Longer growing seasons lead to less carbon sequestration by a subalpine forest
As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (199...
Saved in:
| Published in: | Global change biology Vol. 16; no. 2; pp. 771 - 783 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.02.2010
Blackwell Publishing Ltd Wiley-Blackwell |
| Subjects: | |
| ISSN: | 1354-1013, 1365-2486 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO₂ uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. |
|---|---|
| AbstractList | As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9‐year record (1999–2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid‐August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO₂ uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9‐year record (1999–2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO 2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes ( δ D) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid‐August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. AbstractAs global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (dD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. [PUBLICATION ABSTRACT] |
| Author | MONSON, RUSSELL K. HU, JIA MOORE, DAVID J. P. BURNS, SEAN P. |
| Author_xml | – sequence: 1 fullname: HU, JIA – sequence: 2 fullname: MOORE, DAVID J.P – sequence: 3 fullname: BURNS, SEAN P – sequence: 4 fullname: MONSON, RUSSELL K |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22314847$$DView record in Pascal Francis |
| BookMark | eNqNkk1v1DAQhiNUJNrCbyBCAk4J_ortHECCFbsgReUA1XIbOYmzypLaWzur7v57JpvSQw-ovoxH87xje15fJGfOO5skKSU5xfVhm1Mui4wJLXNGSJkTWkqVH54l5w-Fs2lfiIwSyl8kFzFuCSGcEXmeXFXebWxIN8Hf9W6TRmuidzEdrGnT0WOMMW1MqL3D2u3exjGYscesPqYmjfvaDLve2bTzAWsvk-edGaJ9dR8vk-vl11-Lb1n1Y_V98bnKmkJSlbFalbStWy6Kri4Nl1KXJacdt5R2knaaWCqattDSqhrzum4sN8ywguuWK80vk_dz313wp0vBTR8bOwzGWb-PUBLGhZJUIvnuv6SQQhc4JATfPAK3fh8cvgIYKRjXnDGE3t5DJjZm6IJxTR9hF_obE46ABBVaKOQ-zVwTfIzBdtD042luOL5-AEpgcg-2MJkEk0kwuQcn9-CADfSjBv_OeIL04yy96wd7fLIOVosv0w712azv42gPD3oT_gBWVQHrqxWsq-VyXSkFv5F_PfOd8WA2Aedx_ZPhVyNUMSFLwv8C2KHK0Q |
| CitedBy_id | crossref_primary_10_1029_2020WR027630 crossref_primary_10_1016_j_agrformet_2022_109135 crossref_primary_10_1002_2017GL076504 crossref_primary_10_1088_1748_9326_8_2_024027 crossref_primary_10_1002_ece3_7904 crossref_primary_10_1016_j_agrformet_2024_110243 crossref_primary_10_1038_s41598_018_36065_0 crossref_primary_10_1139_cjfr_2014_0551 crossref_primary_10_1029_2018JG004845 crossref_primary_10_1002_2016WR019887 crossref_primary_10_1007_s10584_010_9861_2 crossref_primary_10_3390_rs6021390 crossref_primary_10_1890_ES11_00225_1 crossref_primary_10_1002_2017JG003988 crossref_primary_10_5194_bg_17_3733_2020 crossref_primary_10_1038_s43017_021_00219_y crossref_primary_10_1139_cjfr_2019_0296 crossref_primary_10_1002_2016JG003455 crossref_primary_10_1002_2015WR017039 crossref_primary_10_1016_j_dendro_2019_125633 crossref_primary_10_1007_s10533_015_0078_3 crossref_primary_10_1371_journal_pone_0228470 crossref_primary_10_5194_acp_12_2099_2012 crossref_primary_10_1016_j_rse_2014_11_026 crossref_primary_10_1007_s10533_023_01108_w crossref_primary_10_1016_j_agrformet_2017_11_035 crossref_primary_10_1016_j_jenvman_2025_126680 crossref_primary_10_5194_bg_11_3057_2014 crossref_primary_10_5194_bg_9_13_2012 crossref_primary_10_1371_journal_pone_0107396 crossref_primary_10_1016_j_aosl_2022_100149 crossref_primary_10_3390_f8050140 crossref_primary_10_1111_gcb_12367 crossref_primary_10_1111_ele_14260 crossref_primary_10_1016_j_scitotenv_2023_168778 crossref_primary_10_1016_j_agrformet_2019_107835 crossref_primary_10_1016_j_foreco_2019_117469 crossref_primary_10_1088_1748_9326_add8a7 crossref_primary_10_3390_atmos15111293 crossref_primary_10_1016_j_envres_2024_119073 crossref_primary_10_1007_s10533_018_0440_3 crossref_primary_10_1002_hyp_10400 crossref_primary_10_1002_ecs2_2794 crossref_primary_10_3390_atmos7030046 crossref_primary_10_5194_tc_12_759_2018 crossref_primary_10_1002_jgrg_20039 crossref_primary_10_1007_s10584_017_2070_5 crossref_primary_10_1002_eco_2083 crossref_primary_10_1002_joc_7553 crossref_primary_10_1080_02827581_2016_1220615 crossref_primary_10_1093_treephys_tpac102 crossref_primary_10_1111_j_1365_2486_2011_02459_x crossref_primary_10_1186_s42408_019_0047_7 crossref_primary_10_1111_j_1365_2486_2012_02664_x crossref_primary_10_1002_ecy_4402 crossref_primary_10_1002_eco_2402 crossref_primary_10_1146_annurev_ecolsys_110421_102101 crossref_primary_10_3390_ani9060292 crossref_primary_10_1002_eco_1558 crossref_primary_10_1016_j_jclepro_2023_137756 crossref_primary_10_1111_gcb_13561 crossref_primary_10_1371_journal_pone_0032088 crossref_primary_10_5194_bg_7_2601_2010 crossref_primary_10_1016_j_rse_2024_114587 crossref_primary_10_1029_2021AV000566 crossref_primary_10_1016_j_agrformet_2020_108089 crossref_primary_10_1016_j_jhydrol_2023_129134 crossref_primary_10_1029_2018WR023229 crossref_primary_10_1029_2018WR023468 crossref_primary_10_1088_1748_9326_ace637 crossref_primary_10_1038_s41558_025_02443_6 crossref_primary_10_1002_esp_4306 crossref_primary_10_1016_j_agrformet_2023_109734 crossref_primary_10_5194_hess_23_3553_2019 crossref_primary_10_1002_hyp_14621 crossref_primary_10_1029_2019WR026634 crossref_primary_10_1016_j_ecoleng_2023_107107 crossref_primary_10_1093_treephys_tpx049 crossref_primary_10_1139_cjfr_2019_0023 crossref_primary_10_1016_j_foreco_2014_12_031 crossref_primary_10_1890_11_1220_1 crossref_primary_10_1002_eco_2060 crossref_primary_10_1007_s10584_020_02943_8 crossref_primary_10_1002_hyp_14519 crossref_primary_10_1016_j_agrformet_2016_01_008 crossref_primary_10_1080_02723646_2019_1672023 crossref_primary_10_3390_rs12071223 crossref_primary_10_1088_1748_9326_ad5d08 crossref_primary_10_3390_f7110268 crossref_primary_10_1146_annurev_earth_031621_081700 crossref_primary_10_1038_s41467_019_09149_2 crossref_primary_10_22201_ib_20078706e_2019_90_2676 crossref_primary_10_1002_ecy_3095 crossref_primary_10_1002_ecs2_4266 crossref_primary_10_1016_j_scitotenv_2022_157913 crossref_primary_10_1002_eco_1892 crossref_primary_10_1111_gcb_14395 crossref_primary_10_1016_j_agrformet_2022_108904 crossref_primary_10_1016_j_ecolmodel_2018_03_013 crossref_primary_10_1007_s10021_011_9481_3 crossref_primary_10_1371_journal_pone_0197471 crossref_primary_10_1088_1748_9326_abbd00 crossref_primary_10_3389_ffgc_2024_1330561 crossref_primary_10_1093_treephys_tpv085 crossref_primary_10_1007_s00484_020_01913_0 crossref_primary_10_1016_j_foreco_2017_11_009 crossref_primary_10_1002_hyp_13434 crossref_primary_10_1016_j_foreco_2017_11_004 crossref_primary_10_1029_2022JD037732 crossref_primary_10_1007_s13280_016_0864_8 crossref_primary_10_1029_2019JG005272 crossref_primary_10_1111_gcb_12556 crossref_primary_10_1007_s40333_024_0034_y crossref_primary_10_1175_JAMC_D_18_0266_1 crossref_primary_10_1016_j_ecolind_2022_109239 crossref_primary_10_1016_j_fecs_2023_100106 crossref_primary_10_1073_pnas_1900278116 crossref_primary_10_3390_su12030968 crossref_primary_10_1002_hyp_14411 crossref_primary_10_5194_hess_22_4891_2018 crossref_primary_10_1007_s00704_024_05190_4 crossref_primary_10_1080_07011784_2021_1960894 crossref_primary_10_1093_jpe_rtaf088 crossref_primary_10_1002_hyp_10179 crossref_primary_10_1029_2020MS002421 crossref_primary_10_1016_j_agrformet_2019_02_031 crossref_primary_10_1111_gcb_14850 crossref_primary_10_1111_gcb_16592 crossref_primary_10_1002_eco_2046 crossref_primary_10_3390_f15122052 crossref_primary_10_1016_j_agrformet_2015_04_003 crossref_primary_10_1016_j_advwatres_2016_03_017 crossref_primary_10_1111_gcb_15335 crossref_primary_10_1016_j_agrformet_2012_06_011 crossref_primary_10_1016_j_ecolind_2021_107982 crossref_primary_10_1038_nature18450 crossref_primary_10_1007_s11284_016_1333_3 crossref_primary_10_1111_j_1365_2486_2012_02678_x crossref_primary_10_1007_s11430_018_9360_0 crossref_primary_10_1080_17550874_2018_1487475 crossref_primary_10_1002_2013JG002402 crossref_primary_10_3390_w16070927 crossref_primary_10_1029_2019JD031295 crossref_primary_10_3389_fpls_2021_798633 crossref_primary_10_1002_eco_2256 crossref_primary_10_1016_j_scitotenv_2023_163260 crossref_primary_10_3390_f13010044 crossref_primary_10_3390_rs17132192 crossref_primary_10_5194_bg_19_541_2022 crossref_primary_10_1038_ngeo1571 crossref_primary_10_1007_s00484_011_0495_5 crossref_primary_10_3390_geosciences5030264 crossref_primary_10_1002_hyp_14158 crossref_primary_10_3390_rs9070664 crossref_primary_10_3390_rs15204956 crossref_primary_10_1002_2016GL072495 crossref_primary_10_1073_pnas_1413090112 crossref_primary_10_1007_s00442_017_3853_0 crossref_primary_10_1016_j_scib_2021_02_023 crossref_primary_10_1002_2016GL069769 crossref_primary_10_5194_acp_23_2273_2023 crossref_primary_10_1016_j_foreco_2018_08_026 crossref_primary_10_1111_gcb_14947 crossref_primary_10_1111_jbi_12996 crossref_primary_10_1002_2017JG004099 crossref_primary_10_1002_2016GB005392 crossref_primary_10_5194_se_6_1185_2015 crossref_primary_10_1016_j_ecolind_2017_04_006 crossref_primary_10_1016_j_scitotenv_2020_138926 crossref_primary_10_1111_gcb_12086 crossref_primary_10_1007_s10533_016_0193_9 crossref_primary_10_1890_ES15_00394_1 crossref_primary_10_1016_j_agrformet_2012_09_012 crossref_primary_10_1016_j_agrformet_2020_108212 crossref_primary_10_1029_2022GL098323 crossref_primary_10_1080_17550874_2014_904950 crossref_primary_10_1371_journal_pone_0049230 crossref_primary_10_1111_gcb_15349 crossref_primary_10_3390_rs13040828 crossref_primary_10_1016_j_agrformet_2018_03_017 crossref_primary_10_1002_gbc_20017 crossref_primary_10_1111_1365_2745_13634 crossref_primary_10_1002_2015GL065855 crossref_primary_10_1111_j_1365_2486_2010_02269_x crossref_primary_10_1029_2018JG004438 crossref_primary_10_1029_2020JG006150 crossref_primary_10_1890_09_0504_1 crossref_primary_10_1002_ecs2_1610 crossref_primary_10_1016_j_jhydrol_2020_125646 crossref_primary_10_1111_gcb_12077 crossref_primary_10_12677_IJE_2020_91004 crossref_primary_10_1002_2014GL060495 crossref_primary_10_3390_rs16010021 crossref_primary_10_1186_s13021_023_00238_w crossref_primary_10_1038_s41598_017_06629_7 crossref_primary_10_1016_j_ecolmodel_2015_01_027 crossref_primary_10_1007_s10021_015_9845_1 crossref_primary_10_5194_hess_27_4173_2023 crossref_primary_10_1016_j_agrformet_2017_05_009 crossref_primary_10_1038_s41558_020_0806_0 crossref_primary_10_1029_2021JG006465 crossref_primary_10_1080_15230430_2019_1623607 crossref_primary_10_1016_j_agrformet_2011_03_003 crossref_primary_10_1016_j_scitotenv_2023_167663 crossref_primary_10_1016_j_ecolind_2024_112737 crossref_primary_10_1029_2018JG004883 crossref_primary_10_1029_2020JG006049 crossref_primary_10_1002_ecs2_2912 crossref_primary_10_5194_hess_25_6041_2021 crossref_primary_10_1016_j_agrformet_2020_108232 crossref_primary_10_1016_j_scitotenv_2024_173155 crossref_primary_10_1111_gcb_14435 crossref_primary_10_3389_fevo_2022_1007010 crossref_primary_10_1073_pnas_2200333119 crossref_primary_10_1111_1365_2745_12440 crossref_primary_10_1007_s10021_014_9770_8 crossref_primary_10_1016_j_agrformet_2018_02_030 crossref_primary_10_1890_ES14_00296_1 crossref_primary_10_1002_ecs2_3212 crossref_primary_10_5194_bg_12_7349_2015 crossref_primary_10_3390_rs11171989 crossref_primary_10_1002_eap_2211 crossref_primary_10_1007_s00442_021_05060_0 crossref_primary_10_1093_aobpla_plab077 crossref_primary_10_1016_j_foreco_2012_10_036 crossref_primary_10_1016_j_agrformet_2016_03_020 crossref_primary_10_1007_s11629_017_4425_9 crossref_primary_10_1016_j_envdev_2023_100899 crossref_primary_10_1002_ecy_1963 crossref_primary_10_1016_j_agrformet_2022_108863 crossref_primary_10_1016_j_jhydrol_2024_131791 crossref_primary_10_1029_2023WR034690 crossref_primary_10_1088_1748_9326_acde92 crossref_primary_10_1016_j_agrformet_2011_04_015 crossref_primary_10_1073_pnas_1700299114 crossref_primary_10_1111_j_1365_2486_2010_02281_x crossref_primary_10_1029_2021EF002530 crossref_primary_10_1111_gcb_14464 crossref_primary_10_1007_s10533_012_9797_x crossref_primary_10_1111_gcb_12283 crossref_primary_10_1139_x2012_043 crossref_primary_10_1111_gcb_12710 crossref_primary_10_1016_j_agrformet_2014_09_015 crossref_primary_10_3390_rs15153733 crossref_primary_10_1016_j_agrformet_2014_04_011 crossref_primary_10_1657_1938_4246_46_4_829 crossref_primary_10_1038_s41558_020_0713_4 crossref_primary_10_1111_1365_2745_13559 crossref_primary_10_1139_cjfr_2017_0361 crossref_primary_10_1016_j_foreco_2016_06_027 crossref_primary_10_1080_17550874_2016_1143536 crossref_primary_10_1016_j_foreco_2021_119157 crossref_primary_10_1016_j_agrformet_2019_107774 crossref_primary_10_1016_j_agrformet_2024_110054 crossref_primary_10_1038_s41467_025_61308_w crossref_primary_10_5194_bg_13_5183_2016 crossref_primary_10_1002_hyp_10450 crossref_primary_10_1093_treephys_tpaa083 crossref_primary_10_1007_s00484_017_1472_4 crossref_primary_10_1002_2016GL068062 crossref_primary_10_1111_ele_14082 crossref_primary_10_1002_ecs2_3432 crossref_primary_10_1890_14_0005_1 |
| Cites_doi | 10.1046/j.1365-2486.2001.00383.x 10.1007/s004840050097 10.1073/pnas.0702737104 10.1111/j.1365-2486.2006.01221.x 10.1126/science.1165000 10.1126/science.260.5112.1314 10.1016/S0038-0717(03)00007-5 10.1016/S0304-3800(01)00287-3 10.1111/j.1365-2486.2005.001012.x 10.1007/s00442-006-0565-2 10.1046/j.1365-2486.2003.00585.x 10.1139/f73-072 10.1111/j.1365-2486.2005.01059.x 10.3354/cr005207 10.1061/(ASCE)1084-0699(2008)13:3(156) 10.1029/2006GL026600 10.1126/science.287.5460.2004 10.1139/X06-072 10.1007/BF00328606 10.1038/30460 10.1073/pnas.0501647102 10.2307/1932053 10.1016/0967-0645(96)00007-0 10.1007/978-1-4612-1224-9_13 10.1111/j.1365-2486.2005.00897.x 10.1029/1999GL011234 10.1175/1520-0442(1992)005<1468:CFATTO>2.0.CO;2 10.1038/35009084 10.1016/S0168-1923(01)00290-8 10.2307/1937468 10.1038/nature06444 10.1007/BF00317837 10.1007/s00442-005-0169-2 10.1038/382146a0 10.1175/BAMS-86-1-39 10.1029/2002EO000314 10.1175/JCLI-3272.1 10.1111/j.1365-2486.2006.01281.x 10.1046/j.0269-8463.2001.00597.x 10.1063/1.1699114 10.1046/j.1365-2486.2002.00480.x 10.1016/j.agrformet.2008.04.013 10.1073/pnas.0506179102 10.1038/386698a0 10.1126/science.271.5255.1576 10.1016/S0168-1923(03)00136-9 10.1126/science.133.3465.1702 10.1016/S0168-1923(03)00023-6 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2 10.1890/04-1769 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | 2009 Blackwell Publishing Ltd 2015 INIST-CNRS 2010 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2009 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TG 7U6 KL. SOI |
| DOI | 10.1111/j.1365-2486.2009.01967.x |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
| DatabaseTitleList | CrossRef Meteorological & Geoastrophysical Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences Forestry |
| EISSN | 1365-2486 |
| EndPage | 783 |
| ExternalDocumentID | 1934548821 22314847 10_1111_j_1365_2486_2009_01967_x GCB1967 ark_67375_WNG_WLFFWL77_X US201301724690 |
| Genre | article Feature |
| GeographicLocations | Rocky Mountains Colorado Rocky Mountain region North America, Rocky Mts USA, Colorado |
| GeographicLocations_xml | – name: Rocky Mountains – name: Colorado – name: Rocky Mountain region – name: USA, Colorado – name: North America, Rocky Mts |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AEUQT AFPWT ESX WRC WUP AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TG 7U6 KL. SOI |
| ID | FETCH-LOGICAL-c5617-2b791dbd345fb9a36689931f3e11f61f80e14cd586e7b61fbbce3a2a2538d3783 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 305 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274419400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Mon Oct 06 18:19:22 EDT 2025 Sun Nov 09 09:30:02 EST 2025 Mon Nov 10 02:59:17 EST 2025 Mon Jul 21 09:11:58 EDT 2025 Sat Nov 29 06:02:13 EST 2025 Tue Nov 18 20:42:36 EST 2025 Wed Jan 22 16:20:17 EST 2025 Tue Nov 11 03:34:20 EST 2025 Thu Apr 03 09:45:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Productivity Forests Primary productivity Growing season Biogeochemical cycle isotope net ecosystem productivity Picea engelmannii Carbon sequestration SIPNET Dynamical climatology Carbon cycle Subalpine forests Climate change growing season length Ecosystem Global change Gymnospermae Coniferales Spermatophyta Isotopes subalpine forest |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5617-2b791dbd345fb9a36689931f3e11f61f80e14cd586e7b61fbbce3a2a2538d3783 |
| Notes | http://dx.doi.org/10.1111/j.1365-2486.2009.01967.x ark:/67375/WNG-WLFFWL77-X ArticleID:GCB1967 istex:3B0234FFFAEE7AC2D9CFAF45E952608FCBFDF3DA SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 205238322 |
| PQPubID | 30327 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_902347616 proquest_miscellaneous_46485248 proquest_journals_205238322 pascalfrancis_primary_22314847 crossref_citationtrail_10_1111_j_1365_2486_2009_01967_x crossref_primary_10_1111_j_1365_2486_2009_01967_x wiley_primary_10_1111_j_1365_2486_2009_01967_x_GCB1967 istex_primary_ark_67375_WNG_WLFFWL77_X fao_agris_US201301724690 |
| PublicationCentury | 2000 |
| PublicationDate | February 2010 |
| PublicationDateYYYYMMDD | 2010-02-01 |
| PublicationDate_xml | – month: 02 year: 2010 text: February 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2010 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52. Kalra A, Piechota TC, Davie SR, Tootle GA (2008) Changes in US streamflow and western US snowpack. Journal of Hydrologic Engineering, 13, 156-163. Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in Western North America. Bulletin of the American Meteorological Society, 86, 39-49. Richardson AD, Hollinger DY, Burba GG et al. (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 136, 1-18. Schimel D, Melillo J, Tian HQ et al. (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004-2006. Bishop DM (1962) Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon. Ecology, 43, 140-142. Aber JD, Ollinger SV, Federer CA et al. (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207-222. Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology, 11, 335-355. Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. Kueppers LM, Harte J (2005) Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecological Applications, 15, 1984-1999. Black TA, Chen WJ, Barr AG et al. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27, 1271-1274. Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463-474. Aguado E, Cayan D, Riddle L, Roos M (1992) Climatic fluctuations and the timing of West-Coast streamflow. Journal of Climate, 5, 1468-1483. Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of sub-alpine trees in the Colorado front range. Ecology, 75, 1450-1462. Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 110, 177-201. Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623. Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate, 18, 372-384. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702. White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139-145. Bergeron O, Margolis HA, Black TA, Coursolle C, Dunn AL, Barr AG, Wofsy SC (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Global Change Biology, 13, 89-107. Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 151, 54-68. Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252. Van Mantgem PJ, Stephenson NL, Byrne JC et al. (2009) Widespread increase of tree mortality rates in the Western United States. Science, 323, 521-524. Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 12, 240-259. Reynolds J, Knight D (1973) The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce-fir forests in Wyoming. Northwest Science, 47, 50-60. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149. Schimel D, Kittel T, Running S, Monson R, Turnipseed A, Anderson D (2002) Carbon sequestration studied in Western U. S. mountains. Eos, Transactions, American Geophysical Union, 83, 445-449. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13521-13525. Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142, 155-184. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478. Wofsy SC, Goulden ML, Munger JW et al. (1993) Net exchange of CO2 in a midlatitude forest. Science, 260, 1314-1317. Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13, 577-590. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 271, 1576-1578. Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865. Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 106, 257-265. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agricultural and Forest Meteorology, 148, 1467-1477. Craig H (1961) Isotopic variations in meteoric waters. Science, 133, 1702-1703. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agricultural and Forest Meteorology, 119, 1-21. Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research Part II-Topical Studies in Oceanography, 43, 653-683. Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36, 1871-1883. IPCC (2007) IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), 966 pp. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 35, 525-534. Hunter T, Tootle G, Piechota T (2006) Oceanic-atmospheric variability and western US snowfall. Geophysical Research Letters, 33, L13706, doi: DOI: 10.1029/2006GL026600. Monson RK, Sparks JP, Rosenstiel TN et al. (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130-147. Ricker WE (1973) Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409-434. Griffis TJ, Black TA, Morgenstern K et al. (2003) Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology, 117, 53-71. Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11, 1777-1787. Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827. Canadell JG, Le Quere C, Raupach MR et al. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866-18870. White MA, Nemani AR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967-972. 2007; 104 2003; 119 2001; 142 2003; 117 2002; 110 2006; 33 2006; 36 1996; 382 1999; 42 2008; 148 1998; 393 1996; 106 2006; 136 1992; 92 2000 2002; 83 2005; 102 2005; 146 1973; 47 2000; 404 1997; 386 2003; 9 1962; 43 2000; 287 2009; 323 1953; 21 1992; 5 1994; 75 2000; 27 1973; 30 2006; 12 2002; 8 2003; 35 1993; 260 1961; 133 2007 2005; 86 2000; 70 2008; 13 2003 2007; 13 1995; 5 1995; 8 2001; 7 2007; 151 1996; 271 2005; 15 2008; 451 2005; 18 2005; 11 1996; 43 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 IPCC (e_1_2_7_26_1) 2007 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_1 Reynolds J (e_1_2_7_39_1) 1973; 47 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Baldwin C (e_1_2_7_8_1) 2003 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – reference: Monson RK, Sparks JP, Rosenstiel TN et al. (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130-147. – reference: Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478. – reference: Kueppers LM, Harte J (2005) Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecological Applications, 15, 1984-1999. – reference: Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702. – reference: Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463-474. – reference: Griffis TJ, Black TA, Morgenstern K et al. (2003) Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology, 117, 53-71. – reference: Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of sub-alpine trees in the Colorado front range. Ecology, 75, 1450-1462. – reference: Schimel D, Melillo J, Tian HQ et al. (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004-2006. – reference: Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 271, 1576-1578. – reference: Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. – reference: Van Mantgem PJ, Stephenson NL, Byrne JC et al. (2009) Widespread increase of tree mortality rates in the Western United States. Science, 323, 521-524. – reference: Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology, 11, 335-355. – reference: Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 110, 177-201. – reference: Craig H (1961) Isotopic variations in meteoric waters. Science, 133, 1702-1703. – reference: Aber JD, Ollinger SV, Federer CA et al. (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207-222. – reference: Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865. – reference: Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11, 1777-1787. – reference: Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 35, 525-534. – reference: Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252. – reference: Bergeron O, Margolis HA, Black TA, Coursolle C, Dunn AL, Barr AG, Wofsy SC (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Global Change Biology, 13, 89-107. – reference: Richardson AD, Hollinger DY, Burba GG et al. (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 136, 1-18. – reference: Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13, 577-590. – reference: Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. – reference: Kalra A, Piechota TC, Davie SR, Tootle GA (2008) Changes in US streamflow and western US snowpack. Journal of Hydrologic Engineering, 13, 156-163. – reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. – reference: Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in Western North America. Bulletin of the American Meteorological Society, 86, 39-49. – reference: White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139-145. – reference: Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agricultural and Forest Meteorology, 148, 1467-1477. – reference: Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827. – reference: Ricker WE (1973) Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409-434. – reference: White MA, Nemani AR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967-972. – reference: IPCC (2007) IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), 966 pp. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. – reference: Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36, 1871-1883. – reference: Hunter T, Tootle G, Piechota T (2006) Oceanic-atmospheric variability and western US snowfall. Geophysical Research Letters, 33, L13706, doi: DOI: 10.1029/2006GL026600. – reference: Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52. – reference: Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate, 18, 372-384. – reference: Reynolds J, Knight D (1973) The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce-fir forests in Wyoming. Northwest Science, 47, 50-60. – reference: Canadell JG, Le Quere C, Raupach MR et al. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866-18870. – reference: Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 151, 54-68. – reference: Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research Part II-Topical Studies in Oceanography, 43, 653-683. – reference: Schimel D, Kittel T, Running S, Monson R, Turnipseed A, Anderson D (2002) Carbon sequestration studied in Western U. S. mountains. Eos, Transactions, American Geophysical Union, 83, 445-449. – reference: Wofsy SC, Goulden ML, Munger JW et al. (1993) Net exchange of CO2 in a midlatitude forest. Science, 260, 1314-1317. – reference: Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 12, 240-259. – reference: Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13521-13525. – reference: Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agricultural and Forest Meteorology, 119, 1-21. – reference: Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142, 155-184. – reference: Aguado E, Cayan D, Riddle L, Roos M (1992) Climatic fluctuations and the timing of West-Coast streamflow. Journal of Climate, 5, 1468-1483. – reference: Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149. – reference: Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 106, 257-265. – reference: Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623. – reference: Black TA, Chen WJ, Barr AG et al. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27, 1271-1274. – reference: Bishop DM (1962) Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon. Ecology, 43, 140-142. – volume: 75 start-page: 1450 year: 1994 end-page: 1462 article-title: Climatic influences on the growth of sub‐alpine trees in the Colorado front range publication-title: Ecology – volume: 13 start-page: 89 year: 2007 end-page: 107 article-title: Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada publication-title: Global Change Biology – volume: 13 start-page: 156 year: 2008 end-page: 163 article-title: Changes in US streamflow and western US snowpack publication-title: Journal of Hydrologic Engineering – volume: 146 start-page: 130 year: 2005 end-page: 147 article-title: Climatic influences on net ecosystem CO exchange during the transition from wintertime carbon source to springtime carbon sink in a high‐elevation, subalpine forest publication-title: Oecologia – volume: 70 start-page: 517 year: 2000 end-page: 537 article-title: Intra‐ and interspecific variation for summer precipitation use in pinyon‐juniper woodlands publication-title: Ecological Monographs – volume: 271 start-page: 1576 year: 1996 end-page: 1578 article-title: Exchange of carbon dioxide by a deciduous forest publication-title: Science – volume: 33 year: 2006 article-title: Oceanic–atmospheric variability and western US snowfall publication-title: Geophysical Research Letters – volume: 47 start-page: 50 year: 1973 end-page: 60 article-title: The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce‐fir forests in Wyoming publication-title: Northwest Science – volume: 136 start-page: 1 year: 2006 end-page: 18 article-title: A multi‐site analysis of random error in tower‐based measurements of carbon and energy fluxes publication-title: Agricultural and Forest Meteorology – volume: 9 start-page: 967 year: 2003 end-page: 972 article-title: Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest publication-title: Global Change Biology – volume: 35 start-page: 525 year: 2003 end-page: 534 article-title: Spatial and temporal controls of soil respiration rate in a high‐elevation, subalpine forest publication-title: Soil Biology and Biochemistry – volume: 92 start-page: 463 year: 1992 end-page: 474 article-title: A generalized, lumped‐parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems publication-title: Oecologia – volume: 260 start-page: 1314 year: 1993 end-page: 1317 article-title: Net exchange of CO in a midlatitude forest publication-title: Science – volume: 86 start-page: 39 year: 2005 end-page: 49 article-title: Declining mountain snowpack in Western North America publication-title: Bulletin of the American Meteorological Society – volume: 21 start-page: 1087 year: 1953 end-page: 1092 article-title: Equation of state calculations by fast computing machines publication-title: Journal of Chemical Physics – volume: 102 start-page: 10823 year: 2005 end-page: 10827 article-title: Drier summers cancel out the CO uptake enhancement induced by warmer springs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 459 year: 2002 end-page: 478 article-title: Carbon sequestration in a high‐elevation, subalpine forest publication-title: Global Change Biology – volume: 11 start-page: 1777 year: 2005 end-page: 1787 article-title: Spatial analysis of growing season length control over net ecosystem exchange publication-title: Global Change Biology – volume: 404 start-page: 861 year: 2000 end-page: 865 article-title: Respiration as the main determinant of carbon balance in European forests publication-title: Nature – volume: 43 start-page: 140 year: 1962 end-page: 142 article-title: Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon publication-title: Ecology – volume: 18 start-page: 372 year: 2005 end-page: 384 article-title: Seasonal cycle shifts in hydroclimatology over the western United States publication-title: Journal of Climate – volume: 133 start-page: 1702 year: 1961 end-page: 1703 article-title: Isotopic variations in meteoric waters publication-title: Science – volume: 7 start-page: 357 year: 2001 end-page: 373 article-title: Global response of terrestrial ecosystem structure and function to CO and climate change publication-title: Global Change Biology – volume: 151 start-page: 54 year: 2007 end-page: 68 article-title: Coupling between carbon cycling and climate in a high‐elevation, subalpine forest publication-title: Oecologia – volume: 386 start-page: 698 year: 1997 end-page: 702 article-title: Increased plant growth in the northern high latitudes from 1981 to 1991 publication-title: Nature – volume: 36 start-page: 1871 year: 2006 end-page: 1883 article-title: Anchorage of coniferous trees in relation to species, soil type, and rooting depth publication-title: Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere – volume: 451 start-page: 49 year: 2008 end-page: 52 article-title: Net carbon dioxide losses of northern ecosystems in response to autumn warming publication-title: Nature – volume: 323 start-page: 521 year: 2009 end-page: 524 article-title: Widespread increase of tree mortality rates in the Western United States publication-title: Science – volume: 119 start-page: 1 year: 2003 end-page: 21 article-title: Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects publication-title: Agricultural and Forest Meteorology – volume: 42 start-page: 139 year: 1999 end-page: 145 article-title: The impact of growing‐season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest publication-title: International Journal of Biometeorology – volume: 393 start-page: 249 year: 1998 end-page: 252 article-title: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change publication-title: Nature – volume: 83 start-page: 445 year: 2002 end-page: 449 article-title: Carbon sequestration studied in Western U. S. mountains publication-title: Eos, Transactions, American Geophysical Union – volume: 102 start-page: 13521 year: 2005 end-page: 13525 article-title: Satellite‐observed photosynthetic trends across boreal North America associated with climate and fire disturbance publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 30 start-page: 409 year: 1973 end-page: 434 article-title: Linear regressions in fishery research publication-title: Journal of the Fisheries Research Board of Canada – start-page: 181 year: 2000 end-page: 198 – volume: 117 start-page: 53 year: 2003 end-page: 71 article-title: Ecophysiological controls on the carbon balances of three southern boreal forests publication-title: Agricultural and Forest Meteorology – volume: 382 start-page: 146 year: 1996 end-page: 149 article-title: Increased activity of northern vegetation inferred from atmospheric CO measurements publication-title: Nature – volume: 13 start-page: 577 year: 2007 end-page: 590 article-title: A long‐term record of carbon exchange in a boreal black spruce forest publication-title: Global Change Biology – volume: 5 start-page: 1468 year: 1992 end-page: 1483 article-title: Climatic fluctuations and the timing of West‐Coast streamflow publication-title: Journal of Climate – volume: 106 start-page: 257 year: 1996 end-page: 265 article-title: Extrapolating leaf CO exchange to the canopy publication-title: Oecologia – start-page: 79 year: 2003 end-page: 112 – volume: 27 start-page: 1271 year: 2000 end-page: 1274 article-title: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring publication-title: Geophysical Research Letters – volume: 142 start-page: 155 year: 2001 end-page: 184 article-title: Modeling CO and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales publication-title: Ecological Modelling – volume: 8 start-page: 606 year: 1995 end-page: 623 article-title: Large‐scale atmospheric forcing of recent trends toward early snowmelt runoff in California publication-title: Journal of Climate – volume: 15 start-page: 1984 year: 2005 end-page: 1999 article-title: Subalpine forest carbon cycling publication-title: Ecological Applications – volume: 5 start-page: 207 year: 1995 end-page: 222 article-title: Predicting the effects of climate change on water yield and forest production in the northeastern United States publication-title: Climate Research – volume: 11 start-page: 335 year: 2005 end-page: 355 article-title: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations publication-title: Global Change Biology – volume: 104 start-page: 18866 year: 2007 end-page: 18870 article-title: Contributions to accelerating atmospheric CO growth from economic activity, carbon intensity, and efficiency of natural sinks publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 966 year: 2007 – volume: 43 start-page: 653 year: 1996 end-page: 683 article-title: A pelagic ecosystem model calibrated with BATS data publication-title: Deep-Sea Research Part II-Topical Studies in Oceanography – volume: 110 start-page: 177 year: 2002 end-page: 201 article-title: Energy budget above a high‐elevation subalpine forest in complex topography publication-title: Agricultural and Forest Meteorology – volume: 287 start-page: 2004 year: 2000 end-page: 2006 article-title: Contribution of increasing CO and climate to carbon storage by ecosystems in the United States publication-title: Science – volume: 12 start-page: 240 year: 2006 end-page: 259 article-title: Model‐data synthesis of diurnal and seasonal CO fluxes at Niwot Ridge, Colorado publication-title: Global Change Biology – volume: 148 start-page: 1467 year: 2008 end-page: 1477 article-title: Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO and H O fluxes publication-title: Agricultural and Forest Meteorology – ident: e_1_2_7_17_1 doi: 10.1046/j.1365-2486.2001.00383.x – ident: e_1_2_7_53_1 doi: 10.1007/s004840050097 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0702737104 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2486.2006.01221.x – ident: e_1_2_7_50_1 doi: 10.1126/science.1165000 – ident: e_1_2_7_55_1 doi: 10.1126/science.260.5112.1314 – ident: e_1_2_7_46_1 doi: 10.1016/S0038-0717(03)00007-5 – ident: e_1_2_7_7_1 doi: 10.1016/S0304-3800(01)00287-3 – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-2486.2005.001012.x – ident: e_1_2_7_42_1 doi: 10.1007/s00442-006-0565-2 – ident: e_1_2_7_52_1 doi: 10.1046/j.1365-2486.2003.00585.x – ident: e_1_2_7_41_1 doi: 10.1139/f73-072 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2486.2005.01059.x – ident: e_1_2_7_3_1 doi: 10.3354/cr005207 – ident: e_1_2_7_27_1 doi: 10.1061/(ASCE)1084-0699(2008)13:3(156) – ident: e_1_2_7_24_1 doi: 10.1029/2006GL026600 – ident: e_1_2_7_45_1 doi: 10.1126/science.287.5460.2004 – ident: e_1_2_7_36_1 doi: 10.1139/X06-072 – ident: e_1_2_7_4_1 doi: 10.1007/BF00328606 – ident: e_1_2_7_14_1 doi: 10.1038/30460 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.0501647102 – start-page: 966 volume-title: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_7_26_1 – ident: e_1_2_7_10_1 doi: 10.2307/1932053 – ident: e_1_2_7_25_1 doi: 10.1016/0967-0645(96)00007-0 – ident: e_1_2_7_20_1 doi: 10.1007/978-1-4612-1224-9_13 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2486.2005.00897.x – ident: e_1_2_7_11_1 doi: 10.1029/1999GL011234 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0442(1992)005<1468:CFATTO>2.0.CO;2 – ident: e_1_2_7_49_1 doi: 10.1038/35009084 – volume: 47 start-page: 50 year: 1973 ident: e_1_2_7_39_1 article-title: The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce‐fir forests in Wyoming publication-title: Northwest Science – ident: e_1_2_7_48_1 doi: 10.1016/S0168-1923(01)00290-8 – ident: e_1_2_7_51_1 doi: 10.2307/1937468 – ident: e_1_2_7_37_1 doi: 10.1038/nature06444 – ident: e_1_2_7_2_1 doi: 10.1007/BF00317837 – ident: e_1_2_7_31_1 doi: 10.1007/s00442-005-0169-2 – ident: e_1_2_7_28_1 doi: 10.1038/382146a0 – ident: e_1_2_7_34_1 doi: 10.1175/BAMS-86-1-39 – ident: e_1_2_7_44_1 doi: 10.1029/2002EO000314 – ident: e_1_2_7_38_1 doi: 10.1175/JCLI-3272.1 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2486.2006.01281.x – ident: e_1_2_7_40_1 doi: 10.1046/j.0269-8463.2001.00597.x – ident: e_1_2_7_30_1 doi: 10.1063/1.1699114 – ident: e_1_2_7_32_1 doi: 10.1046/j.1365-2486.2002.00480.x – ident: e_1_2_7_33_1 doi: 10.1016/j.agrformet.2008.04.013 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.0506179102 – ident: e_1_2_7_35_1 doi: 10.1038/386698a0 – ident: e_1_2_7_22_1 doi: 10.1126/science.271.5255.1576 – ident: e_1_2_7_47_1 doi: 10.1016/S0168-1923(03)00136-9 – start-page: 79 volume-title: Water Resources year: 2003 ident: e_1_2_7_8_1 – ident: e_1_2_7_16_1 doi: 10.1126/science.133.3465.1702 – ident: e_1_2_7_23_1 doi: 10.1016/S0168-1923(03)00023-6 – ident: e_1_2_7_18_1 doi: 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2 – ident: e_1_2_7_29_1 doi: 10.1890/04-1769 – ident: e_1_2_7_54_1 doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 |
| SSID | ssj0003206 |
| Score | 2.4733775 |
| Snippet | As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the... AbstractAs global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to... |
| SourceID | proquest pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 771 |
| SubjectTerms | Abies lasiocarpa Biological and medical sciences carbon Carbon dioxide Carbon sequestration Carbon sinks Climate change Climate change models Climatology. Bioclimatology. Climate change Colorado Coniferous trees Dominant species Earth, ocean, space Ecosystem models Ecosystem studies Ecosystems eddy covariance Exact sciences and technology External geophysics Forestry Forests Fundamental and applied biological sciences. Psychology General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology Global temperatures Global warming Growing season growing season length hydrogen Hydrogen isotopes isotope isotopes melting Meltwater Meteorology Mountain ecosystems Mountains net ecosystem productivity Picea engelmannii Pine trees Pinus contorta var. latifolia Plant species primary productivity Rain Rocky Mountain region SIPNET snow Snow-water equivalent Snowmelt Snowpack Spring subalpine forest temperature trees Winter xylem |
| Title | Longer growing seasons lead to less carbon sequestration by a subalpine forest |
| URI | https://api.istex.fr/ark:/67375/WNG-WLFFWL77-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.01967.x https://www.proquest.com/docview/205238322 https://www.proquest.com/docview/46485248 https://www.proquest.com/docview/902347616 |
| Volume | 16 |
| WOSCitedRecordID | wos000274419400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CDiQu_ChMC4PhA9otqPGPODlCWcehVAio2ptlJ840USVT0qLtv-fZScMigTQhTm0UO4pfPj9_z_nyHsBbYyeZq-AQiqhgIeciDw2XMjSMGmZZInVW-GITcrFI1uv0S6d_ct_CtPkh-g03NzO8v3YTXJtmOMm9QosncZd2EsEk3yGfPKAIYzGCg49fZ8t575cZ9ZU2IyY4Op-IDXU9f7zWYLG6X-gKKayz_rWTUOoGrVi05S8G_PQ2y_XL1OzJ_xzgU3jckVXyvkXXM7hnyzE8bMtX3ozh8Oz3V3LYrHMTzRiCz0jFq9o3I6dkurlEXuyPnsNiXrmNRHKB8T8um8RtUiLyyQbBRrYV_jYNyXRtqpJ4nfc-sS8xN0STZmf05grHRpBt47kXsJydfZ9-CruiDmGGVE2G1Mg0yk3OuChMqlkcY8THECg2ioo4KpKJjXiWiyS20uCxMZllmmqKnjlnMmGHMCqr0h4BMUkicgwAdZxQjPJpaoWlNNWZkwzoYhKA3D89lXUZz13hjY26FfmgiZUzsavHmSpvYnUdQNT3vGqzftyhzxECROkLdM5q-Y26V8LIDt32QwCnHjX9tXT9wwnqpFCrxblazWez1VxKtQ7gZACrvgOSOIxbuQzgeI8z1TmbBu9CIPFCzxzAm_4segn36keXtto1isc8EXjLAZC_tEiRvHEZR3EAsUflnQeuzqcf3L-X_9rxGB61mgwnEnoFo229s6_hQfZze9nUJ900_gWPg0GX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb5RAEJ5oq7Ev_jhtitV2H0zfMAe7sPCoZ681UmK0l7u3zS4sTeMFGriz7X_v7MJhSTRpjE9A2CW7w7ez3wzDDMA7pceZqeDgBl5BXcaC3FWMc1dRX1FNIy6zwhab4GkaLRbx164ckPkXps0P0TvczMqw-toscOOQHq5yG6LForDLO4lo4u-RUG4zRBXCffvTt-ks6RUz9W2pTY8GDLWPR4eBPX981mC3eljICjmsEf-NiaGUDYqxaOtfDAjqXZpr96nps_86w-fwtKOr5EOLrxfwQJcjeNwWsLwdwe7x7__ksFmnKJoROGdIxqvaNiNHZLK8RGZsr15CmlTGlUgu6uoaN05i3JSIfbJEuJFVhcemIZmsVVUSG-m9Se1L1C2RpFkrubzCyRHk23jvFcymx-eTU7cr6-BmSNa46ysee7nKKQsKFUsahmjzUYSK9rwi9IporD2W5UEUaq7wWqlMU-lLH3VzTnlEd2GrrEq9B0RFUZCjCSjDyEc73491oH0_lpkJGpDF2AG-eX0i63Kem9IbS3HH9kERCyNiU5EzFlbE4sYBr-951eb9uEefPUSIkBeonsXsu28-CiM_NA4IB44sbPpnyfqHCanjgZinJ2KeTKfzhHOxcOBggKu-A9I4tFwZd2B_AzTRqZsGRxEg9ULd7MBhfxf1hPn4I0tdrRvBQhYFOGQHyF9axEjfGA-90IHQwvLeExcnk4_m7PW_djyEJ6fnZ4lIPqdf9mGnjdAwIUNvYGtVr_VbeJT9XF029UG3pn8B2lJFhw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BB2gv_CibFgabH9DegprYiZNH6JaBKNUEVO2bZSfONFElVdKO7b_n7KRhkUCaEE9tFDuKL5_P3zmX-wDeKj1KjYKDG3g5dRkLMlcxzl1FfUU1jbhMcys2wafTaLGIL1o5IPMtTFMfottwMzPD-mszwfUqy_uz3KZosShs604imvg7JJQ7zGjKDGDn9Gsym3SOmfpWatOjAUPv49F-Ys8fr9VbrR7mskQOa8x_Y3IoZY1mzBv9ix5BvUtz7TqVPPuvI3wOT1u6St43-HoBD3QxhMeNgOXtEPbPfn8nh81aR1EPwfmCZLysbDNyQsbLK2TG9uglTCel2Uokl1X5ExdOYrYpEftkiXAj6xJ_65qkslJlQWym97a0L1G3RJJ6o-RyhYMjyLfx3B7MkrPv449uK-vgpkjWuOsrHnuZyigLchVLGoYY81GEiva8PPTyaKQ9lmZBFGqu8FipVFPpSx99c0Z5RPdhUJSFPgCioijIMASUYeRjnO_HOtC-H8vUJA3IfOQA3z4-kbY1z430xlLciX3QxMKY2ChyxsKaWNw44HU9V03dj3v0OUCECHmJ7lnMvvnmpTDyQ7MB4cCJhU13LVn9MCl1PBDz6bmYT5JkPuFcLBw46uGq64A0DiNXxh043AJNtO6mxrsIkHqhb3bguDuLfsK8_JGFLje1YCGLArxlB8hfWsRI3xgPvdCB0MLy3gMX5-MP5t-rf-14DE8uThMx-TT9fAi7TYKGyRh6DYN1tdFv4FF6vb6qq6N2Sv8C-_JFAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longer+growing+seasons+lead+to+less+carbon+sequestration+by+a+subalpine+forest&rft.jtitle=Global+change+biology&rft.au=HU%2C+JIA&rft.au=MOORE%2C+DAVID+J.+P.&rft.au=BURNS%2C+SEAN+P.&rft.au=MONSON%2C+RUSSELL+K.&rft.date=2010-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=16&rft.issue=2&rft.spage=771&rft.epage=783&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.01967.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WLFFWL77_X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |