: 410
  article-title: Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements
  publication-title: Laser Med Sci
– volume: 26
  start-page: S111
  year: 2005
  end-page: S118
  article-title: Detection of emboli in vessels using electrical impedance measurements ‐ phantom and electrodes
  publication-title: Physiol Meas
– volume: 3590
  start-page: 11
  end-page: 19
  article-title: Internal temperature measurements in response to cryogen spray cooling of a skin phantom
  publication-title: Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX:
– volume: 54
  start-page: 167
  year: 2009
  end-page: 176
  article-title: Biomechanical factors in human dermal bitemarks in a Cadaver model
  publication-title: J Forensic Sci
– year: 1987
– volume: 100
  start-page: 59
  year: 2011
  end-page: 74
  article-title: A review of three‐dimensional in vitro tissue models for drug discovery and transport studies
  publication-title: J Pharm Sci
– volume: 28
  start-page: 410
  year: 2013
  end-page: 426
  article-title: A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics*
  publication-title: J Mech Behav Biomed
– volume: 4
  start-page: 33
  year: 2008
  end-page: 39
  article-title: The biomechanical modelling of non‐ballistic skin wounding: blunt‐force injury
  publication-title: Forensic Sci Med Pathol
– volume: 141
  start-page: 91
  year: 2004
  end-page: 98
  article-title: Preparing ballistic gelatine ‐ review and proposal for a standard method
  publication-title: Forensic Sci Int
– volume: 30
  start-page: 4507
  year: 1991
  end-page: 4514
  article-title: Light scattering in Intralipid‐10% in the wavelength range of 400‐1100 nm
  publication-title: Appl Opt
– volume: 31
  start-page: 285
  year: 2007
  end-page: 295
  article-title: Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard
  publication-title: Fire Mater
– volume: 6084
  start-page: D840
  year: 2006
  end-page: D840
  article-title: An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom ‐ art. no. 60840D
  publication-title: Optical Interactions with Tissue and Cells XVII
– volume: 52
  start-page: 4205
  year: 2007
  end-page: 4210
  article-title: Tissue equivalent material for hand phantoms
  publication-title: Phys Med Biol
– volume: 34
  start-page: 723
  year: 2013
  end-page: 736
  article-title: A methodology for extracting the electrical properties of human skin
  publication-title: Physiol Meas
– volume: 33
  start-page: 2263
  year: 2008
  end-page: 2265
  article-title: Visualizing of skin chromophore concentrations by use of RGB images
  publication-title: Opt Lett
– volume: 36
  start-page: 141
  year: 2005
  end-page: 146
  article-title: Skin model surface temperatures during single and multiple cryogen spurts used in laser dermatologic surgery
  publication-title: Lasers Surg Med
– volume: 259
  start-page: 1012
  year: 2005
  end-page: 1021
  article-title: Friction and wear studies of human hair and skin
  publication-title: Wear
– volume: 327
  start-page: 6
  year: 2006
  end-page: 11
  article-title: The study of drug permeation through natural membranes
  publication-title: Int J Pharm
– volume: 5
  start-page: 85
  year: 2009
  end-page: 89
  article-title: Historical overview of wound ballistics research
  publication-title: Forensic Sci Med Pat
– volume: 42
  start-page: 1971
  year: 1997
  end-page: 1979
  article-title: A solid tissue phantom for photon migration studies
  publication-title: Phys Med Biol
– volume: 43
  start-page: 3381
  year: 1998
  end-page: 3404
  article-title: Quantitative broadband near‐infrared spectroscopy of tissue‐simulating phantoms containing erythrocytes
  publication-title: Phys Med Biol
– volume: 52
  start-page: N475
  year: 2007
  end-page: N484
  article-title: Acoustical properties of selected tissue phantom materials for ultrasound imaging
  publication-title: Phys Med Biol
– start-page: 14
  end-page: 25
  article-title: Application of a novel laser Doppler tester including a sustainable tissue phantom
  publication-title: Proc SPIE 1998
– volume: 11
  start-page: 041102‐1
  year: 2006
  end-page: 041102‐16
  article-title: Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry
  publication-title: J Biomed Opt
– start-page: 92820H‐1
  end-page: 92820H‐7
– volume: 20
  start-page: 82
  year: 2013
  end-page: 90
  article-title: Robot tactile sensing gold nanocomposites as highly sensitive real‐time optical pressure sensors
  publication-title: IEEE Robot Autom Mag
– volume: 25
  start-page: 181
  year: 2014
  end-page: 202
  article-title: Producing homogeneous cryogel phantoms for medical imaging: a finite‐element approach
  publication-title: J Biomater Sci Polym Ed
– volume: 37
  start-page: 314
  year: 1997
  end-page: 319
  article-title: Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity
  publication-title: Magnet Reson Med
– volume: 43
  start-page: 2465
  year: 1998
  end-page: 2478
  article-title: Near‐infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique
  publication-title: Phys Med Biol
– volume: 44
  start-page: 1355
  year: 1997
  end-page: 1365
  article-title: Phantom materials for elastography
  publication-title: IEEE Trans Ultrason Ferroelec Freq Contr
– volume: 24
  start-page: 651
  year: 1983
  end-page: 666
  article-title: The structure and properties of solid gelatin and the principles of their modification
  publication-title: Polymer
– volume: 21
  start-page: 1497
  year: 2007
  end-page: 1512
  article-title: Skin surface model material as a substrate for adhesion‐to‐skin testing
  publication-title: J Adhes Sci Technol
– volume: 52
  start-page: 915
  year: 2007
  end-page: 1015
  article-title: Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers
  publication-title: Prog Mater Sci
– volume: 14
  start-page: 265
  year: 2011
  end-page: 272
  article-title: Temperature distribution in deep tissue phantom during laser irradiation at 1,064 nm measured by thermocouples and thermal imaging technique
  publication-title: J Visual‐Japan
– volume: 24
  start-page: e129
  year: 2014
  end-page: e139
  article-title: Real evaporative cooling efficiency of one‐layer tight‐fitting sportswear in a hot environment
  publication-title: Scand J Med Sci Spor
– volume: 53
  start-page: 4995
  year: 2008
  end-page: 5009
  article-title: Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation
  publication-title: Phys Med Biol
– volume: 186
  start-page: 191
  year: 2012
  end-page: 197
  article-title: Stretchable and conformable metal‐polymer piezoresistive hybrid system
  publication-title: Sensor Actuators A Phys
– volume: 45
  start-page: 1
  year: 2012
  end-page: 27
  article-title: Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin
  publication-title: Tribol Lett
– volume: 69
  start-page: 193
  year: 1999
  end-page: 202
  article-title: Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes
  publication-title: Text Res J
– volume: 69
  start-page: 476
  year: 1996
  end-page: 494
  article-title: Dynamically vulcanized thermoplastic elastomers
  publication-title: Rubber Chem Technol
– volume: 34
  start-page: 81
  year: 2009
  end-page: 93
  article-title: Fabrication, characterisation and tribological investigation of artificial skin surface lipid films
  publication-title: Tribol Lett
– volume: 25
  start-page: 1813
  year: 2011
  end-page: 1827
  article-title: Functional and bioactive properties of collagen and gelatin from alternative sources: a review
  publication-title: Food Hydrocolloid
– year: 2004
– volume: 94
  start-page: 347
  year: 2009
  end-page: 355
  article-title: Illustration of a bimodal system in Intralipid‐20% by polarized light scattering: experiments and modeling
  publication-title: Appl Phys A Mater
– volume: 26
  start-page: 239
  year: 2007
  end-page: 253
  article-title: Friction and lubrication of human skin
  publication-title: Tribol Lett
– volume: 76
  start-page: 18
  year: 2006
  end-page: 26
  article-title: X‐ray tomography measurements of the moisture distribution in multilayered clothing systems
  publication-title: Text Res J
– volume: 44
  start-page: 1340
  year: 2011
  end-page: 1347
  article-title: The frictional pattern of tactile sensations in anthropomorphic fingertip
  publication-title: Tribol Int
– volume: 16
  start-page: 259
  year: 2010
  end-page: 264
  article-title: In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography
  publication-title: Skin Res Technol
– volume: 10
  start-page: 1837‐&
  year: 1966
  article-title: Properties of linear elastomeric polyurethanes
  publication-title: J Appl Polym Sci
– volume: 50
  start-page: 814
  year: 1977
  end-page: 821
  article-title: Epoxy‐resin based tissue substitutes
  publication-title: Br J Radiol
– volume: 53
  start-page: 842
  year: 2010
  end-page: 847
  article-title: Experimental investigation of a polymer coating in sliding contact with skin‐equivalent silicone rubber in an aqueous environment
  publication-title: Tribol Trans
– volume: 263
  start-page: 1112
  year: 2007
  end-page: 1116
  article-title: Tribology of human skin and mechanical skin equivalents in contact with textiles
  publication-title: Wear
– volume: 46
  start-page: 1212
  year: 2013
  end-page: 1219
  article-title: X‐ray tomographic investigation of water distribution in textiles under compression ‐ Possibilities for data presentation
  publication-title: Measurement
– volume: 60
  start-page: 827
  year: 2012
  end-page: 832
  article-title: New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics
  publication-title: IEEE Trans Microwave Theory
– volume: 143
  start-page: 20
  year: 2008
  end-page: 28
  article-title: Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis
  publication-title: Sensor Actuators A Phys
– volume: 13
  start-page: 1868
  year: 2013
  end-page: 1875
  article-title: Artificial microfluidic skin for in vitro perspiration simulation and testing
  publication-title: Lab Chip
– volume: 127
  start-page: 838
  year: 2005
  end-page: 848
  article-title: Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin
  publication-title: J Biomech Eng
– volume: 14
  start-page: 9770
  year: 2006
  end-page: 9779
  article-title: Imaging the mechanical stiffness of skin lesions by in vivo acousto‐optical elastography
  publication-title: Opt Express
– volume: 7
  start-page: 461
  year: 1992
  end-page: 465
  article-title: Standardization of intralipid for light‐scattering in clinical photodynamic therapy
  publication-title: Laser Med Sci
– volume: 28
  start-page: 237
  year: 2001
  end-page: 243
  article-title: A phantom with tissue‐like optical properties in the visible and near infrared for use in photomedicine
  publication-title: Lasers Surg Med
– volume: 47
  start-page: 137
  year: 2011
  end-page: 144
  article-title: Piezoelectric particle‐reinforced polyurethane for tactile sensing robot skin
  publication-title: Mech Compos Mater
– volume: 90
  start-page: 810
  year: 1988
  end-page: 813
  article-title: Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human‐skin
  publication-title: J Invest Dermatol
– volume: 14
  start-page: 77
  year: 2008
  end-page: 88
  article-title: Study of skin‐fabric interactions of relevance to decubitus: friction and contact‐pressure measurements
  publication-title: Skin Res Technol
– volume: 37
  start-page: 985
  year: 1992
  end-page: 993
  article-title: The use of India ink as an optical absorber in tissue‐simulating phantoms
  publication-title: Phys Med Biol
– year: 2012
– volume: 32
  start-page: 1384
  year: 2006
  end-page: 1402
  article-title: The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates
  publication-title: Int J Impact Eng
– volume: 46
  start-page: 1715
  year: 2006
  end-page: 1720
  article-title: Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests
  publication-title: Polym Eng Sci
– volume: 31
  start-page: 1107
  year: 2005
  end-page: 1111
  article-title: Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent
  publication-title: Dermatol Surg
– year: 2006
– volume: 398
  start-page: 247
  year: 2013
  end-page: 254
  article-title: Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy
  publication-title: J Colloid Interf Sci
– volume: 2627
  start-page: 221
  year: 1995
  end-page: 226
  article-title: Physical modeling of human skin optical properties using milk and erythrocytes mixtures
  publication-title: Proc SPIE
– volume: 24
  start-page: 35
  year: 2002
  end-page: 42
  article-title: Development of an in vitro efficacy test for self‐tanning formulations
  publication-title: Int J Cosmet Sci
– volume: 1
  start-page: 301
  end-page: 305
– volume: 3590
  start-page: 11
  ident: e_1_2_14_89_1
  article-title: Internal temperature measurements in response to cryogen spray cooling of a skin phantom
  publication-title: Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX:
– ident: e_1_2_14_6_1
  doi: 10.1007/s11249-007-9206-0
– ident: e_1_2_14_106_1
  doi: 10.1177/0040517506053910
– ident: e_1_2_14_33_1
  doi: 10.1109/TMTT.2011.2176746
– ident: e_1_2_14_115_1
  doi: 10.1364/AO.30.004507
– start-page: 301
  volume-title: J Fiber Bioeng Inform 2009
  ident: e_1_2_14_97_1
– start-page: 14
  ident: e_1_2_14_48_1
  article-title: Application of a novel laser Doppler tester including a sustainable tissue phantom
  publication-title: Proc SPIE 1998
– ident: e_1_2_14_22_1
  doi: 10.1016/j.foodhyd.2011.02.007
– ident: e_1_2_14_50_1
  doi: 10.1117/12.477778
– ident: e_1_2_14_34_1
  doi: 10.1088/0967-3334/26/2/011
– ident: e_1_2_14_24_1
  doi: 10.1016/j.forsciint.2012.02.008
– ident: e_1_2_14_12_1
  doi: 10.1364/AO.49.001707
– ident: e_1_2_14_93_1
  doi: 10.1088/0031-9155/43/9/003
– ident: e_1_2_14_5_1
  doi: 10.1007/s11249-011-9854-y
– ident: e_1_2_14_103_1
  doi: 10.1016/j.ultrasmedbio.2004.07.016
– ident: e_1_2_14_105_1
  doi: 10.1016/j.measurement.2012.11.009
– volume: 1273
  start-page: 271
  year: 1997
  ident: e_1_2_14_99_1
  article-title: Protection and comfort ‐ A sweating torso for the simultaneous measurement of protective and comfort properties of PPE
  publication-title: Am Soc Test Mater
– ident: e_1_2_14_87_1
  doi: 10.1177/0040517514542864
– start-page: 80
  volume-title: Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine
  year: 2004
  ident: e_1_2_14_57_1
– ident: e_1_2_14_3_1
  doi: 10.1016/j.ijimpeng.2004.11.010
– ident: e_1_2_14_31_1
  doi: 10.1039/c0sm01123a
– ident: e_1_2_14_37_1
  doi: 10.3390/s130607902
– ident: e_1_2_14_92_1
  doi: 10.1364/AO.42.003109
– ident: e_1_2_14_112_1
  doi: 10.1117/12.2068500
– ident: e_1_2_14_55_1
  doi: 10.1111/j.1600-0846.2007.00229.x
– ident: e_1_2_14_23_1
  doi: 10.1016/j.forsciint.2003.11.036
– ident: e_1_2_14_84_1
  doi: 10.1259/0007-1285-50-599-814
– ident: e_1_2_14_85_1
  doi: 10.1002/lsm.10151
– ident: e_1_2_14_104_1
  doi: 10.1016/j.ijpharm.2006.07.034
– ident: e_1_2_14_42_1
  doi: 10.1002/jbm.b.32694
– ident: e_1_2_14_18_1
  doi: 10.1002/lsm.1900120510
– ident: e_1_2_14_47_1
  doi: 10.1007/s10103-009-0724-x
– ident: e_1_2_14_13_1
  doi: 10.1111/j.1600-0846.2010.00437.x
– ident: e_1_2_14_54_1
  doi: 10.5254/1.3538382
– ident: e_1_2_14_102_1
  doi: 10.1163/156856107782844783
– ident: e_1_2_14_36_1
  doi: 10.1117/12.2006235
– volume-title: Epoxy resins. Ullmann's encyclopedia of industrial chemistry
  year: 1987
  ident: e_1_2_14_83_1
– ident: e_1_2_14_46_1
  doi: 10.1088/0031-9155/55/4/018
– ident: e_1_2_14_53_1
  doi: 10.1351/pac200779101801
– volume: 4609
  start-page: 50
  year: 2002
  ident: e_1_2_14_86_1
  article-title: Cryogen spray cooling: effects of cryogen film on heat removal and light transmission
  publication-title: Proc Soc Photo Opt Ins
– ident: e_1_2_14_9_1
  doi: 10.1002/jps.22257
– ident: e_1_2_14_81_1
  doi: 10.1007/s00484-013-0687-2
– ident: e_1_2_14_4_1
  doi: 10.1111/j.1556-4029.2008.00908.x
– ident: e_1_2_14_76_1
  doi: 10.1007/s11249-009-9411-0
– ident: e_1_2_14_109_1
  doi: 10.1039/C3RA45678A
– ident: e_1_2_14_45_1
  doi: 10.1364/BOE.3.001381
– ident: e_1_2_14_64_1
  doi: 10.1016/j.triboint.2010.12.004
– ident: e_1_2_14_68_1
  doi: 10.1007/s11249-011-9840-4
– ident: e_1_2_14_73_1
  doi: 10.1002/pen.20637
– volume-title: Gum technology in the food industry
  year: 1969
  ident: e_1_2_14_21_1
– ident: e_1_2_14_49_1
  doi: 10.1364/OE.14.009770
– ident: e_1_2_14_15_1
  doi: 10.1088/0031-9155/43/11/014
– ident: e_1_2_14_100_1
  doi: 10.1111/sms.12117
– ident: e_1_2_14_74_1
  doi: 10.1016/j.wear.2004.12.026
– ident: e_1_2_14_52_1
  doi: 10.1126/science.1206157
– ident: e_1_2_14_11_1
  doi: 10.1007/978-3-662-08585-1
– ident: e_1_2_14_20_1
  doi: 10.1016/0032-3861(83)90001-0
– ident: e_1_2_14_98_1
  doi: 10.1177/004051759906900306
– ident: e_1_2_14_88_1
  doi: 10.1002/fam.938
– ident: e_1_2_14_8_1
  doi: 10.1098/rsif.2009.0403
– ident: e_1_2_14_75_1
  doi: 10.1016/j.jmbbm.2013.04.024
– volume: 6084
  start-page: D840
  year: 2006
  ident: e_1_2_14_41_1
  article-title: An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom ‐ art. no. 60840D
  publication-title: Optical Interactions with Tissue and Cells XVII
– volume-title: FIFA quality concept for football turf. Handbook of test methods
  year: 2012
  ident: e_1_2_14_67_1
– ident: e_1_2_14_19_1
  doi: 10.1002/lsm.1044
– ident: e_1_2_14_43_1
  doi: 10.1002/mrm.1910370230
– ident: e_1_2_14_116_1
  doi: 10.1016/j.sna.2012.01.037
– ident: e_1_2_14_27_1
  doi: 10.1109/58.656639
– ident: e_1_2_14_56_1
  doi: 10.1097/00006534-199307000-00028
– ident: e_1_2_14_17_1
  doi: 10.1088/0031-9155/37/4/012
– ident: e_1_2_14_30_1
  doi: 10.1016/j.ijpharm.2008.09.056
– ident: e_1_2_14_61_1
  doi: 10.1016/j.ijpharm.2005.07.005
– ident: e_1_2_14_65_1
  doi: 10.1016/j.jmbbm.2015.02.014
– ident: e_1_2_14_38_1
  doi: 10.1364/OL.33.002263
– ident: e_1_2_14_91_1
  doi: 10.1117/12.881604
– ident: e_1_2_14_39_1
  doi: 10.1007/s12650-011-0074-1
– ident: e_1_2_14_32_1
  doi: 10.1088/0031-9155/42/10/011
– ident: e_1_2_14_35_1
  doi: 10.1088/0031-9155/52/20/N02
– ident: e_1_2_14_62_1
  doi: 10.1016/j.sna.2007.06.007
– ident: e_1_2_14_114_1
  doi: 10.1007/s00339-008-4803-9
– ident: e_1_2_14_70_1
  doi: 10.1007/s11029-011-9192-z
– ident: e_1_2_14_82_1
  doi: 10.1117/12.907109
– ident: e_1_2_14_101_1
– ident: e_1_2_14_16_1
  doi: 10.1117/12.228896
– ident: e_1_2_14_110_1
  doi: 10.1117/1.3369003
– ident: e_1_2_14_7_1
  doi: 10.1007/s12024-009-9090-z
– ident: e_1_2_14_40_1
  doi: 10.1016/j.jss.2006.02.016
– ident: e_1_2_14_108_1
  doi: 10.1109/MRA.2012.2184198
– ident: e_1_2_14_25_1
  doi: 10.1016/j.forsciint.2004.06.039
– ident: e_1_2_14_26_1
  doi: 10.1007/s00414-009-0363-6
– ident: e_1_2_14_29_1
  doi: 10.1016/j.jcis.2013.02.026
– ident: e_1_2_14_69_1
– ident: e_1_2_14_94_1
– ident: e_1_2_14_113_1
  doi: 10.1007/BF02594089
– ident: e_1_2_14_44_1
  doi: 10.1080/09205063.2013.848327
– ident: e_1_2_14_71_1
  doi: 10.1016/j.pmatsci.2006.11.001
– ident: e_1_2_14_78_1
  doi: 10.1111/j.1524-4725.2005.31904
– ident: e_1_2_14_58_1
  doi: 10.1016/j.wear.2006.11.031
– ident: e_1_2_14_80_1
  doi: 10.1007/s12024-007-0029-y
– ident: e_1_2_14_59_1
  doi: 10.1088/0031-9155/52/14/012
– ident: e_1_2_14_2_1
  doi: 10.1111/1523-1747.ep12462031
– ident: e_1_2_14_90_1
  doi: 10.1002/lsm.20124
– ident: e_1_2_14_72_1
  doi: 10.1002/app.1966.070101204
– ident: e_1_2_14_10_1
  doi: 10.3109/9781420003307
– ident: e_1_2_14_14_1
  doi: 10.1088/0967-3334/34/6/723
– ident: e_1_2_14_77_1
  doi: 10.1111/j.1600-0846.2007.00264.x
– ident: e_1_2_14_51_1
  doi: 10.1117/1.2335429
– ident: e_1_2_14_107_1
  doi: 10.1039/c3lc41231h
– ident: e_1_2_14_63_1
  doi: 10.1115/1.1992528
– ident: e_1_2_14_96_1
  doi: 10.1088/0967-3334/29/2/002
– ident: e_1_2_14_111_1
  doi: 10.1088/0031-9155/53/18/010
– ident: e_1_2_14_66_1
  doi: 10.1080/10402004.2010.496068
– ident: e_1_2_14_28_1
  doi: 10.1046/j.0412-5463.2001.00123.x
– ident: e_1_2_14_79_1
  doi: 10.1111/ics.12008
– ident: e_1_2_14_95_1
  doi: 10.1177/004051750007000612
– ident: e_1_2_14_60_1
  doi: 10.1016/j.ijpharm.2006.03.015
SSID ssj0005913
Score 2.5225232
SecondaryResourceType review_article
Snippet Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more...
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and...
Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Animals
Bandages
Biomimetic Materials - chemistry
human skin
Measurement techniques
Physical properties
physical skin models
properties of skin
simulation of skin
Skin - cytology
Skin Physiological Phenomena
Skin, Artificial
Tissue Engineering - methods
Wound Healing - physiology
Title Materials used to simulate physical properties of human skin
URI https://api.istex.fr/ark:/67375/WNG-ZC3RP81K-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12235
https://www.ncbi.nlm.nih.gov/pubmed/26096898
https://www.proquest.com/docview/1753901732
https://www.proquest.com/docview/1754085848
Volume 22
WOSCitedRecordID wos000370302100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_0rpT2Qa22umollVJ82eJ-ZJOgL6Jeheoh54mHLyGXzcKh7h27e8U_3ySbWxVOEPq2IbNsmI_MTDL7G4CfGVORyAjzA6x0ghJEsS-wkn4aKCzokGKcpLbZBOl26WDALhfgYPYvTI0P0Ry4Gcuw-7UxcDEsXxh5WVS_A-3c8CK0Q623uAXtk17n-vy5woPV3ZHZPvMJDgcOWMgU8jQvv3JHbcPZx3mx5uvQ1fqezvJ_rXoFllzIiY5qHfkCCypfhc8vgAhX4eOFu2Jfg8MLUdVaiaalSlE1RuXowTT5UmjihIom5gi_MFisaJwh2-cPlXej_Ctcd077x2e-a7HgS5P5-MmQZLEynUMTnVmwWA9SlkYMhzKUep-MAiH0iKUkUYkksWQGyDYgRKY4FDSOvkErH-dqAxAmTKh9qTPGUJqojCZDxTIdsAgqZKKwB3szTnPp8MdNG4x7PstDNG-45Y0Huw3ppAbdmEf0y4qroRDFnalSI5jfdP_w2-Ood0mDv_zcg-2ZPLkz0JIbgFIdCpEo9OBHM61Ny9yXiFyNp5bG4L_RmHqwXutB8zGdBrKEMj2zZ8X99jr5Va9vHzbfT7oFn3Rg5qrDt6FVFVP1HT7If9WoLHZgkQzojtP2J-JX_oU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFbHtgY_BRsYAgxDaS9Dy4diW9oIGZWhtNZVOVLxYruNI1SCtkhTx5-Nz3LBJQ0LiLZYvinUf9t358juAN4UwiSqYCCNqbIASJWmoqNFhHhmq-IxTmuWu2QQbjfh0Ki424GT9L0yLD9El3NAy3H6NBo4J6WtWXlfNu8iebvQO9FKrRla_ex_G_cvBnxIP0bZHFsciZDSeemQhrOTpXr5xHvWQtb9uczZv-q7u8Ok_-L9lP4T73ukk71steQQbptyFnWtQhLtwb-gv2R_DyVA1rV6SVW1y0ixIPf-Bbb4MWXqxkiUm8StEYyWLgrhOf6S-mpdP4LL_cXJ6FvomC6HG2CfMZqxIDfYOzWxsIVI7yEWeCBrrWNudMomUsiORs8xkmqVaIJRtxJjOaax4muzBZrkozVMglAlljrWNGWONfhnPZkYU1mVRXOnM0ACO1qyW2iOQYyOM73IdiVjeSMebAF53pMsWduM2ordOXh2Fqq6wTo1R-XX0SX47TcYXPDqXgwAO1wKV3kRriRCl1hliSRzAq27aGhfemKjSLFaOBhHgeMoD2G8VofuYDQRFxoWdOXLy_vs65ZfxxD0c_DvpS9g6mwwHcvB5dP4Mtq2b5mvFD2GzqVbmOdzVP5t5Xb3wSv8bJOEBnA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLZq2By6DscAAgxDaS6bl4tiW9oI2CmhdVZVNVLxYruNI1UZaJSni5-PjuGGThoTEWyyfKNa52OfYzvcBvCuESVTBRBhRYwuUKElDRY0O88hQxWec0ix3ZBNsNOLTqRhvwPH6X5gWH6LbcMPIcPM1BrhZ5sWNKK-r5jCyqxu9B_0USWR60D-dDC6Hf654iJYeWRyJkNF46pGF8CZP9_Kt9aiPqv11V7J5O3d1i8_g4f8N-xE88Ekn-dB6yWPYMOUObN-AItyBzXN_yP4Ejs9V0_olWdUmJ82C1PMfSPNlyNKblSxxE79CNFayKIhj-iP11bx8CpeDjxcnn0NPshBqrH3CbMaK1CB3aGZrC5HaRi7yRNBYx9rOlEmklG2JnGUm0yzVAqFsI8Z0TmPF02QXeuWiNHtAKBPKHGlbM8Ya8zKezYwobMqiuNKZoQEcrFUttUcgRyKMa7muRKxupNNNAG870WULu3GX0Htnr05CVVd4T41R-W30SX4_SSZjHp3JYQD7a4NKH6K1RIhSmwyxJA7gTddtgwtPTFRpFisngwhwPOUBPGsdofuYLQRFxoXtOXD2_vs45dfJhXt4_u-ir2FzfDqQwy-jsxewZbM0f1V8H3pNtTIv4b7-2czr6pX3-d-tJQEX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+used+to+simulate+physical+properties+of+human+skin&rft.jtitle=Skin+research+and+technology&rft.au=D%C4%85browska%2C+A.+K.&rft.au=Rotaru%2C+G.%E2%80%90M.&rft.au=Derler%2C+S.&rft.au=Spano%2C+F.&rft.date=2016-02-01&rft.issn=0909-752X&rft.eissn=1600-0846&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1111%2Fsrt.12235&rft.externalDBID=10.1111%252Fsrt.12235&rft.externalDocID=SRT12235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon