Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer

This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF 6 salt and fluoroethylene carbonate (FEC) additives in propylen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances Jg. 12; H. 2; S. 971 - 984
Hauptverfasser: Bouibes, Amine, Takenaka, Norio, Kubota, Kei, Komaba, Shinichi, Nagaoka, Masataka
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Royal Society of Chemistry 05.01.2022
The Royal Society of Chemistry
Schlagworte:
ISSN:2046-2069, 2046-2069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF 6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs. This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs).
AbstractList This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs. This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs).
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF₆ salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF 6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF 6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs. This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs).
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
Author Takenaka, Norio
Bouibes, Amine
Kubota, Kei
Komaba, Shinichi
Nagaoka, Masataka
AuthorAffiliation Graduate School of Informatics
Kyoto University
Department of Applied Chemistry
The University of Tokyo
ESICB
Tokyo University of Science
Nagoya University
Graduate School of Engineering
AuthorAffiliation_xml – name: Graduate School of Engineering
– name: ESICB
– name: Kyoto University
– name: The University of Tokyo
– name: Nagoya University
– name: Department of Applied Chemistry
– name: Tokyo University of Science
– name: Graduate School of Informatics
Author_xml – sequence: 1
  givenname: Amine
  surname: Bouibes
  fullname: Bouibes, Amine
– sequence: 2
  givenname: Norio
  surname: Takenaka
  fullname: Takenaka, Norio
– sequence: 3
  givenname: Kei
  surname: Kubota
  fullname: Kubota, Kei
– sequence: 4
  givenname: Shinichi
  surname: Komaba
  fullname: Komaba, Shinichi
– sequence: 5
  givenname: Masataka
  surname: Nagaoka
  fullname: Nagaoka, Masataka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35425108$$D View this record in MEDLINE/PubMed
https://insa-toulouse.hal.science/hal-04137594$$DView record in HAL
BookMark eNqNkkFv0zAUxyM0xMbYhTvIEhdAKtixkzgckKpt0EkFpAFn69V5WT05cWY7lfod-NC461ZGxQFfbD___n_7-b2n2UHvesyy54y-Y5TX7xvmgVac8-Wj7CinopzktKwPHqwPs5MQrmkaZcHykj3JDnkh8oJReZT9OsMVWjd02EfiWgLNCnqNDUGLOnpn1xEDMT35ChPjerKAGNEbDB8IDIM1GuImnJRxieQyCb-4tO8wLl1DWudJ55LTaMGTEP2o4-iRNBjM1U71_fyCWFijf5Y9bsEGPLmbj7Ofn85_nM4m82-fL06n84kuShYntYZCIkjBqdBVLkrMFxxBy6KoKBMtBVEg1k3DaVtXbYkLEIAtb7CkQmrgx9nHre8wLjpsdMrdg1WDNx34tXJg1N8nvVmqK7dSsq6klDQZvNkaLPdks-lcbWJUMF4VtVixxL6-u8y7mxFDVJ0JGq2FHt0YVJ6qUqan5_V_oEJKXlZFntBXe-i1G32ffi1RrErFrsTG8OXDRHdPva9_AugW0N6F4LFV2sTbkqa8jVWMqk2XqTN2Ob3tslmSvN2T3Lv-E36xhX3QO-5Py_LfVvrcew
CitedBy_id crossref_primary_10_1002_smtd_202400365
crossref_primary_10_3390_ma16052069
crossref_primary_10_1016_j_est_2024_112629
crossref_primary_10_1016_j_mtsust_2023_100385
crossref_primary_10_1039_D2RA04277K
crossref_primary_10_1021_acs_jpcc_4c06002
crossref_primary_10_1016_j_jpowsour_2023_233051
crossref_primary_10_1016_j_jechem_2024_02_055
crossref_primary_10_1016_j_catcom_2023_106603
crossref_primary_10_1002_wcms_1714
crossref_primary_10_1007_s12274_022_5325_z
crossref_primary_10_1039_D4MH01118J
crossref_primary_10_3390_batteries9110530
crossref_primary_10_1016_j_apenergy_2025_125509
crossref_primary_10_1021_jacs_4c12469
crossref_primary_10_1007_s10853_025_11484_3
crossref_primary_10_1016_j_nanoen_2024_109389
Cites_doi 10.1021/acs.jpcb.0c10622
10.1021/ja205119g
10.1073/pnas.1602473113
10.1021/acsami.7b05613
10.1149/2.0301514jes
10.1016/S0009-2614(99)01374-3
10.1021/jp3086304
10.1016/j.jpowsour.2018.08.025
10.1021/jp5018696
10.1002/aenm.201800079
10.1021/acs.jpcb.0c10977
10.1002/anie.202004433
10.1016/0025-5408(80)90012-4
10.1021/cr500003w
10.1016/j.elecom.2014.04.014
10.1039/C8EE03586E
10.1038/s41524-017-0060-9
10.1149/1.1357316
10.1002/jcc.25865
10.3390/suschem2010011
10.1149/2.1441707jes
10.1021/ja405079s
10.1021/acs.accounts.6b00363
10.1002/adfm.201100854
10.1142/p291
10.1002/jcc.20035
10.1149/1.1633765
10.1021/ja0164529
10.1149/1.2086855
10.1016/j.cplett.2013.08.017
10.1063/1.5034771
10.1149/2.0241711jes
10.1021/am200973k
10.1002/aenm.201901431
10.1021/jp512333h
10.1149/1.2220849
10.1016/j.ensm.2018.09.024
10.1039/C5CC02901E
10.1016/j.carbon.2016.04.008
10.1002/adfm.201605989
10.1021/jp210345b
10.1021/acs.jpcc.5b04206
10.1021/acsami.8b07530
10.1002/tcr.201800137
10.1021/acs.nanolett.8b00298
10.1016/0167-2738(88)90351-7
10.1038/s41598-020-79038-y
10.1021/ma034971l
10.1021/jp014371t
10.1021/acs.nanolett.7b04688
10.1039/C5CP07583A
10.1016/S1452-3981(23)04865-4
10.1149/1.2056228
10.1016/0167-2738(81)90076-X
10.1021/acs.jpcc.7b11650
10.1021/cr030203g
10.1021/acsami.0c10472
10.1149/2.0091513jes
10.1149/1.2221153
10.1021/ja017073i
10.1039/D0TA11689K
10.1002/adma.202100574
10.1002/jcc.25707
10.1038/s41598-016-0028-x
10.1002/smll.201703576
10.1149/1.1838857
10.1039/b925853a
10.1063/1.4983396
10.1002/celc.201600365
10.1021/acs.jpclett.9b02392
10.1021/cr500192f
10.1149/2.092401jes
10.1021/acs.jpcc.6b08688
10.1039/C6RA09560G
10.1002/adma.201606860
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2022
Distributed under a Creative Commons Attribution 4.0 International License
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
1XC
5PM
DOI 10.1039/d1ra07333h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 2046-2069
EndPage 984
ExternalDocumentID PMC8978880
oai:HAL:hal-04137594v1
35425108
10_1039_D1RA07333H
d1ra07333h
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: JPMXP0112101003
GroupedDBID -JG
0-7
0R~
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGMRB
AHGCF
AKBGW
APEMP
CITATION
M~E
PGMZT
AGEGJ
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
1XC
5PM
ID FETCH-LOGICAL-c561t-9ca58ea84304c7246e2b3eac8557014f0a45ee9dd30f97f6eba4aef3de6048ca3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Tue Nov 04 02:00:11 EST 2025
Tue Oct 14 20:41:38 EDT 2025
Thu Sep 04 19:15:17 EDT 2025
Sun Nov 09 10:47:19 EST 2025
Sun Nov 09 06:47:32 EST 2025
Mon Jul 21 06:01:28 EDT 2025
Sat Nov 29 06:12:41 EST 2025
Tue Nov 18 20:56:51 EST 2025
Sat Dec 24 11:32:12 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c561t-9ca58ea84304c7246e2b3eac8557014f0a45ee9dd30f97f6eba4aef3de6048ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
ORCID 0000-0002-1735-7319
0000-0001-8941-3650
0000-0002-9757-5905
0000-0002-6655-9582
OpenAccessLink http://dx.doi.org/10.1039/d1ra07333h
PMID 35425108
PQID 2617000749
PQPubID 2047525
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_04137594v1
proquest_miscellaneous_2648836752
rsc_primary_d1ra07333h
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8978880
proquest_miscellaneous_2651685529
crossref_citationtrail_10_1039_D1RA07333H
crossref_primary_10_1039_D1RA07333H
proquest_journals_2617000749
pubmed_primary_35425108
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Sawai (D1RA07333H/cit9/1) 1990; 5
Che (D1RA07333H/cit29/1) 2018; 407
Shu (D1RA07333H/cit75/1) 1993; 140
Iermakova (D1RA07333H/cit25/1) 2015; 162
Yang (D1RA07333H/cit30/1) 2021; 9
Suzuki (D1RA07333H/cit57/1) 2015; 119
Fong (D1RA07333H/cit8/1) 1990; 137
Leung (D1RA07333H/cit42/1) 2010; 12
Li (D1RA07333H/cit49/1) 2016; 49
Wang (D1RA07333H/cit39/1) 2002; 106
Chen (D1RA07333H/cit27/1) 2015; 51
Takenaka (D1RA07333H/cit65/1) 2019; 19
Bouibes (D1RA07333H/cit60/1) 2018; 10
Zhao (D1RA07333H/cit2/1) 2021; 2
Bouibes (D1RA07333H/cit63/1) 2019; 10
Wang (D1RA07333H/cit38/1) 2002; 124
Nagaoka (D1RA07333H/cit56/1) 2013; 583
Zhang (D1RA07333H/cit31/1) 2017; 27
Soto (D1RA07333H/cit70/1) 2017; 29
Wróbel (D1RA07333H/cit52/1) 2021; 125
Miyazaki (D1RA07333H/cit44/1) 2020; 12
Dahbi (D1RA07333H/cit71/1) 2014; 44
Vollmer (D1RA07333H/cit40/1) 2003; 151
Zhao (D1RA07333H/cit34/1) 2015; 10
Bedrov (D1RA07333H/cit53/1) 2012; 116
Xu (D1RA07333H/cit19/1) 2014; 114
Horowitz (D1RA07333H/cit32/1) 2018; 18
Horowitz (D1RA07333H/cit33/1) 2018; 18
Bouibes (D1RA07333H/cit51/1) 2020; 10
Wang (D1RA07333H/cit35/1) 2018; 4
Ganesh (D1RA07333H/cit45/1) 2012; 116
Inagaki (D1RA07333H/cit77/1) 2019; 40
Ge (D1RA07333H/cit11/1) 1988; 28
Hofmann (D1RA07333H/cit72/1) 2003; 36
Komaba (D1RA07333H/cit26/1) 2011; 3
Misawa (D1RA07333H/cit67/1) 2021; 125
Balbuena (D1RA07333H/cit74/1) 2004
Ushirogata (D1RA07333H/cit69/1) 2015; 162
Liu (D1RA07333H/cit41/1) 2019; 17
Takenaka (D1RA07333H/cit61/1) 2018; 122
Delmas (D1RA07333H/cit7/1) 1981; 3
Li (D1RA07333H/cit36/1) 2000; 317
Bommier (D1RA07333H/cit15/1) 2018; 14
Wang (D1RA07333H/cit37/1) 2001; 123
Peled (D1RA07333H/cit21/1) 2017; 164
Röder (D1RA07333H/cit17/1) 2017; 164
Yan (D1RA07333H/cit28/1) 2019; 9
Yabuuchi (D1RA07333H/cit3/1) 2014; 114
Leung (D1RA07333H/cit43/1) 2011; 133
Li (D1RA07333H/cit50/1) 2019; 12
Arora (D1RA07333H/cit16/1) 1998; 145
An (D1RA07333H/cit20/1) 2016; 105
Wang (D1RA07333H/cit73/1) 2004; 25
Okuno (D1RA07333H/cit48/1) 2016; 18
Matsumoto (D1RA07333H/cit66/1) 2019; 40
Islam (D1RA07333H/cit54/1) 2016; 120
Mizushima (D1RA07333H/cit6/1) 1980; 15
Takenaka (D1RA07333H/cit62/1) 2014; 118
Doeff (D1RA07333H/cit12/1) 1993; 140
Zhang (D1RA07333H/cit1/1) 2021; 60
Xu (D1RA07333H/cit18/1) 2004; 104
Wang (D1RA07333H/cit22/1) 2018; 4
Liu (D1RA07333H/cit13/1) 2016; 113
Ushirogata (D1RA07333H/cit46/1) 2013; 135
Ohzuku (D1RA07333H/cit10/1) 1993; 140
Fujie (D1RA07333H/cit64/1) 2018; 149
Suzuki (D1RA07333H/cit58/1) 2017; 146
Takenaka (D1RA07333H/cit76/1) 2021
Shi (D1RA07333H/cit55/1) 2017; 9
Komaba (D1RA07333H/cit5/1) 2011; 21
Moshkovich (D1RA07333H/cit24/1) 2001; 148
Dahbi (D1RA07333H/cit23/1) 2016; 3
Leung (D1RA07333H/cit47/1) 2013; 161
Ma (D1RA07333H/cit4/1) 2017; 7
Takenaka (D1RA07333H/cit59/1) 2015; 119
Chayambuka (D1RA07333H/cit14/1) 2018; 8
Purushotham (D1RA07333H/cit68/1) 2016; 6
References_xml – issn: 2004
  publication-title: Lithium-ion batteries: solid-electrolyte interphase
  doi: Balbuena Wang
– volume: 125
  start-page: 1248
  year: 2021
  ident: D1RA07333H/cit52/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c10622
– volume: 133
  start-page: 14741
  year: 2011
  ident: D1RA07333H/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205119g
– volume: 113
  start-page: 3735
  year: 2016
  ident: D1RA07333H/cit13/1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1602473113
– volume: 9
  start-page: 22063
  year: 2017
  ident: D1RA07333H/cit55/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05613
– volume: 162
  start-page: A2670
  year: 2015
  ident: D1RA07333H/cit69/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0301514jes
– volume: 317
  start-page: 421
  year: 2000
  ident: D1RA07333H/cit36/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01374-3
– volume: 116
  start-page: 24476
  year: 2012
  ident: D1RA07333H/cit45/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3086304
– volume: 407
  start-page: 173
  year: 2018
  ident: D1RA07333H/cit29/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.025
– volume: 118
  start-page: 10874
  year: 2014
  ident: D1RA07333H/cit62/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5018696
– volume: 8
  start-page: 1800079
  year: 2018
  ident: D1RA07333H/cit14/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800079
– volume: 125
  start-page: 1453
  year: 2021
  ident: D1RA07333H/cit67/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c10977
– volume: 60
  start-page: 598
  year: 2021
  ident: D1RA07333H/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004433
– volume: 15
  start-page: 783
  year: 1980
  ident: D1RA07333H/cit6/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(80)90012-4
– volume: 114
  start-page: 11503
  year: 2014
  ident: D1RA07333H/cit19/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 44
  start-page: 66
  year: 2014
  ident: D1RA07333H/cit71/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.04.014
– volume: 12
  start-page: 1286
  year: 2019
  ident: D1RA07333H/cit50/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03586E
– volume: 4
  start-page: 1
  year: 2018
  ident: D1RA07333H/cit22/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0060-9
– volume: 148
  start-page: E155
  year: 2001
  ident: D1RA07333H/cit24/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1357316
– volume: 40
  start-page: 2131
  year: 2019
  ident: D1RA07333H/cit77/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25865
– volume: 2
  start-page: 167
  year: 2021
  ident: D1RA07333H/cit2/1
  publication-title: Sustainable Chem.
  doi: 10.3390/suschem2010011
– volume: 164
  start-page: A1703
  year: 2017
  ident: D1RA07333H/cit21/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1441707jes
– volume: 135
  start-page: 11967
  year: 2013
  ident: D1RA07333H/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405079s
– volume: 49
  start-page: 2363
  year: 2016
  ident: D1RA07333H/cit49/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00363
– volume: 21
  start-page: 3859
  year: 2011
  ident: D1RA07333H/cit5/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100854
– volume-title: Lithium-ion batteries: solid-electrolyte interphase
  year: 2004
  ident: D1RA07333H/cit74/1
  doi: 10.1142/p291
– volume: 25
  start-page: 1157
  year: 2004
  ident: D1RA07333H/cit73/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 151
  start-page: A178
  year: 2003
  ident: D1RA07333H/cit40/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1633765
– volume: 123
  start-page: 11708
  year: 2001
  ident: D1RA07333H/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0164529
– volume: 137
  start-page: 2009
  year: 1990
  ident: D1RA07333H/cit8/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086855
– volume: 583
  start-page: 80
  year: 2013
  ident: D1RA07333H/cit56/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.08.017
– volume: 149
  start-page: 044113
  year: 2018
  ident: D1RA07333H/cit64/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5034771
– volume: 164
  start-page: E3335
  year: 2017
  ident: D1RA07333H/cit17/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0241711jes
– volume: 3
  start-page: 4165
  year: 2011
  ident: D1RA07333H/cit26/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200973k
– volume: 9
  start-page: 1901431
  year: 2019
  ident: D1RA07333H/cit28/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901431
– volume: 119
  start-page: 6776
  year: 2015
  ident: D1RA07333H/cit57/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp512333h
– volume: 140
  start-page: 2490
  year: 1993
  ident: D1RA07333H/cit10/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2220849
– volume: 17
  start-page: 366
  year: 2019
  ident: D1RA07333H/cit41/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.024
– volume: 5
  start-page: 837
  year: 1990
  ident: D1RA07333H/cit9/1
  publication-title: Chem. Express
– volume: 51
  start-page: 9809
  year: 2015
  ident: D1RA07333H/cit27/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC02901E
– volume: 105
  start-page: 52
  year: 2016
  ident: D1RA07333H/cit20/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.008
– volume: 27
  start-page: 1605989
  year: 2017
  ident: D1RA07333H/cit31/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605989
– volume: 116
  start-page: 2978
  year: 2012
  ident: D1RA07333H/cit53/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp210345b
– volume: 4
  start-page: 1
  year: 2018
  ident: D1RA07333H/cit35/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0060-9
– volume: 119
  start-page: 18046
  year: 2015
  ident: D1RA07333H/cit59/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04206
– volume: 10
  start-page: 28525
  year: 2018
  ident: D1RA07333H/cit60/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07530
– volume: 19
  start-page: 799
  year: 2019
  ident: D1RA07333H/cit65/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201800137
– volume: 18
  start-page: 2105
  year: 2018
  ident: D1RA07333H/cit33/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00298
– volume: 28
  start-page: 1172
  year: 1988
  ident: D1RA07333H/cit11/1
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(88)90351-7
– volume: 10
  start-page: 1
  year: 2020
  ident: D1RA07333H/cit51/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79038-y
– volume: 36
  start-page: 8528
  year: 2003
  ident: D1RA07333H/cit72/1
  publication-title: Macromolecules
  doi: 10.1021/ma034971l
– volume: 106
  start-page: 4486
  year: 2002
  ident: D1RA07333H/cit39/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp014371t
– volume: 18
  start-page: 1145
  year: 2018
  ident: D1RA07333H/cit32/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04688
– volume: 18
  start-page: 8643
  year: 2016
  ident: D1RA07333H/cit48/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07583A
– volume: 10
  start-page: 2515
  year: 2015
  ident: D1RA07333H/cit34/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)04865-4
– volume: 140
  start-page: 922
  year: 1993
  ident: D1RA07333H/cit75/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2056228
– volume: 3
  start-page: 165
  year: 1981
  ident: D1RA07333H/cit7/1
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(81)90076-X
– volume: 122
  start-page: 2564
  year: 2018
  ident: D1RA07333H/cit61/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11650
– volume: 104
  start-page: 4303
  year: 2004
  ident: D1RA07333H/cit18/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 12
  start-page: 42734
  year: 2020
  ident: D1RA07333H/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10472
– volume: 162
  start-page: A7060
  year: 2015
  ident: D1RA07333H/cit25/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0091513jes
– volume: 140
  start-page: L169
  year: 1993
  ident: D1RA07333H/cit12/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221153
– volume: 124
  start-page: 4408
  year: 2002
  ident: D1RA07333H/cit38/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017073i
– volume: 9
  start-page: 3637
  year: 2021
  ident: D1RA07333H/cit30/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11689K
– start-page: 2100574
  year: 2021
  ident: D1RA07333H/cit76/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100574
– volume: 40
  start-page: 421
  year: 2019
  ident: D1RA07333H/cit66/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25707
– volume: 7
  start-page: 1
  year: 2017
  ident: D1RA07333H/cit4/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 14
  start-page: 1703576
  year: 2018
  ident: D1RA07333H/cit15/1
  publication-title: Small
  doi: 10.1002/smll.201703576
– volume: 145
  start-page: 3647
  year: 1998
  ident: D1RA07333H/cit16/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838857
– volume: 12
  start-page: 6583
  year: 2010
  ident: D1RA07333H/cit42/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b925853a
– volume: 146
  start-page: 204102
  year: 2017
  ident: D1RA07333H/cit58/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4983396
– volume: 3
  start-page: 1856
  year: 2016
  ident: D1RA07333H/cit23/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600365
– volume: 10
  start-page: 5949
  year: 2019
  ident: D1RA07333H/cit63/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02392
– volume: 114
  start-page: 11636
  year: 2014
  ident: D1RA07333H/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 161
  start-page: A213
  year: 2013
  ident: D1RA07333H/cit47/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.092401jes
– volume: 120
  start-page: 27128
  year: 2016
  ident: D1RA07333H/cit54/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b08688
– volume: 6
  start-page: 65232
  year: 2016
  ident: D1RA07333H/cit68/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09560G
– volume: 29
  start-page: 1606860
  year: 2017
  ident: D1RA07333H/cit70/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606860
SSID ssj0000651261
Score 2.4672675
SecondaryResourceType review_article
Snippet This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 971
SubjectTerms Additives
Atomic Physics
batteries
carbonates
chemical structure
Chemistry
Civil Engineering
Collaborative work
Dimers
electrodes
Electrolytes
Engineering Sciences
Materials
Molecular structure
Physics
Propylene
Quantum Physics
Rechargeable batteries
Sodium-ion batteries
Solid electrolytes
State-of-the-art reviews
Title Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer
URI https://www.ncbi.nlm.nih.gov/pubmed/35425108
https://www.proquest.com/docview/2617000749
https://www.proquest.com/docview/2648836752
https://www.proquest.com/docview/2651685529
https://insa-toulouse.hal.science/hal-04137594
https://pubmed.ncbi.nlm.nih.gov/PMC8978880
Volume 12
WOSCitedRecordID wos000739537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbagWAviNugMCpzeUFTtMS5mreqDA2xTtNapL1VduKo0dqk6rpqe-EX8N_4SxzbsZuqCAESL1HrHDtRzpfjY58v5yD0jgcxy0RMndwToROIKHc4J9RhEaye4yhLqU6SdBKfniYXF_Ss1fphvoVZTeOyTG5u6Py_qhraQNny09m_ULcdFBrgNygdjqB2OP6R4hs0oI0gf13wZnq7VBwssKuOVD1XCTYLTY1rhLMNeeAcug4q-K9rTSta4szU1D3Q6WdlECJTVBDTa3j0-WDKbmvqr0kAPuyb21lvzlfXBdemqjdrxPhH7FKU7JLVsSXNFtMxJ15pj_eLKGxjNWNcNQ4n8kvPSdHczSBE7WaEFn_y3dD7Joa0qkgpdek7PWcp40hgXQ9q12VerCUnDcSShlmmusxLPcNTXZRua_JwfZl7NfMWTFay9CdNIdDBfKYQ44dg5jw3WU-gltZ4NugnVO4puG10h8QhlWZ28G296Qf-ngdLVpMm16eH66vtontm6A0fqT2RDN3t5c82i7e9MEVrlHM0eoge1Ksa3NNofIRaonyM7tsn-gR9b6ASVzk2qMRNVOKixBqV2KLyA25gUvYEdGHAJJaYxBqTGDCJLSaxxSTWmDS9AJNYYfIp-vrpaNQ_dupCIE4K7v3SoSkLE8GSwHeDNCZBJAj3wWNIZP44L8hdFoRC0Czz3ZzGeSQ4C5jI_UxEMEGlzN9DO2VViucIcy5I4oU5y2XeJk54loaBoELEws_SIO2g9-bRj9M6S74s1jIdK7aGT8cfvfOe0thxB721snOdG-aXUm9Ag1ZApnM_7p2MZZsLHiSgJFh5HbRvFDyubcnVWBVLkD4-7aDX9jQoTsb0WCmqaykDM7APq37yO5nQi-BZERjnmcaMvR0DuQ6KN9C0cb-bZ8piotLQ11DvoD3AnZVfA_rFPw_5Eu2ubcM-2gHYiFfobrpaFleLLmrHF0lXbZ511ev1E6jOE4Y
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+advanced+electrolytes+in+Na-ion+batteries%3A+application+of+the+Red+Moon+method+for+molecular+structure+design+of+the+SEI+layer&rft.jtitle=RSC+advances&rft.au=Bouibes%2C+Amine&rft.au=Takenaka%2C+Norio&rft.au=Kubota%2C+Kei&rft.au=Komaba%2C+Shinichi&rft.date=2022-01-05&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=12&rft.issue=2&rft.spage=971&rft.epage=984&rft_id=info:doi/10.1039%2Fd1ra07333h&rft_id=info%3Apmid%2F35425108&rft.externalDocID=PMC8978880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon