Materials used to simulate physical properties of human skin
Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of hu...
Uloženo v:
| Vydáno v: | Skin research and technology Ročník 22; číslo 1; s. 3 - 14 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.02.2016
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 0909-752X, 1600-0846, 1600-0846 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.
Purpose
This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin–material interactions.
Methods
The literature databases Web of Science, PubMed and Google Scholar were searched using the terms ‘skin model’, ‘skin phantom’, ‘skin equivalent’, ‘synthetic skin’, ‘skin substitute’, ‘artificial skin’, ‘skin replica’, and ‘skin model substrate.’ Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.
Results
It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano‐ and micro‐fillers can be incorporated in the skin models to tune their physical properties.
Conclusion
While numerous physical skin models have been reported, most developments are research field‐specific and based on trial‐and‐error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. |
|---|---|
| AbstractList | Background
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.
Purpose
This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin–material interactions.
Methods
The literature databases Web of Science, PubMed and Google Scholar were searched using the terms ‘skin model’, ‘skin phantom’, ‘skin equivalent’, ‘synthetic skin’, ‘skin substitute’, ‘artificial skin’, ‘skin replica’, and ‘skin model substrate.’ Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.
Results
It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano‐ and micro‐fillers can be incorporated in the skin models to tune their physical properties.
Conclusion
While numerous physical skin models have been reported, most developments are research field‐specific and based on trial‐and‐error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. Purpose This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. Methods The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. Results It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. Conclusion While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.BACKGROUNDFor many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained.This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions.PURPOSEThis article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions.The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.METHODSThe literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed.It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties.RESULTSIt was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties.While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin.CONCLUSIONWhile numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. |
| Author | Stämpfli, R. Spano, F. Camenzind, M. Rotaru, G.-M. Rossi, R. M. Dąbrowska, A. K. Derler, S. Annaheim, S. Schmid, M. |
| Author_xml | – sequence: 1 givenname: A. K. surname: Dąbrowska fullname: Dąbrowska, A. K. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 2 givenname: G.-M. surname: Rotaru fullname: Rotaru, G.-M. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 3 givenname: S. surname: Derler fullname: Derler, S. email: siegfried.derler@empa.ch organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 4 givenname: F. surname: Spano fullname: Spano, F. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 5 givenname: M. surname: Camenzind fullname: Camenzind, M. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 6 givenname: S. surname: Annaheim fullname: Annaheim, S. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 7 givenname: R. surname: Stämpfli fullname: Stämpfli, R. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 8 givenname: M. surname: Schmid fullname: Schmid, M. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland – sequence: 9 givenname: R. M. surname: Rossi fullname: Rossi, R. M. organization: Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26096898$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kMtKAzEUhoMotlUXvoAMuNHF2FwmyQTcSPGG9YIXFDchZlKaOpeaZNC-vdG2LkSzCefwfT-HvwdW66Y2AGwjeIDi63sXDhDGhK6ALmIQpjDP2CroQgFFyil-6oCe9xMIIRWIrIMOZlCwXORdcHipgnFWlT5pvSmS0CTeVm0Zt8l0PPNWqzKZumZqXLDGJ80oGbeVqhP_autNsDaKptla_Bvg4eT4fnCWDq9PzwdHw1RThmnKXvgoM1RAyKjgIotDIQoiKNZYc4YJUipOouDMMM0zLYgQGHGuC4pVnpENsDfPjYe8tcYHWVmvTVmq2jStl4jTDOY0z_KI7v5CJ03r6njdF0UERJzgSO0sqPalMoWcOlspN5PLXiLQnwPaNd47M5LaBhVsUwenbCkRlF_Ny9i8_G4-Gvu_jGXoX-wi_d2WZvY_KO9u75dGOjesD-bjx1DuVTJOOJWPV6fyeUBub3J0IYfkE753nxY |
| CitedBy_id | crossref_primary_10_1002_admi_201800635 crossref_primary_10_1109_TOH_2021_3076052 crossref_primary_10_1155_2023_5589845 crossref_primary_10_1007_s13346_021_00897_7 crossref_primary_10_1002_smll_201805453 crossref_primary_10_1007_s42235_021_0031_1 crossref_primary_10_1177_09544062231209824 crossref_primary_10_2147_CWCMR_S284180 crossref_primary_10_1016_j_ijbiomac_2024_137142 crossref_primary_10_1016_j_irbm_2025_100904 crossref_primary_10_1016_j_scijus_2021_12_006 crossref_primary_10_1145_3678504 crossref_primary_10_1016_j_eml_2019_100479 crossref_primary_10_1186_s40494_021_00636_8 crossref_primary_10_1002_lsm_23279 crossref_primary_10_1109_JSEN_2020_2997293 crossref_primary_10_1088_1361_6463_ab1119 crossref_primary_10_1002_advs_202308560 crossref_primary_10_1007_s10570_020_03215_5 crossref_primary_10_1016_j_optlaseng_2021_106823 crossref_primary_10_1016_j_cis_2021_102383 crossref_primary_10_1016_j_progpolymsci_2025_101934 crossref_primary_10_1016_j_jddst_2024_105887 crossref_primary_10_1128_spectrum_00892_23 crossref_primary_10_1016_j_ajic_2021_10_040 crossref_primary_10_1155_2023_5588525 crossref_primary_10_1111_ics_13004 crossref_primary_10_1088_1361_6439_ad1e36 crossref_primary_10_3390_s25164974 crossref_primary_10_1002_admt_202101364 crossref_primary_10_1109_TBME_2020_3024632 crossref_primary_10_1088_1757_899X_888_1_012065 crossref_primary_10_1016_j_eml_2021_101299 crossref_primary_10_1002_adma_202204168 crossref_primary_10_1016_j_heliyon_2024_e25395 crossref_primary_10_1109_ACCESS_2025_3547230 crossref_primary_10_1063_5_0093301 crossref_primary_10_1515_teme_2017_0113 crossref_primary_10_7759_cureus_68477 crossref_primary_10_3390_jmmp9020063 crossref_primary_10_3390_molecules30030664 crossref_primary_10_1016_j_scijus_2022_02_008 crossref_primary_10_1002_cnm_3591 crossref_primary_10_1016_j_heliyon_2023_e16228 crossref_primary_10_1002_advs_202309006 crossref_primary_10_1016_j_ejpb_2020_07_005 crossref_primary_10_3389_fmech_2024_1446479 crossref_primary_10_1186_s12909_023_04861_6 crossref_primary_10_1080_15376494_2023_2250782 crossref_primary_10_1039_D1NR04508C crossref_primary_10_1007_s40964_025_01285_0 crossref_primary_10_1097_SIH_0000000000000509 crossref_primary_10_1002_jbm_b_34517 crossref_primary_10_1002_macp_202400491 crossref_primary_10_1016_j_medengphy_2025_104314 crossref_primary_10_1002_fam_2677 crossref_primary_10_1002_pat_6251 crossref_primary_10_1080_09546634_2019_1638882 crossref_primary_10_1109_TBME_2024_3370263 crossref_primary_10_1145_3593239 crossref_primary_10_1021_acsapm_4c03358 crossref_primary_10_1016_j_hansur_2024_101709 crossref_primary_10_1017_S1431927621012010 crossref_primary_10_1016_j_actbio_2023_02_001 crossref_primary_10_1016_j_cap_2022_04_002 crossref_primary_10_1016_j_jpor_2018_07_005 crossref_primary_10_3390_pharmaceutics13010033 crossref_primary_10_1016_j_mechmat_2023_104559 crossref_primary_10_1016_j_cap_2021_04_003 crossref_primary_10_1016_j_ijbiomac_2023_127641 crossref_primary_10_1016_j_chemosphere_2022_133909 crossref_primary_10_1088_1361_6463_ac1623 crossref_primary_10_1002_mabi_202200323 crossref_primary_10_1002_VIW_20210012 crossref_primary_10_3390_s25030952 crossref_primary_10_1016_j_jmbbm_2024_106651 crossref_primary_10_1016_j_carbpol_2025_123446 crossref_primary_10_3390_s24092847 crossref_primary_10_17977_um038v8i22025p170 crossref_primary_10_1002_advs_202309509 crossref_primary_10_1088_1741_2552_abbd50 crossref_primary_10_1088_1748_3190_accda8 crossref_primary_10_1016_j_bioadv_2023_213659 crossref_primary_10_1016_j_triboint_2016_05_018 crossref_primary_10_1039_D4CC06078D crossref_primary_10_3390_ma14071807 crossref_primary_10_1111_srt_12419 crossref_primary_10_1007_s40799_018_0255_0 crossref_primary_10_1016_j_carbpol_2019_115014 crossref_primary_10_1177_0954411919864786 crossref_primary_10_1016_j_matdes_2025_114090 crossref_primary_10_1109_TIM_2024_3476597 crossref_primary_10_1016_j_forsciint_2024_112072 crossref_primary_10_1038_srep35289 crossref_primary_10_1016_j_polymertesting_2023_107970 crossref_primary_10_1038_s41598_021_04718_2 crossref_primary_10_1016_j_forsciint_2023_111653 crossref_primary_10_1016_j_eurpolymj_2019_06_004 crossref_primary_10_1038_s41598_021_94018_6 crossref_primary_10_3390_pharmaceutics13030341 crossref_primary_10_3390_beverages11010011 crossref_primary_10_3390_cosmetics12030117 crossref_primary_10_3389_fbioe_2023_1196174 crossref_primary_10_1002_smtd_202500183 crossref_primary_10_1016_j_jmbbm_2023_106090 crossref_primary_10_1177_1099800420941151 crossref_primary_10_1111_exd_14396 crossref_primary_10_1002_mabi_202000195 crossref_primary_10_1111_srt_12424 crossref_primary_10_1007_s10528_021_10114_2 crossref_primary_10_1002_jcp_70006 crossref_primary_10_1007_s13659_025_00509_8 crossref_primary_10_3390_mi13030478 crossref_primary_10_1016_j_biotri_2021_100184 crossref_primary_10_3390_membranes11010026 crossref_primary_10_1007_s11831_023_10003_4 crossref_primary_10_1016_j_jmbbm_2022_105424 crossref_primary_10_1097_DSS_0000000000002522 crossref_primary_10_1007_s12221_019_8603_y crossref_primary_10_1016_j_biomaterials_2024_122632 crossref_primary_10_3390_app131810105 crossref_primary_10_1002_adhm_202501894 crossref_primary_10_1111_iwj_14056 crossref_primary_10_1080_00450618_2023_2187085 crossref_primary_10_1109_TMECH_2022_3218806 crossref_primary_10_1002_dro2_70029 crossref_primary_10_1002_btm2_10413 crossref_primary_10_1002_admt_202300037 crossref_primary_10_1002_admt_202401616 crossref_primary_10_1017_pds_2021_49 crossref_primary_10_1089_wound_2019_0997 crossref_primary_10_1109_JSEN_2024_3409877 crossref_primary_10_1016_j_jddst_2021_102355 crossref_primary_10_1007_s40544_020_0472_2 crossref_primary_10_3390_nano10040628 crossref_primary_10_7759_cureus_66566 crossref_primary_10_3390_app15169015 crossref_primary_10_1016_j_triboint_2017_01_027 crossref_primary_10_3390_coatings12040436 crossref_primary_10_3390_s22155525 crossref_primary_10_1016_j_ejmp_2025_104987 crossref_primary_10_1111_srt_12926 crossref_primary_10_1111_ics_12773 crossref_primary_10_1111_iwj_13650 crossref_primary_10_1016_j_eurpolymj_2023_112475 crossref_primary_10_3762_bjnano_13_43 crossref_primary_10_1016_j_microc_2022_107973 crossref_primary_10_1371_journal_pone_0248099 crossref_primary_10_1080_00085030_2020_1767855 crossref_primary_10_1002_advs_202400271 crossref_primary_10_1111_srt_13069 crossref_primary_10_1016_j_matlet_2019_06_107 crossref_primary_10_1108_IR_10_2020_0234 crossref_primary_10_1007_s12221_024_00649_7 crossref_primary_10_1016_j_ijbiomac_2025_145467 crossref_primary_10_1002_adhm_202001800 |
| Cites_doi | 10.1007/s11249-007-9206-0 10.1177/0040517506053910 10.1109/TMTT.2011.2176746 10.1364/AO.30.004507 10.1016/j.foodhyd.2011.02.007 10.1117/12.477778 10.1088/0967-3334/26/2/011 10.1016/j.forsciint.2012.02.008 10.1364/AO.49.001707 10.1088/0031-9155/43/9/003 10.1007/s11249-011-9854-y 10.1016/j.ultrasmedbio.2004.07.016 10.1016/j.measurement.2012.11.009 10.1177/0040517514542864 10.1016/j.ijimpeng.2004.11.010 10.1039/c0sm01123a 10.3390/s130607902 10.1364/AO.42.003109 10.1117/12.2068500 10.1111/j.1600-0846.2007.00229.x 10.1016/j.forsciint.2003.11.036 10.1259/0007-1285-50-599-814 10.1002/lsm.10151 10.1016/j.ijpharm.2006.07.034 10.1002/jbm.b.32694 10.1002/lsm.1900120510 10.1007/s10103-009-0724-x 10.1111/j.1600-0846.2010.00437.x 10.5254/1.3538382 10.1163/156856107782844783 10.1117/12.2006235 10.1088/0031-9155/55/4/018 10.1351/pac200779101801 10.1002/jps.22257 10.1007/s00484-013-0687-2 10.1111/j.1556-4029.2008.00908.x 10.1007/s11249-009-9411-0 10.1039/C3RA45678A 10.1364/BOE.3.001381 10.1016/j.triboint.2010.12.004 10.1007/s11249-011-9840-4 10.1002/pen.20637 10.1364/OE.14.009770 10.1088/0031-9155/43/11/014 10.1111/sms.12117 10.1016/j.wear.2004.12.026 10.1126/science.1206157 10.1007/978-3-662-08585-1 10.1016/0032-3861(83)90001-0 10.1177/004051759906900306 10.1002/fam.938 10.1098/rsif.2009.0403 10.1016/j.jmbbm.2013.04.024 10.1002/lsm.1044 10.1002/mrm.1910370230 10.1016/j.sna.2012.01.037 10.1109/58.656639 10.1097/00006534-199307000-00028 10.1088/0031-9155/37/4/012 10.1016/j.ijpharm.2008.09.056 10.1016/j.ijpharm.2005.07.005 10.1016/j.jmbbm.2015.02.014 10.1364/OL.33.002263 10.1117/12.881604 10.1007/s12650-011-0074-1 10.1088/0031-9155/42/10/011 10.1088/0031-9155/52/20/N02 10.1016/j.sna.2007.06.007 10.1007/s00339-008-4803-9 10.1007/s11029-011-9192-z 10.1117/12.907109 10.1117/12.228896 10.1117/1.3369003 10.1007/s12024-009-9090-z 10.1016/j.jss.2006.02.016 10.1109/MRA.2012.2184198 10.1016/j.forsciint.2004.06.039 10.1007/s00414-009-0363-6 10.1016/j.jcis.2013.02.026 10.1007/BF02594089 10.1080/09205063.2013.848327 10.1016/j.pmatsci.2006.11.001 10.1111/j.1524-4725.2005.31904 10.1016/j.wear.2006.11.031 10.1007/s12024-007-0029-y 10.1088/0031-9155/52/14/012 10.1111/1523-1747.ep12462031 10.1002/lsm.20124 10.1002/app.1966.070101204 10.3109/9781420003307 10.1088/0967-3334/34/6/723 10.1111/j.1600-0846.2007.00264.x 10.1117/1.2335429 10.1039/c3lc41231h 10.1115/1.1992528 10.1088/0967-3334/29/2/002 10.1088/0031-9155/53/18/010 10.1080/10402004.2010.496068 10.1046/j.0412-5463.2001.00123.x 10.1111/ics.12008 10.1177/004051750007000612 10.1016/j.ijpharm.2006.03.015 |
| ContentType | Journal Article |
| Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| DOI | 10.1111/srt.12235 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1600-0846 |
| EndPage | 14 |
| ExternalDocumentID | 3912968561 26096898 10_1111_srt_12235 SRT12235 ark_67375_WNG_ZC3RP81K_L |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 31~ 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAKAS AAMMB AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACGFS ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADPDF ADXAS ADZCM ADZMN AEFGJ AEGXH AEIMD AENEX AFBPY AFEBI AFGKR AFKRA AFRAH AFZJQ AGQPQ AGXDD AHEFC AHMBA AIACR AIDQK AIDYY AIQQE AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 CAG CCPQU COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PHGZM PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT 33P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c5625-6b7f4e5900659794f4ed9d3952c2c76231aa3959d76e6c74c93992177cd52a843 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 193 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370302100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0909-752X 1600-0846 |
| IngestDate | Sun Sep 28 05:10:28 EDT 2025 Sat Nov 29 14:43:28 EST 2025 Thu Apr 03 07:00:48 EDT 2025 Sat Nov 29 07:51:43 EST 2025 Tue Nov 18 22:17:53 EST 2025 Wed Jan 22 16:27:01 EST 2025 Tue Nov 11 03:32:47 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | properties of skin physical skin models human skin simulation of skin |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5625-6b7f4e5900659794f4ed9d3952c2c76231aa3959d76e6c74c93992177cd52a843 |
| Notes | ark:/67375/WNG-ZC3RP81K-L istex:D5D6690274B79D5B29081D41EAFF235240DF30E7 ArticleID:SRT12235 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4374-3950 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/srt.12235 |
| PMID | 26096898 |
| PQID | 1753901732 |
| PQPubID | 1106343 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1754085848 proquest_journals_1753901732 pubmed_primary_26096898 crossref_citationtrail_10_1111_srt_12235 crossref_primary_10_1111_srt_12235 wiley_primary_10_1111_srt_12235_SRT12235 istex_primary_ark_67375_WNG_ZC3RP81K_L |
| PublicationCentury | 2000 |
| PublicationDate | February 2016 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Copenhagen |
| PublicationTitle | Skin research and technology |
| PublicationTitleAlternate | Skin Res Technol |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
| References | Pikkula BM, Domankevitz Y, Tunnell JW, Anvari B. Cryogen spray cooling: effects of cryogen film on heat removal and light transmission. Proc Soc Photo Opt Ins 2002; 4609: 50-56. Bordier C, Andraud C, Charron E, Lafait J, Anastasiadou M, De Martino A. Illustration of a bimodal system in Intralipid-20% by polarized light scattering: experiments and modeling. Appl Phys A Mater 2009; 94: 347-355. Bhushan B, Wei GH, Haddad P. Friction and wear studies of human hair and skin. Wear 2005; 259: 1012-1021. Jermann R, Toumiat M, Imfeld D. Development of an in vitro efficacy test for self-tanning formulations. Int J Cosmet Sci 2002; 24: 35-42. Adams MJ, Briscoe BJ, Johnson SA. Friction and lubrication of human skin. Tribol Lett 2007; 26: 239-253. Yoo HS, Hu YS, Kim EA. Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Text Res J 2000; 70: 542-549. Nebuya S, Noshiro M, Brown BH, Smallwood RH, Milnes P. Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes. Physiol Meas 2005; 26: S111-S118. Bush MA, Miller RG, Bush PJ, Dorion RBJ. Biomechanical factors in human dermal bitemarks in a Cadaver model. J Forensic Sci 2009; 54: 167-176. Levier RR, Harrison MC, Cook RR, Lane TH. What is silicone. Plast Reconstr Surg 1993; 92: 163-167. Pravdin AB, Utz SR, Kochubey VI. Physical modeling of human skin optical properties using milk and erythrocytes mixtures. Proc SPIE 1995; 2627 Optical Biopsies: 221-226. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011; 100: 59-74. Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm 2006; 327: 6-11. Perdekamp MG, Pollak S, Thierauf A, Strassburger E, Hunzinger M, Vennemann B. Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Legal Med 2009; 123: 419-425. Steenbergen W, de Mul F. Application of a novel laser Doppler tester including a sustainable tissue phantom. Proc SPIE 1998; 3252 Optical Diagnostics of Biological Fluids III: 14-25. Camenzind MA, Dale DJ, Rossi RM. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard. Fire Mater 2007; 31: 285-295. Jachowicz J, McMullen R, Prettypaul D. Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Res Technol 2007; 13: 299-309. Weder M, Brühwiler PA, Laib A. X-ray tomography measurements of the moisture distribution in multilayered clothing systems. Text Res J 2006; 76: 18-26. Demura K, Morikawa S, Murakami K, Sato K, Shiomi H, Naka S, Kurumi Y, Inubushi T, Tani T. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res 2006; 135: 179-186. Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm 2006; 318: 49-54. FIFA. FIFA quality concept for football turf. Handbook of test methods. Zurich: January ed, 2012. Bait N, Grassl B, Derail C, Benaboura A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 2011; 7: 2025-2032. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloid 2011; 25: 1813-1827. Bir CA, Resslar M, Stewart S. Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int 2012; 220: 126-129. Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm 2005; 303: 81-87. Hull EL, Nichols MG, Foster TH. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 1998; 43: 3381-3404. Cottenden DJ, Cottenden AM. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics*. J Mech Behav Biomed 2013; 28: 410-426. Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53: 4995-5009. Colas A, Curtis J. Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine. San Diego: Elsevier Academic Press, 2004: 80-85. Serup J, Jemec GB, Grove GL. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press, 2006. Flock ST, Jacques SL, Wilson BC, Star WM, Vangemert MJC. Optical-properties of intralipid - a phantom medium for light-propagation studies. Lasers Surg Med 1992; 12: 510-519. Aleman J, Chadwick AV, He J et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 2007; 79: 1801-1827. Shergold OA, Fleck NA. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomech Eng 2005; 127: 838-848. Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G. A solid tissue phantom for photon migration studies. Phys Med Biol 1997; 42: 1971-1979. Price BD, Gibson AP, Tan LT, Royle GJ. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Phys Med Biol 2010; 55: 1177-1188. Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 2012; 100: 1451-1457. Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF. Stretchable and conformable metal-polymer piezoresistive hybrid system. Sensor Actuators A Phys 2012; 186: 191-197. Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 2006; 32: 1384-1402. Renvoise J, Burlot D, Marin G, Derail C. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 2009; 368: 83-88. Nishidate I, Sasaoka K, Yuasa T, Niizeki K, Maeda T, Aizu Y. Visualizing of skin chromophore concentrations by use of RGB images. Opt Lett 2008; 33: 2263-2265. Mazzoli A, Munaretto R, Scalise L. Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements. Laser Med Sci 2010; 25: 403-410. Elleuch K, Elleuch R, Zahouani H. Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym Eng Sci 2006; 46: 1715-1720. Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. J Biomater Sci Polym Ed 2014; 25: 181-202. Chahat N, Zhadobov M, Sauleau R, Alekseev SI. New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics. IEEE Trans Microwave Theory 2012; 60: 827-832. Madsen SJ, Patterson MS, Wilson BC. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys Med Biol 1992; 37: 985-993. White DR, Martin RJ. Epoxy-resin based tissue substitutes. Br J Radiol 1977; 50: 814-821. Gabriel C. Tissue equivalent material for hand phantoms. Phys Med Biol 2007; 52: 4205-4210. Stampfli R, Bruhwiler PA, Rechsteiner I, Meyer VR, Rossi RM. X-ray tomographic investigation of water distribution in textiles under compression - Possibilities for data presentation. Measurement 2013; 46: 1212-1219. Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 1966; 10: 1837-&. Mandal S, Song G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Text Res J 2015; 85: 101-112. Zimmerli T, Weder MS. Protection and comfort - A sweating torso for the simultaneous measurement of protective and comfort properties of PPE. Am Soc Test Mater 1997; 1273: 271-280. Yudovsky D, Pilon L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 2010; 49: 1707-1719. Massaro A, Spano F, Missori M, Malvindi MA, Cazzato P, Cingolani R, Athanassioud A. Flexible nanocomposites with all-optical tactile sensing capability. Rsc Adv 2014; 4: 2820-2825. Allardice JT, Abulafi AM, Webb DG, Williams NS. Standardization of intralipid for light-scattering in clinical photodynamic therapy. Laser Med Sci 1992; 7: 461-465. Muskopf JW, McCollister SB. Epoxy resins. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 1987. Agache PG, Humbert P. Measuring the skin: non-invasive investigations, physiology, normal constants. Berlin: Springer, 2004. Kim JO. Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes. Text Res J 1999; 69: 193-202. Derler S, Schrade U, Gerhardt LC. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 2007; 263: 1112-1116. Whittle K, Kieser J, Ichim I, Swain M, Waddell N, Livingstone V, Taylor M. The biomechanical modelling of non-ballistic skin wounding: blunt-force injury. Forensic Sci Med Pathol 2008; 4: 33-39. Gerhardt LC, Schiller A, Muller B, Spencer ND, Derler S. Fabrication, characterisation and tribological investigation of artificial skin surface lipid films. Tribol Lett 2009; 34: 81-93. Bjellerup M. Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent. Dermatol Surg 2005; 31: 11 2010; 16 2010; 15 1997; 44 2003; 4960 2006; 32 1997; 42 2014; 25 2014; 24 2008; 33 2007; 79 1992; 7 2004; 30 1997; 1273 2010; 25 2009; 94 2008; 29 2015; 85 1987 1 2009; 123 1995; 2627 1996; 69 2006; 327 2010; 7 1983; 24 2003; 42 2009; 368 2012; 186 2012; 220 2012; 100 2004; 141 2000; 70 1992; 37 2001; 28 2008; 53 1988; 90 2007; 13 2011; 7 2003; 32 2010; 49 2006; 46 1997; 37 2005; 127 2002; 4609 2012; 45 2012; 60 2010; 55 2010; 53 2013; 28 2006; 76 2005; 259 2013; 20 2007; 263 2011; 14 2008; 4 2005; 26 2007; 31 1998; 43 2008; 143 1966; 10 1992; 12 2006; 135 2015; 46 2014; 4 2009; 54 2013; 13 2005; 303 2013; 398 2005; 31 2014; 58 2011; 25 2007; 21 2007; 26 2005; 36 2006; 6084 2011; 333 2005; 150 2006; 318 2012 2013; 46 2006; 11 1991; 30 2006; 14 1999; 69 2008; 14 2006 2004 2007; 52 2009; 34 2012; 3 2013; 35 2013; 34 1993; 92 2002; 24 3590 1977; 50 2011; 44 2009; 5 2011; 47 1969 2011; 100 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 Jindra NM (e_1_2_14_41_1) 2006; 6084 Colas A (e_1_2_14_57_1) 2004 e_1_2_14_107_1 e_1_2_14_103_1 FIFA (e_1_2_14_67_1) 2012 e_1_2_14_85_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_47_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 Zimmerli T (e_1_2_14_99_1) 1997; 1273 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_104_1 Muskopf JW (e_1_2_14_83_1) 1987 e_1_2_14_84_1 Wang FM (e_1_2_14_97_1) e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 Glicksman M (e_1_2_14_21_1) 1969 Pikkula BM (e_1_2_14_86_1) 2002; 4609 e_1_2_14_116_1 Torres JH (e_1_2_14_89_1); 3590 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_101_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_102_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 Steenbergen W (e_1_2_14_48_1) e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_18_1 |
| References_xml | – reference: Derler S, Schrade U, Gerhardt LC. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 2007; 263: 1112-1116. – reference: Kozlov PV, Burdygina GI. The structure and properties of solid gelatin and the principles of their modification. Polymer 1983; 24: 651-666. – reference: Jindra NM, Figueroa MA, Chavey LJ, Zohner JJ, Rockwell BA. An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom - art. no. 60840D. Optical Interactions with Tissue and Cells XVII 2006; 6084: D840-D840. – reference: Hall TJ, Bilgen M, Insana MF, Krouskop TA. Phantom materials for elastography. IEEE Trans Ultrason Ferroelec Freq Contr 1997; 44: 1355-1365. – reference: Birgersson U, Birgersson E, Nicander I, Ollmar S. A methodology for extracting the electrical properties of human skin. Physiol Meas 2013; 34: 723-736. – reference: Bjellerup M. Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent. Dermatol Surg 2005; 31: 1107-1111. – reference: Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol 2004; 30: 1419-1422. – reference: Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm 2005; 303: 81-87. – reference: Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 2006; 32: 1384-1402. – reference: Allardice JT, Abulafi AM, Webb DG, Williams NS. Standardization of intralipid for light-scattering in clinical photodynamic therapy. Laser Med Sci 1992; 7: 461-465. – reference: Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM. Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 2014; 58: 7-15. – reference: Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloid 2011; 25: 1813-1827. – reference: Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 2012; 100: 1451-1457. – reference: Pikkula BM, Domankevitz Y, Tunnell JW, Anvari B. Cryogen spray cooling: effects of cryogen film on heat removal and light transmission. Proc Soc Photo Opt Ins 2002; 4609: 50-56. – reference: Torres JH, Anvari B, Tanenbaum BS, Milner TE, Yu JC, Nelson JS. Internal temperature measurements in response to cryogen spray cooling of a skin phantom. Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX: 3590: 11-19. – reference: Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 1998; 43: 2465-2478. – reference: Derler S, Gerhardt LC. Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin. Tribol Lett 2012; 45: 1-27. – reference: Jussila J. Preparing ballistic gelatine - review and proposal for a standard method. Forensic Sci Int 2004; 141: 91-98. – reference: Madsen SJ, Patterson MS, Wilson BC. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys Med Biol 1992; 37: 985-993. – reference: Bir CA, Resslar M, Stewart S. Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int 2012; 220: 126-129. – reference: Cottenden DJ, Cottenden AM. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics*. J Mech Behav Biomed 2013; 28: 410-426. – reference: Mandal S, Song G. Thermal sensors for performance evaluation of protective clothing against heat and fire: a review. Text Res J 2015; 85: 101-112. – reference: Stampfli R, Bruhwiler PA, Rechsteiner I, Meyer VR, Rossi RM. X-ray tomographic investigation of water distribution in textiles under compression - Possibilities for data presentation. Measurement 2013; 46: 1212-1219. – reference: Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011; 100: 59-74. – reference: AbdouSabet S, Puydak RC, Rader CP. Dynamically vulcanized thermoplastic elastomers. Rubber Chem Technol 1996; 69: 476-494. – reference: Chen S, Bhushan B. Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy. J Colloid Interf Sci 2013; 398: 247-254. – reference: Morales-Hurtado M, Zeng X, Gonzalez-Rodriguez P, Ten Elshof J, van der Heide E. A new water absorbable mechanical Epidermal skin equivalent: the combination of Hydrophobic PDMS and Hydrophilic PVA Hydrogel. J Mech Behav Biomed 2015; 46: 305-317. – reference: de Bruin DM, Bremmer RH, Kodach VM, de Kinkelder R, van Marle J, van Leeuwen TG, Faber DJ. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties. J Biomed Opt 2010; 15: 025001-1-025001-10. – reference: Bordier C, Andraud C, Charron E, Lafait J, Anastasiadou M, De Martino A. Illustration of a bimodal system in Intralipid-20% by polarized light scattering: experiments and modeling. Appl Phys A Mater 2009; 94: 347-355. – reference: Serup J, Jemec GB, Grove GL. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press, 2006. – reference: Gibson A, Yusof RM, Dehghani H, Riley J, Everdell N, Richards R, Hebden JC, Schweiger M, Arridge SR, Delpy DT. Optical tomography of a realistic neonatal head phantom. Appl Optics 2003; 42: 3109-3116. – reference: van Staveren HJ, Moes CJ, van Marie J, Prahl SA, van Gemert MJ. Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl Opt 1991; 30: 4507-4514. – reference: Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G. A solid tissue phantom for photon migration studies. Phys Med Biol 1997; 42: 1971-1979. – reference: Lamouche G, Kennedy BF, Kennedy KM, Bisaillon CE, Curatolo A, Campbell G, Pazos V, Sampson DD. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed Opt Express 2012; 3: 1381-1398. – reference: Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53: 4995-5009. – reference: Levier RR, Harrison MC, Cook RR, Lane TH. What is silicone. Plast Reconstr Surg 1993; 92: 163-167. – reference: Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 1966; 10: 1837-&. – reference: Muskopf JW, McCollister SB. Epoxy resins. Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 1987. – reference: White DR, Martin RJ. Epoxy-resin based tissue substitutes. Br J Radiol 1977; 50: 814-821. – reference: Adams MJ, Briscoe BJ, Johnson SA. Friction and lubrication of human skin. Tribol Lett 2007; 26: 239-253. – reference: Guerra C, Schwartz CJ. Development of a synthetic skin simulant platform for the investigation of dermal blistering mechanics. Tribol Lett 2011; 44: 223-228. – reference: Nishidate I, Sasaoka K, Yuasa T, Niizeki K, Maeda T, Aizu Y. Visualizing of skin chromophore concentrations by use of RGB images. Opt Lett 2008; 33: 2263-2265. – reference: Kim DH, Lu NS, Ma R et al. Epidermal Electronics. Science 2011; 333: 838-843. – reference: FIFA. FIFA quality concept for football turf. Handbook of test methods. Zurich: January ed, 2012. – reference: Hou LL, Hagen J, Wang X, Papautsky I, Naik R, Kelley-Loughnane N, Heikenfeld J. Artificial microfluidic skin for in vitro perspiration simulation and testing. Lab Chip 2013; 13: 1868-1875. – reference: Gabriel C. Tissue equivalent material for hand phantoms. Phys Med Biol 2007; 52: 4205-4210. – reference: Weder M, Brühwiler PA, Laib A. X-ray tomography measurements of the moisture distribution in multilayered clothing systems. Text Res J 2006; 76: 18-26. – reference: Edris A, Choi B, Aguilar G, Nelson JS. Measurements of laser light attenuation following cryogen spray cooling spurt termination. Laser Surg Med 2003; 32: 143-147. – reference: Jussila J, Leppaniemi A, Paronen M, Kulomaki E. Ballistic skin simulant. Forensic Sci Int 2005; 150: 63-71. – reference: Elleuch K, Elleuch R, Zahouani H. Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym Eng Sci 2006; 46: 1715-1720. – reference: Wang F, Annaheim S, Morrissey M, Rossi R. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand J Med Sci Spor 2014; 24: e129-e139. – reference: Agache PG, Humbert P. Measuring the skin: non-invasive investigations, physiology, normal constants. Berlin: Springer, 2004. – reference: Nebuya S, Noshiro M, Brown BH, Smallwood RH, Milnes P. Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes. Physiol Meas 2005; 26: S111-S118. – reference: Bond JR, Barry BW. Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human-skin. J Invest Dermatol 1988; 90: 810-813. – reference: Koehler MJ, Vogel T, Elsner P, König K, Bückle R, Kaatz M. In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography. Skin Res Technol 2010; 16: 259-264. – reference: Colas A, Curtis J. Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine. San Diego: Elsevier Academic Press, 2004: 80-85. – reference: Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 2007; 52: 915-1015. – reference: Shergold OA, Fleck NA. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomech Eng 2005; 127: 838-848. – reference: Renvoise J, Burlot D, Marin G, Derail C. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 2009; 368: 83-88. – reference: Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm 2006; 318: 49-54. – reference: Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm 2006; 327: 6-11. – reference: Jermann R, Toumiat M, Imfeld D. Development of an in vitro efficacy test for self-tanning formulations. Int J Cosmet Sci 2002; 24: 35-42. – reference: Nishidate I, Maeda T, Niizeki K, Aizu Y. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method. Sensors-Basel 2013; 13: 7902-7915. – reference: Tomimoto M. The frictional pattern of tactile sensations in anthropomorphic fingertip. Tribol Int 2011; 44: 1340-1347. – reference: Massaro A, Spano F, Missori M, Malvindi MA, Cazzato P, Cingolani R, Athanassioud A. Flexible nanocomposites with all-optical tactile sensing capability. Rsc Adv 2014; 4: 2820-2825. – reference: Chahat N, Zhadobov M, Sauleau R, Alekseev SI. New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics. IEEE Trans Microwave Theory 2012; 60: 827-832. – reference: Chu KC, Rutt BK. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magnet Reson Med 1997; 37: 314-319. – reference: Kim JO. Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes. Text Res J 1999; 69: 193-202. – reference: Price BD, Gibson AP, Tan LT, Royle GJ. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Phys Med Biol 2010; 55: 1177-1188. – reference: Demura K, Morikawa S, Murakami K, Sato K, Shiomi H, Naka S, Kurumi Y, Inubushi T, Tani T. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res 2006; 135: 179-186. – reference: Bush MA, Miller RG, Bush PJ, Dorion RBJ. Biomechanical factors in human dermal bitemarks in a Cadaver model. J Forensic Sci 2009; 54: 167-176. – reference: Pogue BW, Patterson MS. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 2006; 11: 041102-1-041102-16. – reference: Yudovsky D, Pilon L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 2010; 49: 1707-1719. – reference: Hwang HY. Piezoelectric particle-reinforced polyurethane for tactile sensing robot skin. Mech Compos Mater 2011; 47: 137-144. – reference: Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7: 229-258. – reference: Lualdi M, Colombo A, Farina B, Tomatis S, Marchesini R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med 2001; 28: 237-243. – reference: Bhushan B, Wei GH, Haddad P. Friction and wear studies of human hair and skin. Wear 2005; 259: 1012-1021. – reference: Zell K, Sperl JI, Vogel MW, Niessner R, Haisch C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys Med Biol 2007; 52: N475-N484. – reference: Maiden N. Historical overview of wound ballistics research. Forensic Sci Med Pat 2009; 5: 85-89. – reference: Manohar S, Kharine A, van Hespen JCG, Steenbergen W, de Mul FFM, van Leeuwen TG. Photoacoustic imaging of inhomogeneities embedded in breast tissue phantoms. Proc SPIE 2003; 4960 Biomedical Optoacoustics IV: 64-75. – reference: Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF. Stretchable and conformable metal-polymer piezoresistive hybrid system. Sensor Actuators A Phys 2012; 186: 191-197. – reference: Kirkpatrick SJ, Wang RK, Duncan DD, Kulesz-Martin M, Lee K. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt Express 2006; 14: 9770-9779. – reference: Hull EL, Nichols MG, Foster TH. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys Med Biol 1998; 43: 3381-3404. – reference: Aleman J, Chadwick AV, He J et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 2007; 79: 1801-1827. – reference: Gerhardt LC, Schiller A, Muller B, Spencer ND, Derler S. Fabrication, characterisation and tribological investigation of artificial skin surface lipid films. Tribol Lett 2009; 34: 81-93. – reference: Zimmerli T, Weder MS. Protection and comfort - A sweating torso for the simultaneous measurement of protective and comfort properties of PPE. Am Soc Test Mater 1997; 1273: 271-280. – reference: Yoo HS, Hu YS, Kim EA. Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Text Res J 2000; 70: 542-549. – reference: Lir I, Haber M, Dodiuk-Kenig H. Skin surface model material as a substrate for adhesion-to-skin testing. J Adhes Sci Technol 2007; 21: 1497-1512. – reference: Cho J, Byun H, Lee S, Kim JK. Temperature distribution in deep tissue phantom during laser irradiation at 1,064 nm measured by thermocouples and thermal imaging technique. J Visual-Japan 2011; 14: 265-272. – reference: Perdekamp MG, Pollak S, Thierauf A, Strassburger E, Hunzinger M, Vennemann B. Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Legal Med 2009; 123: 419-425. – reference: Mazzoli A, Munaretto R, Scalise L. Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements. Laser Med Sci 2010; 25: 403-410. – reference: Steenbergen W, de Mul F. Application of a novel laser Doppler tester including a sustainable tissue phantom. Proc SPIE 1998; 3252 Optical Diagnostics of Biological Fluids III: 14-25. – reference: Pravdin AB, Utz SR, Kochubey VI. Physical modeling of human skin optical properties using milk and erythrocytes mixtures. Proc SPIE 1995; 2627 Optical Biopsies: 221-226. – reference: Whittle K, Kieser J, Ichim I, Swain M, Waddell N, Livingstone V, Taylor M. The biomechanical modelling of non-ballistic skin wounding: blunt-force injury. Forensic Sci Med Pathol 2008; 4: 33-39. – reference: Glicksman M. Gum technology in the food industry. New York: Academic Press, 1969. – reference: Nakatani M, Fukuda T, Sasamoto H, Arakawa N, Otaka H, Kawasoe T, Omata S. Relationship between perceived softness of bilayered skin models and their mechanical properties measured with a dual-sensor probe. Int J Cosmet Sci 2013; 35: 84-88. – reference: Bait N, Grassl B, Derail C, Benaboura A. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 2011; 7: 2025-2032. – reference: Massaro A, Spano F, Cazzato P, La Tegola C, Cingolani R, Athanassiou A. Robot tactile sensing gold nanocomposites as highly sensitive real-time optical pressure sensors. IEEE Robot Autom Mag 2013; 20: 82-90. – reference: Psikuta A, Richards M, Fiala D. Single-sector thermophysiological human simulator. Physiol Meas 2008; 29: 181-192. – reference: Gerhardt LC, Mattle N, Schrade GU, Spencer ND, Derler S. Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements. Skin Res Technol 2008; 14: 77-88. – reference: Iravani A, Mueller J, Yousefi AM. Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. J Biomater Sci Polym Ed 2014; 25: 181-202. – reference: Van Der Heide E, Lossie CM, Van Bommel KJC, Reinders SAF, Lenting HBM. Experimental investigation of a polymer coating in sliding contact with skin-equivalent silicone rubber in an aqueous environment. Tribol Trans 2010; 53: 842-847. – reference: Ramirez-San-Juan JC, Aguilar G, Tuqan AT, Kelly KM, Nelson JS. Skin model surface temperatures during single and multiple cryogen spurts used in laser dermatologic surgery. Lasers Surg Med 2005; 36: 141-146. – reference: Flock ST, Jacques SL, Wilson BC, Star WM, Vangemert MJC. Optical-properties of intralipid - a phantom medium for light-propagation studies. Lasers Surg Med 1992; 12: 510-519. – reference: Jachowicz J, McMullen R, Prettypaul D. Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Res Technol 2007; 13: 299-309. – reference: Camenzind MA, Dale DJ, Rossi RM. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard. Fire Mater 2007; 31: 285-295. – reference: Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis. Sensor Actuators A Phys 2008; 143: 20-28. – volume: 44 start-page: 223 year: 2011 end-page: 228 article-title: Development of a synthetic skin simulant platform for the investigation of dermal blistering mechanics publication-title: Tribol Lett – volume: 4 start-page: 2820 year: 2014 end-page: 2825 article-title: Flexible nanocomposites with all‐optical tactile sensing capability publication-title: Rsc Adv – volume: 100 start-page: 1451 year: 2012 end-page: 1457 article-title: A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications publication-title: J Biomed Mater Res, Part B – start-page: 78980Z‐1 end-page: 78980Z‐11 – volume: 7 start-page: 2025 year: 2011 end-page: 2032 article-title: Hydrogel nanocomposites as pressure‐sensitive adhesives for skin‐contact applications publication-title: Soft Matter – volume: 12 start-page: 510 year: 1992 end-page: 519 article-title: Optical‐properties of intralipid ‐ a phantom medium for light‐propagation studies publication-title: Lasers Surg Med – volume: 79 start-page: 1801 year: 2007 end-page: 1827 article-title: Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic‐organic hybrid materials (IUPAC Recommendations 2007) publication-title: Pure Appl Chem – volume: 13 start-page: 7902 year: 2013 end-page: 7915 article-title: Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method publication-title: Sensors‐Basel – volume: 318 start-page: 49 year: 2006 end-page: 54 article-title: Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro publication-title: Int J Pharm – volume: 333 start-page: 838 year: 2011 end-page: 843 article-title: Epidermal Electronics publication-title: Science – volume: 42 start-page: 3109 year: 2003 end-page: 3116 article-title: Optical tomography of a realistic neonatal head phantom publication-title: Appl Optics – volume: 4609 start-page: 50 year: 2002 end-page: 56 article-title: Cryogen spray cooling: effects of cryogen film on heat removal and light transmission publication-title: Proc Soc Photo Opt Ins – volume: 85 start-page: 101 year: 2015 end-page: 112 article-title: Thermal sensors for performance evaluation of protective clothing against heat and fire: a review publication-title: Text Res J – volume: 29 start-page: 181 year: 2008 end-page: 192 article-title: Single‐sector thermophysiological human simulator publication-title: Physiol Meas – volume: 3 start-page: 1381 year: 2012 end-page: 1398 article-title: Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography publication-title: Biomed Opt Express – volume: 46 start-page: 305 year: 2015 end-page: 317 article-title: A new water absorbable mechanical Epidermal skin equivalent: the combination of Hydrophobic PDMS and Hydrophilic PVA Hydrogel publication-title: J Mech Behav Biomed – volume: 35 start-page: 84 year: 2013 end-page: 88 article-title: Relationship between perceived softness of bilayered skin models and their mechanical properties measured with a dual‐sensor probe publication-title: Int J Cosmet Sci – volume: 49 start-page: 1707 year: 2010 end-page: 1719 article-title: Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance publication-title: Appl Opt – volume: 135 start-page: 179 year: 2006 end-page: 186 article-title: An easy‐to‐use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies publication-title: J Surg Res – volume: 58 start-page: 7 year: 2014 end-page: 15 article-title: Prediction of human core body temperature using non‐invasive measurement methods publication-title: Int J Biometeorol – volume: 150 start-page: 63 year: 2005 end-page: 71 article-title: Ballistic skin simulant publication-title: Forensic Sci Int – volume: 55 start-page: 1177 year: 2010 end-page: 1188 article-title: An elastically compressible phantom material with mechanical and x‐ray attenuation properties equivalent to breast tissue publication-title: Phys Med Biol – volume: 30 start-page: 1419 year: 2004 end-page: 1422 article-title: Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound publication-title: Ultrasound Med Biol – year: 1969 – start-page: 858412‐1 end-page: 858412‐9 – start-page: 80 year: 2004 end-page: 85 – volume: 92 start-page: 163 year: 1993 end-page: 167 article-title: What is silicone publication-title: Plast Reconstr Surg – volume: 15 start-page: 025001‐1 year: 2010 end-page: 025001‐10 article-title: Optical phantoms of varying geometry based on thin building blocks with controlled optical properties publication-title: J Biomed Opt – volume: 1273 start-page: 271 year: 1997 end-page: 280 article-title: Protection and comfort ‐ A sweating torso for the simultaneous measurement of protective and comfort properties of PPE publication-title: Am Soc Test Mater – volume: 7 start-page: 229 year: 2010 end-page: 258 article-title: A review of tissue‐engineered skin bioconstructs available for skin reconstruction publication-title: J R Soc Interface – volume: 123 start-page: 419 year: 2009 end-page: 425 article-title: Experimental simulation of reentry shots using a skin‐gelatine composite model publication-title: Int J Legal Med – volume: 13 start-page: 299 year: 2007 end-page: 309 article-title: Indentometric analysis of in vivo skin and comparison with artificial skin models publication-title: Skin Res Technol – volume: 70 start-page: 542 year: 2000 end-page: 549 article-title: Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model publication-title: Text Res J – start-page: 82291J‐1 end-page: 82291J‐7 – volume: 220 start-page: 126 year: 2012 end-page: 129 article-title: Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions publication-title: Forensic Sci Int – volume: 368 start-page: 83 year: 2009 end-page: 88 article-title: Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin publication-title: Int J Pharm – volume: 303 start-page: 81 year: 2005 end-page: 87 article-title: Assessment of drug permeability distributions in two different model skins publication-title: Int J Pharm – volume: 4960 start-page: 64 year: 2003 end-page: 75 article-title: Photoacoustic imaging of inhomogeneities embedded in breast tissue phantoms publication-title: Proc SPIE – volume: 32 start-page: 143 year: 2003 end-page: 147 article-title: Measurements of laser light attenuation following cryogen spray cooling spurt termination publication-title: Laser Surg Med – volume: 25 start-page: 403 year: 2010 end-page: 410 article-title: Preliminary results on the use of a noninvasive instrument for the evaluation of the depth of pigmented skin lesions: numerical simulations and experimental measurements publication-title: Laser Med Sci – volume: 26 start-page: S111 year: 2005 end-page: S118 article-title: Detection of emboli in vessels using electrical impedance measurements ‐ phantom and electrodes publication-title: Physiol Meas – volume: 3590 start-page: 11 end-page: 19 article-title: Internal temperature measurements in response to cryogen spray cooling of a skin phantom publication-title: Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX: – volume: 54 start-page: 167 year: 2009 end-page: 176 article-title: Biomechanical factors in human dermal bitemarks in a Cadaver model publication-title: J Forensic Sci – year: 1987 – volume: 100 start-page: 59 year: 2011 end-page: 74 article-title: A review of three‐dimensional in vitro tissue models for drug discovery and transport studies publication-title: J Pharm Sci – volume: 28 start-page: 410 year: 2013 end-page: 426 article-title: A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics* publication-title: J Mech Behav Biomed – volume: 4 start-page: 33 year: 2008 end-page: 39 article-title: The biomechanical modelling of non‐ballistic skin wounding: blunt‐force injury publication-title: Forensic Sci Med Pathol – volume: 141 start-page: 91 year: 2004 end-page: 98 article-title: Preparing ballistic gelatine ‐ review and proposal for a standard method publication-title: Forensic Sci Int – volume: 30 start-page: 4507 year: 1991 end-page: 4514 article-title: Light scattering in Intralipid‐10% in the wavelength range of 400‐1100 nm publication-title: Appl Opt – volume: 31 start-page: 285 year: 2007 end-page: 295 article-title: Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard publication-title: Fire Mater – volume: 6084 start-page: D840 year: 2006 end-page: D840 article-title: An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom ‐ art. no. 60840D publication-title: Optical Interactions with Tissue and Cells XVII – volume: 52 start-page: 4205 year: 2007 end-page: 4210 article-title: Tissue equivalent material for hand phantoms publication-title: Phys Med Biol – volume: 34 start-page: 723 year: 2013 end-page: 736 article-title: A methodology for extracting the electrical properties of human skin publication-title: Physiol Meas – volume: 33 start-page: 2263 year: 2008 end-page: 2265 article-title: Visualizing of skin chromophore concentrations by use of RGB images publication-title: Opt Lett – volume: 36 start-page: 141 year: 2005 end-page: 146 article-title: Skin model surface temperatures during single and multiple cryogen spurts used in laser dermatologic surgery publication-title: Lasers Surg Med – volume: 259 start-page: 1012 year: 2005 end-page: 1021 article-title: Friction and wear studies of human hair and skin publication-title: Wear – volume: 327 start-page: 6 year: 2006 end-page: 11 article-title: The study of drug permeation through natural membranes publication-title: Int J Pharm – volume: 5 start-page: 85 year: 2009 end-page: 89 article-title: Historical overview of wound ballistics research publication-title: Forensic Sci Med Pat – volume: 42 start-page: 1971 year: 1997 end-page: 1979 article-title: A solid tissue phantom for photon migration studies publication-title: Phys Med Biol – volume: 43 start-page: 3381 year: 1998 end-page: 3404 article-title: Quantitative broadband near‐infrared spectroscopy of tissue‐simulating phantoms containing erythrocytes publication-title: Phys Med Biol – volume: 52 start-page: N475 year: 2007 end-page: N484 article-title: Acoustical properties of selected tissue phantom materials for ultrasound imaging publication-title: Phys Med Biol – start-page: 14 end-page: 25 article-title: Application of a novel laser Doppler tester including a sustainable tissue phantom publication-title: Proc SPIE 1998 – volume: 11 start-page: 041102‐1 year: 2006 end-page: 041102‐16 article-title: Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry publication-title: J Biomed Opt – start-page: 92820H‐1 end-page: 92820H‐7 – volume: 20 start-page: 82 year: 2013 end-page: 90 article-title: Robot tactile sensing gold nanocomposites as highly sensitive real‐time optical pressure sensors publication-title: IEEE Robot Autom Mag – volume: 25 start-page: 181 year: 2014 end-page: 202 article-title: Producing homogeneous cryogel phantoms for medical imaging: a finite‐element approach publication-title: J Biomater Sci Polym Ed – volume: 37 start-page: 314 year: 1997 end-page: 319 article-title: Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity publication-title: Magnet Reson Med – volume: 43 start-page: 2465 year: 1998 end-page: 2478 article-title: Near‐infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique publication-title: Phys Med Biol – volume: 44 start-page: 1355 year: 1997 end-page: 1365 article-title: Phantom materials for elastography publication-title: IEEE Trans Ultrason Ferroelec Freq Contr – volume: 24 start-page: 651 year: 1983 end-page: 666 article-title: The structure and properties of solid gelatin and the principles of their modification publication-title: Polymer – volume: 21 start-page: 1497 year: 2007 end-page: 1512 article-title: Skin surface model material as a substrate for adhesion‐to‐skin testing publication-title: J Adhes Sci Technol – volume: 52 start-page: 915 year: 2007 end-page: 1015 article-title: Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers publication-title: Prog Mater Sci – volume: 14 start-page: 265 year: 2011 end-page: 272 article-title: Temperature distribution in deep tissue phantom during laser irradiation at 1,064 nm measured by thermocouples and thermal imaging technique publication-title: J Visual‐Japan – volume: 24 start-page: e129 year: 2014 end-page: e139 article-title: Real evaporative cooling efficiency of one‐layer tight‐fitting sportswear in a hot environment publication-title: Scand J Med Sci Spor – volume: 53 start-page: 4995 year: 2008 end-page: 5009 article-title: Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation publication-title: Phys Med Biol – volume: 186 start-page: 191 year: 2012 end-page: 197 article-title: Stretchable and conformable metal‐polymer piezoresistive hybrid system publication-title: Sensor Actuators A Phys – volume: 45 start-page: 1 year: 2012 end-page: 27 article-title: Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin publication-title: Tribol Lett – volume: 69 start-page: 193 year: 1999 end-page: 202 article-title: Dynamic moisture vapor transfer through textiles Part III: effect of film characteristics on microclimate moisture and temperature changes publication-title: Text Res J – volume: 69 start-page: 476 year: 1996 end-page: 494 article-title: Dynamically vulcanized thermoplastic elastomers publication-title: Rubber Chem Technol – volume: 34 start-page: 81 year: 2009 end-page: 93 article-title: Fabrication, characterisation and tribological investigation of artificial skin surface lipid films publication-title: Tribol Lett – volume: 25 start-page: 1813 year: 2011 end-page: 1827 article-title: Functional and bioactive properties of collagen and gelatin from alternative sources: a review publication-title: Food Hydrocolloid – year: 2004 – volume: 94 start-page: 347 year: 2009 end-page: 355 article-title: Illustration of a bimodal system in Intralipid‐20% by polarized light scattering: experiments and modeling publication-title: Appl Phys A Mater – volume: 26 start-page: 239 year: 2007 end-page: 253 article-title: Friction and lubrication of human skin publication-title: Tribol Lett – volume: 76 start-page: 18 year: 2006 end-page: 26 article-title: X‐ray tomography measurements of the moisture distribution in multilayered clothing systems publication-title: Text Res J – volume: 44 start-page: 1340 year: 2011 end-page: 1347 article-title: The frictional pattern of tactile sensations in anthropomorphic fingertip publication-title: Tribol Int – volume: 16 start-page: 259 year: 2010 end-page: 264 article-title: In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography publication-title: Skin Res Technol – volume: 10 start-page: 1837‐& year: 1966 article-title: Properties of linear elastomeric polyurethanes publication-title: J Appl Polym Sci – volume: 50 start-page: 814 year: 1977 end-page: 821 article-title: Epoxy‐resin based tissue substitutes publication-title: Br J Radiol – volume: 53 start-page: 842 year: 2010 end-page: 847 article-title: Experimental investigation of a polymer coating in sliding contact with skin‐equivalent silicone rubber in an aqueous environment publication-title: Tribol Trans – volume: 263 start-page: 1112 year: 2007 end-page: 1116 article-title: Tribology of human skin and mechanical skin equivalents in contact with textiles publication-title: Wear – volume: 46 start-page: 1212 year: 2013 end-page: 1219 article-title: X‐ray tomographic investigation of water distribution in textiles under compression ‐ Possibilities for data presentation publication-title: Measurement – volume: 60 start-page: 827 year: 2012 end-page: 832 article-title: New method for determining dielectric properties of skin and phantoms at millimeter waves based on heating kinetics publication-title: IEEE Trans Microwave Theory – volume: 143 start-page: 20 year: 2008 end-page: 28 article-title: Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis publication-title: Sensor Actuators A Phys – volume: 13 start-page: 1868 year: 2013 end-page: 1875 article-title: Artificial microfluidic skin for in vitro perspiration simulation and testing publication-title: Lab Chip – volume: 127 start-page: 838 year: 2005 end-page: 848 article-title: Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin publication-title: J Biomech Eng – volume: 14 start-page: 9770 year: 2006 end-page: 9779 article-title: Imaging the mechanical stiffness of skin lesions by in vivo acousto‐optical elastography publication-title: Opt Express – volume: 7 start-page: 461 year: 1992 end-page: 465 article-title: Standardization of intralipid for light‐scattering in clinical photodynamic therapy publication-title: Laser Med Sci – volume: 28 start-page: 237 year: 2001 end-page: 243 article-title: A phantom with tissue‐like optical properties in the visible and near infrared for use in photomedicine publication-title: Lasers Surg Med – volume: 47 start-page: 137 year: 2011 end-page: 144 article-title: Piezoelectric particle‐reinforced polyurethane for tactile sensing robot skin publication-title: Mech Compos Mater – volume: 90 start-page: 810 year: 1988 end-page: 813 article-title: Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human‐skin publication-title: J Invest Dermatol – volume: 14 start-page: 77 year: 2008 end-page: 88 article-title: Study of skin‐fabric interactions of relevance to decubitus: friction and contact‐pressure measurements publication-title: Skin Res Technol – volume: 37 start-page: 985 year: 1992 end-page: 993 article-title: The use of India ink as an optical absorber in tissue‐simulating phantoms publication-title: Phys Med Biol – year: 2012 – volume: 32 start-page: 1384 year: 2006 end-page: 1402 article-title: The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates publication-title: Int J Impact Eng – volume: 46 start-page: 1715 year: 2006 end-page: 1720 article-title: Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests publication-title: Polym Eng Sci – volume: 31 start-page: 1107 year: 2005 end-page: 1111 article-title: Novel method for training skin flap surgery: polyurethane foam dressing used as a skin equivalent publication-title: Dermatol Surg – year: 2006 – volume: 398 start-page: 247 year: 2013 end-page: 254 article-title: Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy publication-title: J Colloid Interf Sci – volume: 2627 start-page: 221 year: 1995 end-page: 226 article-title: Physical modeling of human skin optical properties using milk and erythrocytes mixtures publication-title: Proc SPIE – volume: 24 start-page: 35 year: 2002 end-page: 42 article-title: Development of an in vitro efficacy test for self‐tanning formulations publication-title: Int J Cosmet Sci – volume: 1 start-page: 301 end-page: 305 – volume: 3590 start-page: 11 ident: e_1_2_14_89_1 article-title: Internal temperature measurements in response to cryogen spray cooling of a skin phantom publication-title: Proc SPIE 1999; 3590 Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX: – ident: e_1_2_14_6_1 doi: 10.1007/s11249-007-9206-0 – ident: e_1_2_14_106_1 doi: 10.1177/0040517506053910 – ident: e_1_2_14_33_1 doi: 10.1109/TMTT.2011.2176746 – ident: e_1_2_14_115_1 doi: 10.1364/AO.30.004507 – start-page: 301 volume-title: J Fiber Bioeng Inform 2009 ident: e_1_2_14_97_1 – start-page: 14 ident: e_1_2_14_48_1 article-title: Application of a novel laser Doppler tester including a sustainable tissue phantom publication-title: Proc SPIE 1998 – ident: e_1_2_14_22_1 doi: 10.1016/j.foodhyd.2011.02.007 – ident: e_1_2_14_50_1 doi: 10.1117/12.477778 – ident: e_1_2_14_34_1 doi: 10.1088/0967-3334/26/2/011 – ident: e_1_2_14_24_1 doi: 10.1016/j.forsciint.2012.02.008 – ident: e_1_2_14_12_1 doi: 10.1364/AO.49.001707 – ident: e_1_2_14_93_1 doi: 10.1088/0031-9155/43/9/003 – ident: e_1_2_14_5_1 doi: 10.1007/s11249-011-9854-y – ident: e_1_2_14_103_1 doi: 10.1016/j.ultrasmedbio.2004.07.016 – ident: e_1_2_14_105_1 doi: 10.1016/j.measurement.2012.11.009 – volume: 1273 start-page: 271 year: 1997 ident: e_1_2_14_99_1 article-title: Protection and comfort ‐ A sweating torso for the simultaneous measurement of protective and comfort properties of PPE publication-title: Am Soc Test Mater – ident: e_1_2_14_87_1 doi: 10.1177/0040517514542864 – start-page: 80 volume-title: Silicone biomaterials: history and chemistry. Biomaterials science: an introduction to materials in medicine year: 2004 ident: e_1_2_14_57_1 – ident: e_1_2_14_3_1 doi: 10.1016/j.ijimpeng.2004.11.010 – ident: e_1_2_14_31_1 doi: 10.1039/c0sm01123a – ident: e_1_2_14_37_1 doi: 10.3390/s130607902 – ident: e_1_2_14_92_1 doi: 10.1364/AO.42.003109 – ident: e_1_2_14_112_1 doi: 10.1117/12.2068500 – ident: e_1_2_14_55_1 doi: 10.1111/j.1600-0846.2007.00229.x – ident: e_1_2_14_23_1 doi: 10.1016/j.forsciint.2003.11.036 – ident: e_1_2_14_84_1 doi: 10.1259/0007-1285-50-599-814 – ident: e_1_2_14_85_1 doi: 10.1002/lsm.10151 – ident: e_1_2_14_104_1 doi: 10.1016/j.ijpharm.2006.07.034 – ident: e_1_2_14_42_1 doi: 10.1002/jbm.b.32694 – ident: e_1_2_14_18_1 doi: 10.1002/lsm.1900120510 – ident: e_1_2_14_47_1 doi: 10.1007/s10103-009-0724-x – ident: e_1_2_14_13_1 doi: 10.1111/j.1600-0846.2010.00437.x – ident: e_1_2_14_54_1 doi: 10.5254/1.3538382 – ident: e_1_2_14_102_1 doi: 10.1163/156856107782844783 – ident: e_1_2_14_36_1 doi: 10.1117/12.2006235 – volume-title: Epoxy resins. Ullmann's encyclopedia of industrial chemistry year: 1987 ident: e_1_2_14_83_1 – ident: e_1_2_14_46_1 doi: 10.1088/0031-9155/55/4/018 – ident: e_1_2_14_53_1 doi: 10.1351/pac200779101801 – volume: 4609 start-page: 50 year: 2002 ident: e_1_2_14_86_1 article-title: Cryogen spray cooling: effects of cryogen film on heat removal and light transmission publication-title: Proc Soc Photo Opt Ins – ident: e_1_2_14_9_1 doi: 10.1002/jps.22257 – ident: e_1_2_14_81_1 doi: 10.1007/s00484-013-0687-2 – ident: e_1_2_14_4_1 doi: 10.1111/j.1556-4029.2008.00908.x – ident: e_1_2_14_76_1 doi: 10.1007/s11249-009-9411-0 – ident: e_1_2_14_109_1 doi: 10.1039/C3RA45678A – ident: e_1_2_14_45_1 doi: 10.1364/BOE.3.001381 – ident: e_1_2_14_64_1 doi: 10.1016/j.triboint.2010.12.004 – ident: e_1_2_14_68_1 doi: 10.1007/s11249-011-9840-4 – ident: e_1_2_14_73_1 doi: 10.1002/pen.20637 – volume-title: Gum technology in the food industry year: 1969 ident: e_1_2_14_21_1 – ident: e_1_2_14_49_1 doi: 10.1364/OE.14.009770 – ident: e_1_2_14_15_1 doi: 10.1088/0031-9155/43/11/014 – ident: e_1_2_14_100_1 doi: 10.1111/sms.12117 – ident: e_1_2_14_74_1 doi: 10.1016/j.wear.2004.12.026 – ident: e_1_2_14_52_1 doi: 10.1126/science.1206157 – ident: e_1_2_14_11_1 doi: 10.1007/978-3-662-08585-1 – ident: e_1_2_14_20_1 doi: 10.1016/0032-3861(83)90001-0 – ident: e_1_2_14_98_1 doi: 10.1177/004051759906900306 – ident: e_1_2_14_88_1 doi: 10.1002/fam.938 – ident: e_1_2_14_8_1 doi: 10.1098/rsif.2009.0403 – ident: e_1_2_14_75_1 doi: 10.1016/j.jmbbm.2013.04.024 – volume: 6084 start-page: D840 year: 2006 ident: e_1_2_14_41_1 article-title: An alternative method of evaluating 1540 nm exposure laser damage using an optical tissue phantom ‐ art. no. 60840D publication-title: Optical Interactions with Tissue and Cells XVII – volume-title: FIFA quality concept for football turf. Handbook of test methods year: 2012 ident: e_1_2_14_67_1 – ident: e_1_2_14_19_1 doi: 10.1002/lsm.1044 – ident: e_1_2_14_43_1 doi: 10.1002/mrm.1910370230 – ident: e_1_2_14_116_1 doi: 10.1016/j.sna.2012.01.037 – ident: e_1_2_14_27_1 doi: 10.1109/58.656639 – ident: e_1_2_14_56_1 doi: 10.1097/00006534-199307000-00028 – ident: e_1_2_14_17_1 doi: 10.1088/0031-9155/37/4/012 – ident: e_1_2_14_30_1 doi: 10.1016/j.ijpharm.2008.09.056 – ident: e_1_2_14_61_1 doi: 10.1016/j.ijpharm.2005.07.005 – ident: e_1_2_14_65_1 doi: 10.1016/j.jmbbm.2015.02.014 – ident: e_1_2_14_38_1 doi: 10.1364/OL.33.002263 – ident: e_1_2_14_91_1 doi: 10.1117/12.881604 – ident: e_1_2_14_39_1 doi: 10.1007/s12650-011-0074-1 – ident: e_1_2_14_32_1 doi: 10.1088/0031-9155/42/10/011 – ident: e_1_2_14_35_1 doi: 10.1088/0031-9155/52/20/N02 – ident: e_1_2_14_62_1 doi: 10.1016/j.sna.2007.06.007 – ident: e_1_2_14_114_1 doi: 10.1007/s00339-008-4803-9 – ident: e_1_2_14_70_1 doi: 10.1007/s11029-011-9192-z – ident: e_1_2_14_82_1 doi: 10.1117/12.907109 – ident: e_1_2_14_101_1 – ident: e_1_2_14_16_1 doi: 10.1117/12.228896 – ident: e_1_2_14_110_1 doi: 10.1117/1.3369003 – ident: e_1_2_14_7_1 doi: 10.1007/s12024-009-9090-z – ident: e_1_2_14_40_1 doi: 10.1016/j.jss.2006.02.016 – ident: e_1_2_14_108_1 doi: 10.1109/MRA.2012.2184198 – ident: e_1_2_14_25_1 doi: 10.1016/j.forsciint.2004.06.039 – ident: e_1_2_14_26_1 doi: 10.1007/s00414-009-0363-6 – ident: e_1_2_14_29_1 doi: 10.1016/j.jcis.2013.02.026 – ident: e_1_2_14_69_1 – ident: e_1_2_14_94_1 – ident: e_1_2_14_113_1 doi: 10.1007/BF02594089 – ident: e_1_2_14_44_1 doi: 10.1080/09205063.2013.848327 – ident: e_1_2_14_71_1 doi: 10.1016/j.pmatsci.2006.11.001 – ident: e_1_2_14_78_1 doi: 10.1111/j.1524-4725.2005.31904 – ident: e_1_2_14_58_1 doi: 10.1016/j.wear.2006.11.031 – ident: e_1_2_14_80_1 doi: 10.1007/s12024-007-0029-y – ident: e_1_2_14_59_1 doi: 10.1088/0031-9155/52/14/012 – ident: e_1_2_14_2_1 doi: 10.1111/1523-1747.ep12462031 – ident: e_1_2_14_90_1 doi: 10.1002/lsm.20124 – ident: e_1_2_14_72_1 doi: 10.1002/app.1966.070101204 – ident: e_1_2_14_10_1 doi: 10.3109/9781420003307 – ident: e_1_2_14_14_1 doi: 10.1088/0967-3334/34/6/723 – ident: e_1_2_14_77_1 doi: 10.1111/j.1600-0846.2007.00264.x – ident: e_1_2_14_51_1 doi: 10.1117/1.2335429 – ident: e_1_2_14_107_1 doi: 10.1039/c3lc41231h – ident: e_1_2_14_63_1 doi: 10.1115/1.1992528 – ident: e_1_2_14_96_1 doi: 10.1088/0967-3334/29/2/002 – ident: e_1_2_14_111_1 doi: 10.1088/0031-9155/53/18/010 – ident: e_1_2_14_66_1 doi: 10.1080/10402004.2010.496068 – ident: e_1_2_14_28_1 doi: 10.1046/j.0412-5463.2001.00123.x – ident: e_1_2_14_79_1 doi: 10.1111/ics.12008 – ident: e_1_2_14_95_1 doi: 10.1177/004051750007000612 – ident: e_1_2_14_60_1 doi: 10.1016/j.ijpharm.2006.03.015 |
| SSID | ssj0005913 |
| Score | 2.5225232 |
| SecondaryResourceType | review_article |
| Snippet | Background
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more... For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and... Background For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3 |
| SubjectTerms | Animals Bandages Biomimetic Materials - chemistry human skin Measurement techniques Physical properties physical skin models properties of skin simulation of skin Skin - cytology Skin Physiological Phenomena Skin, Artificial Tissue Engineering - methods Wound Healing - physiology |
| Title | Materials used to simulate physical properties of human skin |
| URI | https://api.istex.fr/ark:/67375/WNG-ZC3RP81K-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12235 https://www.ncbi.nlm.nih.gov/pubmed/26096898 https://www.proquest.com/docview/1753901732 https://www.proquest.com/docview/1754085848 |
| Volume | 22 |
| WOSCitedRecordID | wos000370302100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZIz2Yeu6frjrijbG6ItHLdmWxfYyumWFpaFk7Rb2IiRZhtDWCbZT-udXkhWvhQ4Ge7PQCZv70N1J598BvCNRIZmOdCjIkQyNP5YhEwqHeSoZZYlZ5WAXfw7paJRNJuxsBT4u_4Vp8SG6AzdrGW6_tgYuZH3PyOuq-RAZ55asQh8bvU160P8yHlwM_1R4sLY7MjtiIU3wxAML2UKebvEDd9S3nL19LNZ8GLo63zN4_l9fvQHPfMiJPrc68gJWdLkJ6_eACDfh6am_Yn8Jn05F02olWtQ6R80M1dNr2-RLo7kXKprbI_zKYrGiWYFcnz9UX07LLbgYfD0_Pgl9i4VQ2cwnTCUtYm07h6Yms2CxGeQsJyzBCiuzT5JICDNiOU11qmismAWyjShVeYJFFpNt6JWzUu8CKoy7NbFYQbCOY1xQSaUJ7zKZqJxEWukADpec5srjj9s2GFd8mYcY3nDHmwDedqTzFnTjMaL3TlwdhagubZUaTfiv0Tf--5iMz7LoOx8GsL-UJ_cGWnMLUGpCIUpwAG-6aWNa9r5ElHq2cDQW_y2LswB2Wj3oXmbSQJZmzMwcOnH__Tv5j_G5e9j7d9JXsGYCM18dvg-9plro1_BE3TTTujqAVTrJDry23wFhDf9d |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xOm3jATb2FWCbN02Il0wkTuJY4gWxFSbSCnUFqr1YieNIFVtaJenEn8_ZcQNITJq0t1g-K9F9-O7sy-8APlOvyLjylJvS_cxFf5y5PJW-m0cZZzzEVQZ28SJhw2E8mfCzFThY_gvT4kN0B27aMsx-rQ1cH0jfsfK6ar546N3CR9ALUI1Qv3tfR_3z5LbEg7ftkfk-d1noTyyykK7k6Rbf80c9zdrrh4LN-7GrcT79jf_77OewboNOcthqyQtYUeUmrN2BItyEJwN7yf4SDgZp0-olWdQqJ82M1NPfus2XInMrVjLXh_iVRmMls4KYTn-kvpqWr-C8_218dOLaJguu1LmPG2WsCJTuHRphbsEDHOQ8pzz0pS9xp6RemuKI5yxSkWSB5BrK1mNM5qGfxgF9DavlrFRvgRTocDEaK6ivgsAvWMYyDPDiLJQ59ZRUDuwtWS2kRSDXjTB-iWUmgrwRhjcOfOpI5y3sxkNEu0ZeHUVaXek6NRaKy-Gx-HlER2exdyoSB3aWAhXWRGuhIUoxGGLUd-BjN43GpW9M0lLNFoZGI8DFQezAm1YRupdhIsijmOPMnpH3379T_BiNzcPWv5N-gKcn40Eiku_D0214hmGarRXfgdWmWqh38Fj-aaZ19d4q_Q2o5gJ0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6pJTtoR9Zt7ntVm2M0ReP2rItC_oykmYt-SBk_Qh9EbYsQ-jmBNsZ-_MryYqXQAqDvVnohM196O6k8-8APmMnjalwhB3h89iW_ji2acRdOwliSqgvV2nYxbs-GQ7DyYSOtuBi-S9MhQ9RH7gpy9D7tTJwMU_SFSsv8vKrI72b_wKanmoi04BmZ9y97f8t8aBVe2R6Tm3iuxODLKQqeerFa_6oqVj7Z1OwuR67aufT3fu_z96HXRN0om-VlhzAlsha8GoFirAFOwNzyf4aLgZRWeklWhQiQeUMFdNfqs2XQHMjVjRXh_i5QmNFsxTpTn-oeJxmh3DbvbxpX9mmyYLNVe5jBzFJPaF6hwYyt6CeHCQ0wdR3ucvlTomdKJIjmpBABJx4nCooW4cQnvhuFHr4DTSyWSbeAUqlw5XRWIpd4XluSmISywAvjH2eYEdwYcHZktWMGwRy1QjjJ1tmIpI3TPPGgk816byC3dhE9EXLq6aI8kdVp0Z8dj_8zh7aeDwKnR7rW3CyFCgzJlowBVEqgyGCXQs-1tPSuNSNSZSJ2ULTKAS40AsteFspQv0ymQjSIKRy5kzL-_nvZD_GN_rh6N9JT2Fn1Omy_vWwdwwvZZRmSsVPoFHmC_EetvnvclrkH4zOPwEwYQHv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+used+to+simulate+physical+properties+of+human+skin&rft.jtitle=Skin+research+and+technology&rft.au=D%C4%85browska%2C+A.+K.&rft.au=Rotaru%2C+G.%E2%80%90M.&rft.au=Derler%2C+S.&rft.au=Spano%2C+F.&rft.date=2016-02-01&rft.issn=0909-752X&rft.eissn=1600-0846&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1111%2Fsrt.12235&rft.externalDBID=10.1111%252Fsrt.12235&rft.externalDocID=SRT12235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon |