Predicting Nottingham grade in breast cancer digital pathology using a foundation model
Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to int...
Uložené v:
| Vydané v: | Breast cancer research : BCR Ročník 27; číslo 1; s. 58 - 14 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
19.04.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1465-542X, 1465-5411, 1465-542X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.
Methods
To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.
Results
The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (
p
< 0.05).
Conclusion
Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. |
|---|---|
| AbstractList | Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. Keywords: Biological processes, Breast cancer, Gene expression data, Gene ontology, Multiple instance learning, Nottingham grade, TCGA The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. BackgroundThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.MethodsTo address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.ResultsThe best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).ConclusionOur AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival ( p < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. Abstract Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability. Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms. Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05). Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.BACKGROUNDThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.METHODSTo address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).RESULTSThe best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.CONCLUSIONOur AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice. |
| ArticleNumber | 58 |
| Audience | Academic |
| Author | An, Doyeon Noh, Myung-Giun Yeon, Yousung Kim, Jun Seo Kim, Seok Jun Lee, Suehyun Lee, Jeong Hoon |
| Author_xml | – sequence: 1 givenname: Jun Seo orcidid: 0009-0006-9571-0209 surname: Kim fullname: Kim, Jun Seo organization: Department of Computer Engineering, Gachon University – sequence: 2 givenname: Jeong Hoon orcidid: 0000-0002-1789-8270 surname: Lee fullname: Lee, Jeong Hoon organization: Department of Radiology, Stanford University School of Medicine – sequence: 3 givenname: Yousung orcidid: 0009-0006-3980-5078 surname: Yeon fullname: Yeon, Yousung organization: Department of Computer Engineering, Gachon University – sequence: 4 givenname: Doyeon orcidid: 0000-0002-7331-5404 surname: An fullname: An, Doyeon organization: Department of Computer Engineering, Gachon University – sequence: 5 givenname: Seok Jun orcidid: 0009-0009-1261-4855 surname: Kim fullname: Kim, Seok Jun organization: Department of Computer Engineering, Gachon University – sequence: 6 givenname: Myung-Giun orcidid: 0000-0002-0646-1997 surname: Noh fullname: Noh, Myung-Giun email: md.mgnoh@gmail.com organization: Department of Pathology, School of Medicine, Ajou University – sequence: 7 givenname: Suehyun orcidid: 0000-0003-0651-6481 surname: Lee fullname: Lee, Suehyun email: leesh@gachon.ac.kr organization: Department of Computer Engineering, Gachon University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40253353$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt1r1jAYxYtM3If-A15IwRtvOvPRpOmVjKHbYKgXit6FfDztm5c2eU3awf5703Vue0UklIQnv3PKac9xceCDh6J4jdEpxoK_T5giJipEWH4Qbqv6WXGEa84qVpOfB0_Oh8VxSluEcCOYeFEc1llDKaNHxY-vEawzk_N9-TlMy75RY9lHZaF0vtQRVJpKo7yBWFrXu0kN5U5NmzCE_rac06JUZRdmb9Xkgi_HYGF4WTzv1JDg1f1-Unz_9PHb-WV1_eXi6vzsujKM46lSmmojtCJIK9wpAbrNQRDnlmpCLRCrMbSUa9PUNVKd5gxaRmxWd4gApifF1eprg9rKXXSjircyKCfvBiH2UsXJmQEk2JoZ0zSYN6ImjdCIWWIazoEDop3OXh9Wr92sR7AG_BTVsGe6f-PdRvbhRmKCkGg5yQ7v7h1i-DVDmuTokoFhUB7CnCTFLRaUCFxn9O1f6DbM0edvJWn-mSy7YfRI9SoncL4L-cVmMZVngnLCayLaTJ3-g8rLwuhMLk3n8nxP8OZp0oeIf3qRAbICJoaUInQPCEZyKZ9cyyezQN6VTy6R6CpKGfY9xMdI_1H9Bhwe2yo |
| Cites_doi | 10.1038/s41591-019-0508-1 10.1093/database/baac093 10.1158/2159-8290.CD-12-0095 10.1109/CVPR.2016.90 10.1186/bcr2607 10.1109/CVPR46437.2021.01409 10.2196/38039 10.1002/gcc.23177 10.1038/s41379-020-00698-2 10.1158/0008-5472.CAN-15-1973 10.1109/CVPR52688.2022.01824 10.1038/s41591-024-02857-3 10.3322/caac.21660 10.1038/bjc.1957.43 10.1109/CVPR52729.2023.00326 10.1111/j.1365-2559.1991.tb00229.x 10.1111/joim.13030 10.5114/wo.2014.47136 10.1038/s41523-022-00478-y 10.1038/s41551-020-00682-w 10.1038/ng.2764 10.3322/caac.21834 10.1056/NEJMp1607591 10.1186/s13058-024-01770-4 10.1038/s41598-022-19112-9 10.1016/j.annonc.2021.09.007 10.1200/JCO.2007.15.5986 10.1182/blood-2017-03-735654 10.1007/s10549-020-05630-5 10.1158/0008-5472.CAN-23-0816 10.1093/nar/gkac194 10.1093/eurpub/ckq120 10.1109/ICCV48922.2021.00951 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 corrected publication 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 corrected publication 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s13058-025-02019-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1465-542X |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_ed45cc7716784278b05d2c766e6e03fb PMC12008962 A836264289 40253353 10_1186_s13058_025_02019_4 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: Ajou University Medical Center grantid: M-2024-C0460-00073 – fundername: Korea Health Industry Development Institute grantid: HI23C1494 funderid: https://doi.org/10.13039/501100003710 – fundername: Korea Health Industry Development Institute grantid: HI23C1494 |
| GroupedDBID | --- 04C 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABUWG ACGFO ACGFS ACJQM ACMJI ACPRK ADBBV ADFRT ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BMSDO BPHCQ BVXVI C6C CCPQU CS3 DU5 E3Z EBD EBLON EBS EIHBH F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO ICW IHR INH INR ITC KQ8 LGEZI LOTEE NADUK NXXTH O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RBZ ROL RPM RSV SBL SOJ TR2 U2A UKHRP WOQ AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c561t-ab3bc8ba20ba1fa8eb9019066d3b23de2db1e936bc7440afb65e952dc56f02e13 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471182700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-542X 1465-5411 |
| IngestDate | Fri Oct 03 12:52:02 EDT 2025 Tue Nov 04 02:03:58 EST 2025 Fri Sep 05 17:31:59 EDT 2025 Sat Oct 11 13:42:12 EDT 2025 Tue Nov 11 10:48:55 EST 2025 Tue Nov 04 18:13:21 EST 2025 Wed May 21 12:14:50 EDT 2025 Sat Nov 29 07:55:18 EST 2025 Sat Sep 06 07:25:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gene ontology Biological processes Nottingham grade Breast cancer Gene expression data Multiple instance learning TCGA |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c561t-ab3bc8ba20ba1fa8eb9019066d3b23de2db1e936bc7440afb65e952dc56f02e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7331-5404 0009-0006-3980-5078 0000-0002-1789-8270 0009-0009-1261-4855 0000-0002-0646-1997 0000-0003-0651-6481 0009-0006-9571-0209 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3201562310?pq-origsite=%requestingapplication% |
| PMID | 40253353 |
| PQID | 3201562310 |
| PQPubID | 2034567 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ed45cc7716784278b05d2c766e6e03fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_12008962 proquest_miscellaneous_3191832814 proquest_journals_3201562310 gale_infotracmisc_A836264289 gale_infotracacademiconefile_A836264289 pubmed_primary_40253353 crossref_primary_10_1186_s13058_025_02019_4 springer_journals_10_1186_s13058_025_02019_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-19 |
| PublicationDateYYYYMMDD | 2025-04-19 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Breast cancer research : BCR |
| PublicationTitleAbbrev | Breast Cancer Res |
| PublicationTitleAlternate | Breast Cancer Res |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 2019_CR32 M Asaoka (2019_CR25) 2020; 181 F Bray (2019_CR2) 2024; 74 2019_CR9 2019_CR30 SC Wetstein (2019_CR16) 2022; 12 RS Jacobson (2019_CR24) 2015; 75 R Jaroensri (2019_CR15) 2022; 8 2019_CR33 G Campanella (2019_CR12) 2019; 25 N Dd Brancati (2019_CR23) 2022; 2022 2019_CR34 B Acs (2019_CR8) 2020; 288 EA Rakha (2019_CR6) 2010; 12 RJ Chen (2019_CR10) 2024; 30 Z Shao (2019_CR31) 2021; 34 K Tomczak (2019_CR20) 2015; 19 CW Elston (2019_CR4) 1991; 19 RL Grossman (2019_CR37) 2016; 375 M Cooper (2019_CR11) 2023; 62 MY Lu (2019_CR29) 2021; 5 EA Rakha (2019_CR5) 2008; 26 I de Bruijn (2019_CR22) 2023; 83 MA Jensen (2019_CR18) 2017; 130 E Cerami (2019_CR21) 2012; 2 2019_CR28 PS Ginter (2019_CR7) 2021; 34 2019_CR26 H King (2019_CR13) 2023; 25 2019_CR27 A Sharma (2019_CR17) 2024; 26 BT Sherman (2019_CR35) 2022; 50 JN Weinstein (2019_CR19) 2013; 45 Y Wang (2019_CR14) 2022; 33 FA Vostakolaei (2019_CR36) 2011; 21 HJ Bloom (2019_CR3) 1957; 11 H Sung (2019_CR1) 2021; 71 40389997 - Breast Cancer Res. 2025 May 19;27(1):84. doi: 10.1186/s13058-025-02047-0. |
| References_xml | – volume: 25 start-page: 1301 issue: 8 year: 2019 ident: 2019_CR12 publication-title: Nat Med doi: 10.1038/s41591-019-0508-1 – volume: 2022 start-page: baac093 year: 2022 ident: 2019_CR23 publication-title: Database (Oxford) doi: 10.1093/database/baac093 – volume: 2 start-page: 401 issue: 5 year: 2012 ident: 2019_CR21 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – ident: 2019_CR28 doi: 10.1109/CVPR.2016.90 – ident: 2019_CR34 – volume: 12 start-page: 207 issue: 4 year: 2010 ident: 2019_CR6 publication-title: Breast Cancer Res doi: 10.1186/bcr2607 – ident: 2019_CR32 doi: 10.1109/CVPR46437.2021.01409 – volume: 25 start-page: e38039 year: 2023 ident: 2019_CR13 publication-title: J Med Internet Res doi: 10.2196/38039 – volume: 62 start-page: 540 issue: 9 year: 2023 ident: 2019_CR11 publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.23177 – volume: 34 start-page: 701 issue: 4 year: 2021 ident: 2019_CR7 publication-title: Mod Pathol doi: 10.1038/s41379-020-00698-2 – volume: 75 start-page: 5194 issue: 24 year: 2015 ident: 2019_CR24 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-1973 – ident: 2019_CR33 doi: 10.1109/CVPR52688.2022.01824 – volume: 30 start-page: 850 issue: 3 year: 2024 ident: 2019_CR10 publication-title: Nat Med doi: 10.1038/s41591-024-02857-3 – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 2019_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – ident: 2019_CR27 – ident: 2019_CR30 – volume: 11 start-page: 359 issue: 3 year: 1957 ident: 2019_CR3 publication-title: Br J Cancer doi: 10.1038/bjc.1957.43 – ident: 2019_CR9 doi: 10.1109/CVPR52729.2023.00326 – volume: 19 start-page: 403 issue: 5 year: 1991 ident: 2019_CR4 publication-title: Histopathology doi: 10.1111/j.1365-2559.1991.tb00229.x – volume: 288 start-page: 62 issue: 1 year: 2020 ident: 2019_CR8 publication-title: J Intern Med doi: 10.1111/joim.13030 – volume: 19 start-page: A68 issue: 1A year: 2015 ident: 2019_CR20 publication-title: Contemp Oncol (Pozn) doi: 10.5114/wo.2014.47136 – volume: 34 start-page: 2136 year: 2021 ident: 2019_CR31 publication-title: Adv Neural Inf Process Syst – volume: 8 start-page: 113 issue: 1 year: 2022 ident: 2019_CR15 publication-title: NPJ Breast Cancer doi: 10.1038/s41523-022-00478-y – volume: 5 start-page: 555 issue: 6 year: 2021 ident: 2019_CR29 publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00682-w – volume: 45 start-page: 1113 issue: 10 year: 2013 ident: 2019_CR19 publication-title: Nat Genet doi: 10.1038/ng.2764 – volume: 74 start-page: 229 issue: 3 year: 2024 ident: 2019_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21834 – volume: 375 start-page: 1109 issue: 12 year: 2016 ident: 2019_CR37 publication-title: N Engl J Med doi: 10.1056/NEJMp1607591 – volume: 26 start-page: 17 issue: 1 year: 2024 ident: 2019_CR17 publication-title: Breast Cancer Res doi: 10.1186/s13058-024-01770-4 – volume: 12 start-page: 15102 issue: 1 year: 2022 ident: 2019_CR16 publication-title: Sci Rep doi: 10.1038/s41598-022-19112-9 – volume: 33 start-page: 89 issue: 1 year: 2022 ident: 2019_CR14 publication-title: Ann Oncol doi: 10.1016/j.annonc.2021.09.007 – volume: 26 start-page: 3153 issue: 19 year: 2008 ident: 2019_CR5 publication-title: J Clin Oncol doi: 10.1200/JCO.2007.15.5986 – volume: 130 start-page: 453 issue: 4 year: 2017 ident: 2019_CR18 publication-title: Blood doi: 10.1182/blood-2017-03-735654 – volume: 181 start-page: 309 issue: 2 year: 2020 ident: 2019_CR25 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-020-05630-5 – volume: 83 start-page: 3861 issue: 23 year: 2023 ident: 2019_CR22 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-23-0816 – volume: 50 start-page: W216 issue: W1 year: 2022 ident: 2019_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac194 – volume: 21 start-page: 573 issue: 5 year: 2011 ident: 2019_CR36 publication-title: Eur J Public Health doi: 10.1093/eurpub/ckq120 – ident: 2019_CR26 doi: 10.1109/ICCV48922.2021.00951 – reference: 40389997 - Breast Cancer Res. 2025 May 19;27(1):84. doi: 10.1186/s13058-025-02047-0. |
| SSID | ssj0017858 |
| Score | 2.4559286 |
| Snippet | Background
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide.... The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading... Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide.... BackgroundThe Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide.... Abstract Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Algorithms Artificial intelligence Artificial intelligence in breast imaging Automation Biological processes Biomedical and Life Sciences Biomedicine Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - genetics Breast Neoplasms - mortality Breast Neoplasms - pathology Cancer Cancer Research Cell division Female Gene expression Gene expression data Gene ontology Humans Multiple instance learning Neoplasm Grading - methods Nottingham grade Oncology Pathology Prognosis Statistical analysis Surgical Oncology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiEuCFoeoQUZCcEBosZO4tjHBVFxgFUPPHqz_Mp2D82i3S1S_z0zTrI0RYgLt9XaiWzPjGcm_vwNwEt0CrryIuTovlVehSjQpILIeRVtY0tb-1TO59unZj5XZ2f69FqpL8KE9fTA_cIdx1DV3jcY1jeKykK4og7CN1JGGYuydbT7Fo0ek6nh_KBRtRqvyCh5vMGdGodCpVsxPOI6ryZuKLH1_7knX3NKNwGTN05NkzM6uQ_3hiiSzfrRP4BbsduHg1mHGfTFFXvFEq4zfTDfhzufh-PzA_h-uqbfhHRm81VCPJ_bC7ZY2xDZsmOOEOpb5kkT1iwsF1RRhFHR4vQuRiD5BbOs3dViYqmSzkP4evLhy_uP-VBZIfcYL21z60rnlbOicJa3VkWn6U65lKF0okSBBcejLqXzxB9oWyfrqGsR8Om2EJGXj2CvW3XxCbAiaFc4fBVvOdGHaddyywvVaumjdiqDN-NCmx89gYZJiYeSpheLQbGYJBZTZfCOZLHrSeTX6Q9UCTOohPmXSmTwmiRpyERRXN4ONw1wwER2ZWaKOHgw79IZHE16omn5afOoC2Yw7Y0pBd0-p7A4gxe7ZnqS4GpdXF1iH8yCcatUHCf0uFed3ZQwYccQuy4zUBOlmsx52tItzxPxNyewipYig7ej_v0e198X9en_WNRDuCuS_VQ510ewt11fxmdw2__cLjfr58n6fgGB6jF3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgLj5ZHoCAjIThAROwkjn0siIoDrCoBpTfLr2z30CzKbpH498x4k4UUOMAtih-K7XnG38wAPEWloCsvQo7qW-VViAJZKoicV9E2trS1T-V8jt83s5k6OdFHQ1DYakS7j1eSSVIntlby1QqlLU5H5VfRxOE6ry7DlZqyzZCP_vF4e3fQqFqN4TF_HDdRQSlT_-_y-BeFdBEseeHGNCmiw5v_t4RbcGMwPNnBhlJuw6XY7cLeQYdO99l39owlKGj6x74L1z4MN-578OWop2cCR7PZMoGkT-0Zm_c2RLbomCNQ-5p5Ip6ehcWcipAwqnOc5mKEq58zy9pt-SaWiu_cgc-Hbz-9eZcPxRhyjybWOreudF45KwpneWtVdJrC0KUMpRMlnnFwPOpSOk8pB23rZB11LQKObgsReXkXdrplF-8DK4J2hcOpeMsp45h2Lbe8UK2WPmqnMngxno_5usm5YZKvoqTZbKHBLTRpC02VwWs6wm1PypedXiz7uRnYz8RQ1d436Bw2ioqLuKIOwjdSRhmLsnUZPCcCMMTVeMreDsEJ-MGUH8scKErbg66azmB_0hO50U-bRxIygzRYmVJQwDpZ0hk82TbTSEK4dXF5jn3QcUbpqjgu6N6G4rZLQh8frfK6zEBNaHGy5mlLtzhNucI54Vu0FBm8HEny53f9fVMf_Fv3h3BdJKqucq73YWfdn8dHcNV_Wy9W_ePEnj8AM1U1vg priority: 102 providerName: Springer Nature |
| Title | Predicting Nottingham grade in breast cancer digital pathology using a foundation model |
| URI | https://link.springer.com/article/10.1186/s13058-025-02019-4 https://www.ncbi.nlm.nih.gov/pubmed/40253353 https://www.proquest.com/docview/3201562310 https://www.proquest.com/docview/3191832814 https://pubmed.ncbi.nlm.nih.gov/PMC12008962 https://doaj.org/article/ed45cc7716784278b05d2c766e6e03fb |
| Volume | 27 |
| WOSCitedRecordID | wos001471182700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RBZ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1465-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017858 issn: 1465-542X databaseCode: RSV dateStart: 19991201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFiFe-Nj4CIzKSAgeIGqcT_sJdWgTSKyqBozyZNmO0_Vh6Ug7JP577ty0I0PwxEuVxk7ky53vfPbd_QBeoFGQqY3LEM23CNPSxTilyjjkqdOFTnRmPZzP6cdiPBbTqZy06dHLNqxyoxO9ol5Xe6a4bVTCw3Jhacd8mMSUAkxrk7cX30PCkKKz1hZQYwf6VHgr6kF_8uF48m17qlAIj9eJyiELs5TzTRKNyIdL1OU4WAJ3xQUUl2HaMVS-nv-fWvs3s3U9pPLauao3V0d3_y-h9-BOu2xlo7Wc3Ycbrt6FvVGNLvv5T_aS-UBSv0O_C7eO2_P6Pfg6aeiaQqvZeOFDrM_0OZs1unRsXjNDIfErZkn0GlbOZwRhwggl2b-LUVT-jGlWbcGfmIfueQBfjg4_v3sftlAOocUF2irUJjFWGB1HRvNKC2ckJbHneZmYOEEJKQ13MsmNpYKFujJ55mQWl_h0FcWOJw-hVy9q9xhYVEoTGXwVrzjVK5Om4ppHopK5ddKIAF5v-KYu1hU7lPd0RK7WXFbIZeW5rNIADoi1255UbdvfWDQz1U5e5co0s7ZA17IQBE1ioqyMbZHnLndRUpkAXpFgKNIJyH2r29QGHDBV11IjQUV_0NGTAex3euJctt3mjUyoVpcs1ZUIBPB820xPUnxc7RaX2AfdbtTNgiNBj9aSuCUpRXKTJEsCEB0Z7dDcbannZ77SOKfoGJnHAbzZiPPVuP7-UZ_8m4yncDv2Ey0NudyH3qq5dM_gpv2xmi-bAewU08L_igH0Dw7Hk5OB3ykZtNMZ_518Ov0FJsRTuQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pKQNceLQ8DAXEDI8DeGrJj0gHhgmPTjNNMjkUKCchyXKaQ53ipDD9U_xGtIqd4jJw64Gbx5I1WuXbXSna3Q_gqXMKIjEsD5375mGSW-ZUKmchTazqqlilxtP5fBp0RyN-cCDGa_CzyYXBsMrGJnpDnc8M_ke-HTNM-sXdyJvjbyGyRuHtakOhsYTFnj394Y5s89f99-73fcbYzof9d7thzSoQGrdXWIRKx9pwrVikFS0Ut1pgPnWW5bFmsZtsrqkVcaYN1s5Thc5SK1KWu6-LiFkau3EvwXriwB51YH3cH46_rO4tutwzgjrzk4ZpQmmTpsOz7bnzFm45kD7WbdGoCJOWK_SMAX_6hd8c4_mgzXM3t94h7tz435byJlyvt96kt9SVW7Bmyw3Y7JVqMTs6Jc-JD4b1twwbcGVYxxxswudxhc8YHk5GMx8mfqiOyKRSuSXTkmgM618Qg-pTkXw6QRoWgkzPfiyCmQUTokixIrAinn7oNny8EGnvQKeclfYekCgXOtJuKFpQrLkmdEEVjXghMmOF5gG8bJAhj5dVR6Q_rfFMLnEkHY6kx5FMAniL4Fn1xIrh_sWsmsjaAEmbJ6kxXXc87nKkV9FRmjPTzTKb2SgudAAvEHoS7ZrDl1F1eoabMFYIkz2OhYvcYVUEsNXq6eyRaTc3qJO1PZzLM8gF8GTVjF9ijF9pZyeuDxXoXzh1At1dYn0lUuLEjeM0DoC3tKAlc7ulnB76aukUI3xExgJ41SjM2bz-vqj3_y3GY7i6uz8cyEF_tPcArjGv1klIxRZ0FtWJfQiXzffFdF49qk0Ega8XrUq_ABtuodo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagoIoLj5ZHoICREBwgauwkjn1cHisQZbXiUXqz_Mp2D81W2S0S_54ZJ7s0BQ6IWxSPrdie8czE38wQ8hSUgioc9ymob5kWPnAQKc9TVgRTmdyULpbzOTyoJhN5dKSm56L4I9p9fSXZxTRglqZmtX_q607EpdhfwskLQ2MpVjB3mEqLy-RKAZ4Mgro-fT7c3CNUspTrUJk_9huoo5i1__ez-ZxyugicvHB7GpXS-Mb_T-cmud4bpHTUcdAtcik0O2R31IAzfvKDPqMRIhr_ve-Q7Y_9Tfwu-TZt8RlB03SyiODpY3NCZ63xgc4bahHsvqIOmaqlfj7D4iQU6x_HsSji7WfU0HpT1onGojy3ydfx2y-v36V9kYbUgem1So3NrZPW8MwaVhsZrMLwdCF8bnkOe-8tCyoX1mEqQlNbUQZVcg-964wHlt8hW82iCfcIzbyymYWhWM0wE5myNTMsk7USLigrE_JivVf6tMvFoaMPI4XullDDEuq4hLpIyCvczg0l5tGOLxbtTPdiqYMvSucqcBoriUVHbFZ67iohgghZXtuEPEdm0CjtsOPO9EEL8MGYN0uPJKbzARdOJWRvQAlS6obNa3bS_Smx1DnHQHa0sBPyZNOMPRH51oTFGdCAQw2nrmQwobsd922mBL4_WOtlnhA54MvBnIctzfw45hBniHtRgifk5Zo9f33X3xf1_r-RPybb0zdjffB-8uEBucYjgxcpU3tka9WehYfkqvu-mi_bR1FqfwIdmkGG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Nottingham+grade+in+breast+cancer+digital+pathology+using+a+foundation+model&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Jun+Seo+Kim&rft.au=Lee%2C+Jeong+Hoon&rft.au=Yousung+Yeon&rft.au=Do-Yeon%2C+An&rft.date=2025-04-19&rft.pub=Springer+Nature+B.V&rft.issn=1465-5411&rft.eissn=1465-542X&rft.volume=27&rft.spage=1&rft_id=info:doi/10.1186%2Fs13058-025-02019-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon |