Trimmed fuzzy clustering of financial time series based on dynamic time warping

In finance, cluster analysis is a tool particularly useful for classifying stock market multivariate time series data related to daily returns, volatility daily stocks returns, commodity prices, volume trading, index, enhanced index tracking portfolio, and so on. In the literature, following differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 299; H. 1-2; S. 1379 - 1395
Hauptverfasser: D’Urso, Pierpaolo, De Giovanni, Livia, Massari, Riccardo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In finance, cluster analysis is a tool particularly useful for classifying stock market multivariate time series data related to daily returns, volatility daily stocks returns, commodity prices, volume trading, index, enhanced index tracking portfolio, and so on. In the literature, following different methodological approaches, several clustering methods have been proposed for clustering multivariate time series. In this paper by adopting a fuzzy approach and using the Partitioning Around Medoids strategy, we suggest to cluster multivariate financial time series by considering the dynamic time warping distance. In particular, we proposed a robust clustering method capable to neutralize the negative effects of possible outliers in the clustering process. The clustering method achieves its robustness by adopting a suitable trimming procedure to identify multivariate financial time series more distant from the bulk of data. The proposed clustering method is applied to the stocks composing the FTSE MIB index to identify common time patterns and possible outliers.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-019-03284-1