Predicting Nottingham grade in breast cancer digital pathology using a foundation model

Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Breast cancer research : BCR Ročník 27; číslo 1; s. 58 - 14
Hlavní autori: Kim, Jun Seo, Lee, Jeong Hoon, Yeon, Yousung, An, Doyeon, Kim, Seok Jun, Noh, Myung-Giun, Lee, Suehyun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 19.04.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1465-542X, 1465-5411, 1465-542X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival ( p  < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
AbstractList Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. Keywords: Biological processes, Breast cancer, Gene expression data, Gene ontology, Multiple instance learning, Nottingham grade, TCGA
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
BackgroundThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.MethodsTo address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.ResultsThe best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).ConclusionOur AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival ( p  < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
Abstract Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.BACKGROUNDThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.METHODSTo address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).RESULTSThe best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.CONCLUSIONOur AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
ArticleNumber 58
Audience Academic
Author An, Doyeon
Noh, Myung-Giun
Yeon, Yousung
Kim, Jun Seo
Kim, Seok Jun
Lee, Suehyun
Lee, Jeong Hoon
Author_xml – sequence: 1
  givenname: Jun Seo
  orcidid: 0009-0006-9571-0209
  surname: Kim
  fullname: Kim, Jun Seo
  organization: Department of Computer Engineering, Gachon University
– sequence: 2
  givenname: Jeong Hoon
  orcidid: 0000-0002-1789-8270
  surname: Lee
  fullname: Lee, Jeong Hoon
  organization: Department of Radiology, Stanford University School of Medicine
– sequence: 3
  givenname: Yousung
  orcidid: 0009-0006-3980-5078
  surname: Yeon
  fullname: Yeon, Yousung
  organization: Department of Computer Engineering, Gachon University
– sequence: 4
  givenname: Doyeon
  orcidid: 0000-0002-7331-5404
  surname: An
  fullname: An, Doyeon
  organization: Department of Computer Engineering, Gachon University
– sequence: 5
  givenname: Seok Jun
  orcidid: 0009-0009-1261-4855
  surname: Kim
  fullname: Kim, Seok Jun
  organization: Department of Computer Engineering, Gachon University
– sequence: 6
  givenname: Myung-Giun
  orcidid: 0000-0002-0646-1997
  surname: Noh
  fullname: Noh, Myung-Giun
  email: md.mgnoh@gmail.com
  organization: Department of Pathology, School of Medicine, Ajou University
– sequence: 7
  givenname: Suehyun
  orcidid: 0000-0003-0651-6481
  surname: Lee
  fullname: Lee, Suehyun
  email: leesh@gachon.ac.kr
  organization: Department of Computer Engineering, Gachon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40253353$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1r1jAYxYtM3If-A15IwRtvOvPRpOmVjKHbYKgXit6FfDztm5c2eU3awf5703Vue0UklIQnv3PKac9xceCDh6J4jdEpxoK_T5giJipEWH4Qbqv6WXGEa84qVpOfB0_Oh8VxSluEcCOYeFEc1llDKaNHxY-vEawzk_N9-TlMy75RY9lHZaF0vtQRVJpKo7yBWFrXu0kN5U5NmzCE_rac06JUZRdmb9Xkgi_HYGF4WTzv1JDg1f1-Unz_9PHb-WV1_eXi6vzsujKM46lSmmojtCJIK9wpAbrNQRDnlmpCLRCrMbSUa9PUNVKd5gxaRmxWd4gApifF1eprg9rKXXSjircyKCfvBiH2UsXJmQEk2JoZ0zSYN6ImjdCIWWIazoEDop3OXh9Wr92sR7AG_BTVsGe6f-PdRvbhRmKCkGg5yQ7v7h1i-DVDmuTokoFhUB7CnCTFLRaUCFxn9O1f6DbM0edvJWn-mSy7YfRI9SoncL4L-cVmMZVngnLCayLaTJ3-g8rLwuhMLk3n8nxP8OZp0oeIf3qRAbICJoaUInQPCEZyKZ9cyyezQN6VTy6R6CpKGfY9xMdI_1H9Bhwe2yo
Cites_doi 10.1038/s41591-019-0508-1
10.1093/database/baac093
10.1158/2159-8290.CD-12-0095
10.1109/CVPR.2016.90
10.1186/bcr2607
10.1109/CVPR46437.2021.01409
10.2196/38039
10.1002/gcc.23177
10.1038/s41379-020-00698-2
10.1158/0008-5472.CAN-15-1973
10.1109/CVPR52688.2022.01824
10.1038/s41591-024-02857-3
10.3322/caac.21660
10.1038/bjc.1957.43
10.1109/CVPR52729.2023.00326
10.1111/j.1365-2559.1991.tb00229.x
10.1111/joim.13030
10.5114/wo.2014.47136
10.1038/s41523-022-00478-y
10.1038/s41551-020-00682-w
10.1038/ng.2764
10.3322/caac.21834
10.1056/NEJMp1607591
10.1186/s13058-024-01770-4
10.1038/s41598-022-19112-9
10.1016/j.annonc.2021.09.007
10.1200/JCO.2007.15.5986
10.1182/blood-2017-03-735654
10.1007/s10549-020-05630-5
10.1158/0008-5472.CAN-23-0816
10.1093/nar/gkac194
10.1093/eurpub/ckq120
10.1109/ICCV48922.2021.00951
ContentType Journal Article
Copyright The Author(s) 2025 corrected publication 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025 corrected publication 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13058-025-02019-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1465-542X
EndPage 14
ExternalDocumentID oai_doaj_org_article_ed45cc7716784278b05d2c766e6e03fb
PMC12008962
A836264289
40253353
10_1186_s13058_025_02019_4
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Ajou University Medical Center
  grantid: M-2024-C0460-00073
– fundername: Korea Health Industry Development Institute
  grantid: HI23C1494
  funderid: https://doi.org/10.13039/501100003710
– fundername: Korea Health Industry Development Institute
  grantid: HI23C1494
GroupedDBID ---
04C
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABUWG
ACGFO
ACGFS
ACJQM
ACMJI
ACPRK
ADBBV
ADFRT
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BMSDO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DU5
E3Z
EBD
EBLON
EBS
EIHBH
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
ICW
IHR
INH
INR
ITC
KQ8
LGEZI
LOTEE
NADUK
NXXTH
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
U2A
UKHRP
WOQ
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c561t-ab3bc8ba20ba1fa8eb9019066d3b23de2db1e936bc7440afb65e952dc56f02e13
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471182700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1465-542X
1465-5411
IngestDate Fri Oct 03 12:52:02 EDT 2025
Tue Nov 04 02:03:58 EST 2025
Fri Sep 05 17:31:59 EDT 2025
Sat Oct 11 13:42:12 EDT 2025
Tue Nov 11 10:48:55 EST 2025
Tue Nov 04 18:13:21 EST 2025
Wed May 21 12:14:50 EDT 2025
Sat Nov 29 07:55:18 EST 2025
Sat Sep 06 07:25:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene ontology
Biological processes
Nottingham grade
Breast cancer
Gene expression data
Multiple instance learning
TCGA
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-ab3bc8ba20ba1fa8eb9019066d3b23de2db1e936bc7440afb65e952dc56f02e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7331-5404
0009-0006-3980-5078
0000-0002-1789-8270
0009-0009-1261-4855
0000-0002-0646-1997
0000-0003-0651-6481
0009-0006-9571-0209
OpenAccessLink https://www.proquest.com/publiccontent/docview/3201562310?pq-origsite=%requestingapplication%
PMID 40253353
PQID 3201562310
PQPubID 2034567
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_ed45cc7716784278b05d2c766e6e03fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12008962
proquest_miscellaneous_3191832814
proquest_journals_3201562310
gale_infotracmisc_A836264289
gale_infotracacademiconefile_A836264289
pubmed_primary_40253353
crossref_primary_10_1186_s13058_025_02019_4
springer_journals_10_1186_s13058_025_02019_4
PublicationCentury 2000
PublicationDate 2025-04-19
PublicationDateYYYYMMDD 2025-04-19
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Breast cancer research : BCR
PublicationTitleAbbrev Breast Cancer Res
PublicationTitleAlternate Breast Cancer Res
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 2019_CR32
M Asaoka (2019_CR25) 2020; 181
F Bray (2019_CR2) 2024; 74
2019_CR9
2019_CR30
SC Wetstein (2019_CR16) 2022; 12
RS Jacobson (2019_CR24) 2015; 75
R Jaroensri (2019_CR15) 2022; 8
2019_CR33
G Campanella (2019_CR12) 2019; 25
N Dd Brancati (2019_CR23) 2022; 2022
2019_CR34
B Acs (2019_CR8) 2020; 288
EA Rakha (2019_CR6) 2010; 12
RJ Chen (2019_CR10) 2024; 30
Z Shao (2019_CR31) 2021; 34
K Tomczak (2019_CR20) 2015; 19
CW Elston (2019_CR4) 1991; 19
RL Grossman (2019_CR37) 2016; 375
M Cooper (2019_CR11) 2023; 62
MY Lu (2019_CR29) 2021; 5
EA Rakha (2019_CR5) 2008; 26
I de Bruijn (2019_CR22) 2023; 83
MA Jensen (2019_CR18) 2017; 130
E Cerami (2019_CR21) 2012; 2
2019_CR28
PS Ginter (2019_CR7) 2021; 34
2019_CR26
H King (2019_CR13) 2023; 25
2019_CR27
A Sharma (2019_CR17) 2024; 26
BT Sherman (2019_CR35) 2022; 50
JN Weinstein (2019_CR19) 2013; 45
Y Wang (2019_CR14) 2022; 33
FA Vostakolaei (2019_CR36) 2011; 21
HJ Bloom (2019_CR3) 1957; 11
H Sung (2019_CR1) 2021; 71
40389997 - Breast Cancer Res. 2025 May 19;27(1):84. doi: 10.1186/s13058-025-02047-0.
References_xml – volume: 25
  start-page: 1301
  issue: 8
  year: 2019
  ident: 2019_CR12
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0508-1
– volume: 2022
  start-page: baac093
  year: 2022
  ident: 2019_CR23
  publication-title: Database (Oxford)
  doi: 10.1093/database/baac093
– volume: 2
  start-page: 401
  issue: 5
  year: 2012
  ident: 2019_CR21
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– ident: 2019_CR28
  doi: 10.1109/CVPR.2016.90
– ident: 2019_CR34
– volume: 12
  start-page: 207
  issue: 4
  year: 2010
  ident: 2019_CR6
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2607
– ident: 2019_CR32
  doi: 10.1109/CVPR46437.2021.01409
– volume: 25
  start-page: e38039
  year: 2023
  ident: 2019_CR13
  publication-title: J Med Internet Res
  doi: 10.2196/38039
– volume: 62
  start-page: 540
  issue: 9
  year: 2023
  ident: 2019_CR11
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.23177
– volume: 34
  start-page: 701
  issue: 4
  year: 2021
  ident: 2019_CR7
  publication-title: Mod Pathol
  doi: 10.1038/s41379-020-00698-2
– volume: 75
  start-page: 5194
  issue: 24
  year: 2015
  ident: 2019_CR24
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-1973
– ident: 2019_CR33
  doi: 10.1109/CVPR52688.2022.01824
– volume: 30
  start-page: 850
  issue: 3
  year: 2024
  ident: 2019_CR10
  publication-title: Nat Med
  doi: 10.1038/s41591-024-02857-3
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 2019_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– ident: 2019_CR27
– ident: 2019_CR30
– volume: 11
  start-page: 359
  issue: 3
  year: 1957
  ident: 2019_CR3
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1957.43
– ident: 2019_CR9
  doi: 10.1109/CVPR52729.2023.00326
– volume: 19
  start-page: 403
  issue: 5
  year: 1991
  ident: 2019_CR4
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.1991.tb00229.x
– volume: 288
  start-page: 62
  issue: 1
  year: 2020
  ident: 2019_CR8
  publication-title: J Intern Med
  doi: 10.1111/joim.13030
– volume: 19
  start-page: A68
  issue: 1A
  year: 2015
  ident: 2019_CR20
  publication-title: Contemp Oncol (Pozn)
  doi: 10.5114/wo.2014.47136
– volume: 34
  start-page: 2136
  year: 2021
  ident: 2019_CR31
  publication-title: Adv Neural Inf Process Syst
– volume: 8
  start-page: 113
  issue: 1
  year: 2022
  ident: 2019_CR15
  publication-title: NPJ Breast Cancer
  doi: 10.1038/s41523-022-00478-y
– volume: 5
  start-page: 555
  issue: 6
  year: 2021
  ident: 2019_CR29
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00682-w
– volume: 45
  start-page: 1113
  issue: 10
  year: 2013
  ident: 2019_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng.2764
– volume: 74
  start-page: 229
  issue: 3
  year: 2024
  ident: 2019_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21834
– volume: 375
  start-page: 1109
  issue: 12
  year: 2016
  ident: 2019_CR37
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1607591
– volume: 26
  start-page: 17
  issue: 1
  year: 2024
  ident: 2019_CR17
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-024-01770-4
– volume: 12
  start-page: 15102
  issue: 1
  year: 2022
  ident: 2019_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19112-9
– volume: 33
  start-page: 89
  issue: 1
  year: 2022
  ident: 2019_CR14
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2021.09.007
– volume: 26
  start-page: 3153
  issue: 19
  year: 2008
  ident: 2019_CR5
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.15.5986
– volume: 130
  start-page: 453
  issue: 4
  year: 2017
  ident: 2019_CR18
  publication-title: Blood
  doi: 10.1182/blood-2017-03-735654
– volume: 181
  start-page: 309
  issue: 2
  year: 2020
  ident: 2019_CR25
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-020-05630-5
– volume: 83
  start-page: 3861
  issue: 23
  year: 2023
  ident: 2019_CR22
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-23-0816
– volume: 50
  start-page: W216
  issue: W1
  year: 2022
  ident: 2019_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac194
– volume: 21
  start-page: 573
  issue: 5
  year: 2011
  ident: 2019_CR36
  publication-title: Eur J Public Health
  doi: 10.1093/eurpub/ckq120
– ident: 2019_CR26
  doi: 10.1109/ICCV48922.2021.00951
– reference: 40389997 - Breast Cancer Res. 2025 May 19;27(1):84. doi: 10.1186/s13058-025-02047-0.
SSID ssj0017858
Score 2.4559286
Snippet Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide....
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading...
Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide....
BackgroundThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide....
Abstract Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 58
SubjectTerms Algorithms
Artificial intelligence
Artificial intelligence in breast imaging
Automation
Biological processes
Biomedical and Life Sciences
Biomedicine
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Cancer
Cancer Research
Cell division
Female
Gene expression
Gene expression data
Gene ontology
Humans
Multiple instance learning
Neoplasm Grading - methods
Nottingham grade
Oncology
Pathology
Prognosis
Statistical analysis
Surgical Oncology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiEuCFoeoQUZCcEBosZO4tjHBVFxgFUPPHqz_Mp2D82i3S1S_z0zTrI0RYgLt9XaiWzPjGcm_vwNwEt0CrryIuTovlVehSjQpILIeRVtY0tb-1TO59unZj5XZ2f69FqpL8KE9fTA_cIdx1DV3jcY1jeKykK4og7CN1JGGYuydbT7Fo0ek6nh_KBRtRqvyCh5vMGdGodCpVsxPOI6ryZuKLH1_7knX3NKNwGTN05NkzM6uQ_3hiiSzfrRP4BbsduHg1mHGfTFFXvFEq4zfTDfhzufh-PzA_h-uqbfhHRm81VCPJ_bC7ZY2xDZsmOOEOpb5kkT1iwsF1RRhFHR4vQuRiD5BbOs3dViYqmSzkP4evLhy_uP-VBZIfcYL21z60rnlbOicJa3VkWn6U65lKF0okSBBcejLqXzxB9oWyfrqGsR8Om2EJGXj2CvW3XxCbAiaFc4fBVvOdGHaddyywvVaumjdiqDN-NCmx89gYZJiYeSpheLQbGYJBZTZfCOZLHrSeTX6Q9UCTOohPmXSmTwmiRpyERRXN4ONw1wwER2ZWaKOHgw79IZHE16omn5afOoC2Yw7Y0pBd0-p7A4gxe7ZnqS4GpdXF1iH8yCcatUHCf0uFed3ZQwYccQuy4zUBOlmsx52tItzxPxNyewipYig7ej_v0e198X9en_WNRDuCuS_VQ510ewt11fxmdw2__cLjfr58n6fgGB6jF3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgLj5ZHoCAjIThAROwkjn0siIoDrCoBpTfLr2z30CzKbpH498x4k4UUOMAtih-K7XnG38wAPEWloCsvQo7qW-VViAJZKoicV9E2trS1T-V8jt83s5k6OdFHQ1DYakS7j1eSSVIntlby1QqlLU5H5VfRxOE6ry7DlZqyzZCP_vF4e3fQqFqN4TF_HDdRQSlT_-_y-BeFdBEseeHGNCmiw5v_t4RbcGMwPNnBhlJuw6XY7cLeQYdO99l39owlKGj6x74L1z4MN-578OWop2cCR7PZMoGkT-0Zm_c2RLbomCNQ-5p5Ip6ehcWcipAwqnOc5mKEq58zy9pt-SaWiu_cgc-Hbz-9eZcPxRhyjybWOreudF45KwpneWtVdJrC0KUMpRMlnnFwPOpSOk8pB23rZB11LQKObgsReXkXdrplF-8DK4J2hcOpeMsp45h2Lbe8UK2WPmqnMngxno_5usm5YZKvoqTZbKHBLTRpC02VwWs6wm1PypedXiz7uRnYz8RQ1d436Bw2ioqLuKIOwjdSRhmLsnUZPCcCMMTVeMreDsEJ-MGUH8scKErbg66azmB_0hO50U-bRxIygzRYmVJQwDpZ0hk82TbTSEK4dXF5jn3QcUbpqjgu6N6G4rZLQh8frfK6zEBNaHGy5mlLtzhNucI54Vu0FBm8HEny53f9fVMf_Fv3h3BdJKqucq73YWfdn8dHcNV_Wy9W_ePEnj8AM1U1vg
  priority: 102
  providerName: Springer Nature
Title Predicting Nottingham grade in breast cancer digital pathology using a foundation model
URI https://link.springer.com/article/10.1186/s13058-025-02019-4
https://www.ncbi.nlm.nih.gov/pubmed/40253353
https://www.proquest.com/docview/3201562310
https://www.proquest.com/docview/3191832814
https://pubmed.ncbi.nlm.nih.gov/PMC12008962
https://doaj.org/article/ed45cc7716784278b05d2c766e6e03fb
Volume 27
WOSCitedRecordID wos001471182700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: RBZ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1465-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017858
  issn: 1465-542X
  databaseCode: RSV
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFiFe-Nj4CIzKSAgeIGqcT_sJdWgTSKyqBozyZNmO0_Vh6Ug7JP577ty0I0PwxEuVxk7ky53vfPbd_QBeoFGQqY3LEM23CNPSxTilyjjkqdOFTnRmPZzP6cdiPBbTqZy06dHLNqxyoxO9ol5Xe6a4bVTCw3Jhacd8mMSUAkxrk7cX30PCkKKz1hZQYwf6VHgr6kF_8uF48m17qlAIj9eJyiELs5TzTRKNyIdL1OU4WAJ3xQUUl2HaMVS-nv-fWvs3s3U9pPLauao3V0d3_y-h9-BOu2xlo7Wc3Ycbrt6FvVGNLvv5T_aS-UBSv0O_C7eO2_P6Pfg6aeiaQqvZeOFDrM_0OZs1unRsXjNDIfErZkn0GlbOZwRhwggl2b-LUVT-jGlWbcGfmIfueQBfjg4_v3sftlAOocUF2irUJjFWGB1HRvNKC2ckJbHneZmYOEEJKQ13MsmNpYKFujJ55mQWl_h0FcWOJw-hVy9q9xhYVEoTGXwVrzjVK5Om4ppHopK5ddKIAF5v-KYu1hU7lPd0RK7WXFbIZeW5rNIADoi1255UbdvfWDQz1U5e5co0s7ZA17IQBE1ioqyMbZHnLndRUpkAXpFgKNIJyH2r29QGHDBV11IjQUV_0NGTAex3euJctt3mjUyoVpcs1ZUIBPB820xPUnxc7RaX2AfdbtTNgiNBj9aSuCUpRXKTJEsCEB0Z7dDcbannZ77SOKfoGJnHAbzZiPPVuP7-UZ_8m4yncDv2Ey0NudyH3qq5dM_gpv2xmi-bAewU08L_igH0Dw7Hk5OB3ykZtNMZ_518Ov0FJsRTuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pKQNceLQ8DAXEDI8DeGrJj0gHhgmPTjNNMjkUKCchyXKaQ53ipDD9U_xGtIqd4jJw64Gbx5I1WuXbXSna3Q_gqXMKIjEsD5375mGSW-ZUKmchTazqqlilxtP5fBp0RyN-cCDGa_CzyYXBsMrGJnpDnc8M_ke-HTNM-sXdyJvjbyGyRuHtakOhsYTFnj394Y5s89f99-73fcbYzof9d7thzSoQGrdXWIRKx9pwrVikFS0Ut1pgPnWW5bFmsZtsrqkVcaYN1s5Thc5SK1KWu6-LiFkau3EvwXriwB51YH3cH46_rO4tutwzgjrzk4ZpQmmTpsOz7bnzFm45kD7WbdGoCJOWK_SMAX_6hd8c4_mgzXM3t94h7tz435byJlyvt96kt9SVW7Bmyw3Y7JVqMTs6Jc-JD4b1twwbcGVYxxxswudxhc8YHk5GMx8mfqiOyKRSuSXTkmgM618Qg-pTkXw6QRoWgkzPfiyCmQUTokixIrAinn7oNny8EGnvQKeclfYekCgXOtJuKFpQrLkmdEEVjXghMmOF5gG8bJAhj5dVR6Q_rfFMLnEkHY6kx5FMAniL4Fn1xIrh_sWsmsjaAEmbJ6kxXXc87nKkV9FRmjPTzTKb2SgudAAvEHoS7ZrDl1F1eoabMFYIkz2OhYvcYVUEsNXq6eyRaTc3qJO1PZzLM8gF8GTVjF9ijF9pZyeuDxXoXzh1At1dYn0lUuLEjeM0DoC3tKAlc7ulnB76aukUI3xExgJ41SjM2bz-vqj3_y3GY7i6uz8cyEF_tPcArjGv1klIxRZ0FtWJfQiXzffFdF49qk0Ega8XrUq_ABtuodo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagoIoLj5ZHoICREBwgauwkjn1cHisQZbXiUXqz_Mp2D81W2S0S_54ZJ7s0BQ6IWxSPrdie8czE38wQ8hSUgioc9ymob5kWPnAQKc9TVgRTmdyULpbzOTyoJhN5dKSm56L4I9p9fSXZxTRglqZmtX_q607EpdhfwskLQ2MpVjB3mEqLy-RKAZ4Mgro-fT7c3CNUspTrUJk_9huoo5i1__ez-ZxyugicvHB7GpXS-Mb_T-cmud4bpHTUcdAtcik0O2R31IAzfvKDPqMRIhr_ve-Q7Y_9Tfwu-TZt8RlB03SyiODpY3NCZ63xgc4bahHsvqIOmaqlfj7D4iQU6x_HsSji7WfU0HpT1onGojy3ydfx2y-v36V9kYbUgem1So3NrZPW8MwaVhsZrMLwdCF8bnkOe-8tCyoX1mEqQlNbUQZVcg-964wHlt8hW82iCfcIzbyymYWhWM0wE5myNTMsk7USLigrE_JivVf6tMvFoaMPI4XullDDEuq4hLpIyCvczg0l5tGOLxbtTPdiqYMvSucqcBoriUVHbFZ67iohgghZXtuEPEdm0CjtsOPO9EEL8MGYN0uPJKbzARdOJWRvQAlS6obNa3bS_Smx1DnHQHa0sBPyZNOMPRH51oTFGdCAQw2nrmQwobsd922mBL4_WOtlnhA54MvBnIctzfw45hBniHtRgifk5Zo9f33X3xf1_r-RPybb0zdjffB-8uEBucYjgxcpU3tka9WehYfkqvu-mi_bR1FqfwIdmkGG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Nottingham+grade+in+breast+cancer+digital+pathology+using+a+foundation+model&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Jun+Seo+Kim&rft.au=Lee%2C+Jeong+Hoon&rft.au=Yousung+Yeon&rft.au=Do-Yeon%2C+An&rft.date=2025-04-19&rft.pub=Springer+Nature+B.V&rft.issn=1465-5411&rft.eissn=1465-542X&rft.volume=27&rft.spage=1&rft_id=info:doi/10.1186%2Fs13058-025-02019-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon