Trimmed fuzzy clustering of financial time series based on dynamic time warping
In finance, cluster analysis is a tool particularly useful for classifying stock market multivariate time series data related to daily returns, volatility daily stocks returns, commodity prices, volume trading, index, enhanced index tracking portfolio, and so on. In the literature, following differe...
Gespeichert in:
| Veröffentlicht in: | Annals of operations research Jg. 299; H. 1-2; S. 1379 - 1395 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In finance, cluster analysis is a tool particularly useful for classifying stock market multivariate time series data related to daily returns, volatility daily stocks returns, commodity prices, volume trading, index, enhanced index tracking portfolio, and so on. In the literature, following different methodological approaches, several clustering methods have been proposed for clustering multivariate time series. In this paper by adopting a fuzzy approach and using the Partitioning Around Medoids strategy, we suggest to cluster multivariate financial time series by considering the dynamic time warping distance. In particular, we proposed a robust clustering method capable to neutralize the negative effects of possible outliers in the clustering process. The clustering method achieves its robustness by adopting a suitable trimming procedure to identify multivariate financial time series more distant from the bulk of data. The proposed clustering method is applied to the stocks composing the FTSE MIB index to identify common time patterns and possible outliers. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-019-03284-1 |