Longer growing seasons lead to less carbon sequestration by a subalpine forest

As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (199...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 16; no. 2; pp. 771 - 783
Main Authors: HU, JIA, MOORE, DAVID J.P, BURNS, SEAN P, MONSON, RUSSELL K
Format: Journal Article
Language:English
Published: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.02.2010
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects:
ISSN:1354-1013, 1365-2486
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO₂ uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further.
AbstractList As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9‐year record (1999–2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid‐August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further.
As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO₂ uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further.
As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9‐year record (1999–2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO 2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes ( δ D) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid‐August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further.
AbstractAs global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (dD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further.
As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the rate of further warming. At the Niwot Ridge AmeriFlux site, a subalpine forest in the Colorado Rocky Mountains, we used a 9-year record (1999-2007) of continuous eddy flux observations to show that longer growing season length (GSL) actually resulted in less annual CO2 uptake. Years with a longer GSL were correlated with a shallower snow pack, as measured using snow water equivalent (SWE). Furthermore, years with a lower SWE correlated with an earlier start of spring. For three years, 2005, 2006, and 2007, we used observations of stable hydrogen isotopes (δD) of snow vs. rain, and extracted xylem water from the three dominant tree species, lodgepole pine, Engelmann spruce, and subalpine fir, to show that the trees relied heavily on snow melt water even late into the growing season. By mid-August, 57% to 68% of xylem water reflected the isotopic signature of snow melt. By coupling the isotopic water measurements with an ecosystem model, SIPNET, we found that annual forest carbon uptake was highly dependent on snow water, which decreases in abundance during years with longer growing seasons. Once again, for the 3 years 2005, 2006, and 2007, annual gross primary productivity, which was derived as an optimized parameter from the SIPNET model was estimated to be 67% 77%, and 71% dependent on snow melt water, respectively. Past studies have shown that the mean winter snow pack in mountain ecosystems of the Western US has been declining for decades and is correlated with positive winter temperature anomalies. Since climate change models predict continuation of winter warming and reduced snow in mountains of the Western US, the strength of the forest carbon sink is likely to decline further. [PUBLICATION ABSTRACT]
Author MONSON, RUSSELL K.
HU, JIA
MOORE, DAVID J. P.
BURNS, SEAN P.
Author_xml – sequence: 1
  fullname: HU, JIA
– sequence: 2
  fullname: MOORE, DAVID J.P
– sequence: 3
  fullname: BURNS, SEAN P
– sequence: 4
  fullname: MONSON, RUSSELL K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22314847$$DView record in Pascal Francis
BookMark eNqNkk1v1DAQhiNUJNrCbyBCAk4J_ortHECCFbsgReUA1XIbOYmzypLaWzur7v57JpvSQw-ovoxH87xje15fJGfOO5skKSU5xfVhm1Mui4wJLXNGSJkTWkqVH54l5w-Fs2lfiIwSyl8kFzFuCSGcEXmeXFXebWxIN8Hf9W6TRmuidzEdrGnT0WOMMW1MqL3D2u3exjGYscesPqYmjfvaDLve2bTzAWsvk-edGaJ9dR8vk-vl11-Lb1n1Y_V98bnKmkJSlbFalbStWy6Kri4Nl1KXJacdt5R2knaaWCqattDSqhrzum4sN8ywguuWK80vk_dz313wp0vBTR8bOwzGWb-PUBLGhZJUIvnuv6SQQhc4JATfPAK3fh8cvgIYKRjXnDGE3t5DJjZm6IJxTR9hF_obE46ABBVaKOQ-zVwTfIzBdtD042luOL5-AEpgcg-2MJkEk0kwuQcn9-CADfSjBv_OeIL04yy96wd7fLIOVosv0w712azv42gPD3oT_gBWVQHrqxWsq-VyXSkFv5F_PfOd8WA2Aedx_ZPhVyNUMSFLwv8C2KHK0Q
CitedBy_id crossref_primary_10_1029_2020WR027630
crossref_primary_10_1016_j_agrformet_2022_109135
crossref_primary_10_1002_2017GL076504
crossref_primary_10_1088_1748_9326_8_2_024027
crossref_primary_10_1002_ece3_7904
crossref_primary_10_1016_j_agrformet_2024_110243
crossref_primary_10_1038_s41598_018_36065_0
crossref_primary_10_1139_cjfr_2014_0551
crossref_primary_10_1029_2018JG004845
crossref_primary_10_1002_2016WR019887
crossref_primary_10_1007_s10584_010_9861_2
crossref_primary_10_3390_rs6021390
crossref_primary_10_1890_ES11_00225_1
crossref_primary_10_1002_2017JG003988
crossref_primary_10_5194_bg_17_3733_2020
crossref_primary_10_1038_s43017_021_00219_y
crossref_primary_10_1139_cjfr_2019_0296
crossref_primary_10_1002_2016JG003455
crossref_primary_10_1002_2015WR017039
crossref_primary_10_1016_j_dendro_2019_125633
crossref_primary_10_1007_s10533_015_0078_3
crossref_primary_10_1371_journal_pone_0228470
crossref_primary_10_5194_acp_12_2099_2012
crossref_primary_10_1016_j_rse_2014_11_026
crossref_primary_10_1007_s10533_023_01108_w
crossref_primary_10_1016_j_agrformet_2017_11_035
crossref_primary_10_1016_j_jenvman_2025_126680
crossref_primary_10_5194_bg_11_3057_2014
crossref_primary_10_5194_bg_9_13_2012
crossref_primary_10_1371_journal_pone_0107396
crossref_primary_10_1016_j_aosl_2022_100149
crossref_primary_10_3390_f8050140
crossref_primary_10_1111_gcb_12367
crossref_primary_10_1111_ele_14260
crossref_primary_10_1016_j_scitotenv_2023_168778
crossref_primary_10_1016_j_agrformet_2019_107835
crossref_primary_10_1016_j_foreco_2019_117469
crossref_primary_10_1088_1748_9326_add8a7
crossref_primary_10_3390_atmos15111293
crossref_primary_10_1016_j_envres_2024_119073
crossref_primary_10_1007_s10533_018_0440_3
crossref_primary_10_1002_hyp_10400
crossref_primary_10_1002_ecs2_2794
crossref_primary_10_3390_atmos7030046
crossref_primary_10_5194_tc_12_759_2018
crossref_primary_10_1002_jgrg_20039
crossref_primary_10_1007_s10584_017_2070_5
crossref_primary_10_1002_eco_2083
crossref_primary_10_1002_joc_7553
crossref_primary_10_1080_02827581_2016_1220615
crossref_primary_10_1093_treephys_tpac102
crossref_primary_10_1111_j_1365_2486_2011_02459_x
crossref_primary_10_1186_s42408_019_0047_7
crossref_primary_10_1111_j_1365_2486_2012_02664_x
crossref_primary_10_1002_ecy_4402
crossref_primary_10_1002_eco_2402
crossref_primary_10_1146_annurev_ecolsys_110421_102101
crossref_primary_10_3390_ani9060292
crossref_primary_10_1002_eco_1558
crossref_primary_10_1016_j_jclepro_2023_137756
crossref_primary_10_1111_gcb_13561
crossref_primary_10_1371_journal_pone_0032088
crossref_primary_10_5194_bg_7_2601_2010
crossref_primary_10_1016_j_rse_2024_114587
crossref_primary_10_1029_2021AV000566
crossref_primary_10_1016_j_agrformet_2020_108089
crossref_primary_10_1016_j_jhydrol_2023_129134
crossref_primary_10_1029_2018WR023229
crossref_primary_10_1029_2018WR023468
crossref_primary_10_1088_1748_9326_ace637
crossref_primary_10_1038_s41558_025_02443_6
crossref_primary_10_1002_esp_4306
crossref_primary_10_1016_j_agrformet_2023_109734
crossref_primary_10_5194_hess_23_3553_2019
crossref_primary_10_1002_hyp_14621
crossref_primary_10_1029_2019WR026634
crossref_primary_10_1016_j_ecoleng_2023_107107
crossref_primary_10_1093_treephys_tpx049
crossref_primary_10_1139_cjfr_2019_0023
crossref_primary_10_1016_j_foreco_2014_12_031
crossref_primary_10_1890_11_1220_1
crossref_primary_10_1002_eco_2060
crossref_primary_10_1007_s10584_020_02943_8
crossref_primary_10_1002_hyp_14519
crossref_primary_10_1016_j_agrformet_2016_01_008
crossref_primary_10_1080_02723646_2019_1672023
crossref_primary_10_3390_rs12071223
crossref_primary_10_1088_1748_9326_ad5d08
crossref_primary_10_3390_f7110268
crossref_primary_10_1146_annurev_earth_031621_081700
crossref_primary_10_1038_s41467_019_09149_2
crossref_primary_10_22201_ib_20078706e_2019_90_2676
crossref_primary_10_1002_ecy_3095
crossref_primary_10_1002_ecs2_4266
crossref_primary_10_1016_j_scitotenv_2022_157913
crossref_primary_10_1002_eco_1892
crossref_primary_10_1111_gcb_14395
crossref_primary_10_1016_j_agrformet_2022_108904
crossref_primary_10_1016_j_ecolmodel_2018_03_013
crossref_primary_10_1007_s10021_011_9481_3
crossref_primary_10_1371_journal_pone_0197471
crossref_primary_10_1088_1748_9326_abbd00
crossref_primary_10_3389_ffgc_2024_1330561
crossref_primary_10_1093_treephys_tpv085
crossref_primary_10_1007_s00484_020_01913_0
crossref_primary_10_1016_j_foreco_2017_11_009
crossref_primary_10_1002_hyp_13434
crossref_primary_10_1016_j_foreco_2017_11_004
crossref_primary_10_1029_2022JD037732
crossref_primary_10_1007_s13280_016_0864_8
crossref_primary_10_1029_2019JG005272
crossref_primary_10_1111_gcb_12556
crossref_primary_10_1007_s40333_024_0034_y
crossref_primary_10_1175_JAMC_D_18_0266_1
crossref_primary_10_1016_j_ecolind_2022_109239
crossref_primary_10_1016_j_fecs_2023_100106
crossref_primary_10_1073_pnas_1900278116
crossref_primary_10_3390_su12030968
crossref_primary_10_1002_hyp_14411
crossref_primary_10_5194_hess_22_4891_2018
crossref_primary_10_1007_s00704_024_05190_4
crossref_primary_10_1080_07011784_2021_1960894
crossref_primary_10_1093_jpe_rtaf088
crossref_primary_10_1002_hyp_10179
crossref_primary_10_1029_2020MS002421
crossref_primary_10_1016_j_agrformet_2019_02_031
crossref_primary_10_1111_gcb_14850
crossref_primary_10_1111_gcb_16592
crossref_primary_10_1002_eco_2046
crossref_primary_10_3390_f15122052
crossref_primary_10_1016_j_agrformet_2015_04_003
crossref_primary_10_1016_j_advwatres_2016_03_017
crossref_primary_10_1111_gcb_15335
crossref_primary_10_1016_j_agrformet_2012_06_011
crossref_primary_10_1016_j_ecolind_2021_107982
crossref_primary_10_1038_nature18450
crossref_primary_10_1007_s11284_016_1333_3
crossref_primary_10_1111_j_1365_2486_2012_02678_x
crossref_primary_10_1007_s11430_018_9360_0
crossref_primary_10_1080_17550874_2018_1487475
crossref_primary_10_1002_2013JG002402
crossref_primary_10_3390_w16070927
crossref_primary_10_1029_2019JD031295
crossref_primary_10_3389_fpls_2021_798633
crossref_primary_10_1002_eco_2256
crossref_primary_10_1016_j_scitotenv_2023_163260
crossref_primary_10_3390_f13010044
crossref_primary_10_3390_rs17132192
crossref_primary_10_5194_bg_19_541_2022
crossref_primary_10_1038_ngeo1571
crossref_primary_10_1007_s00484_011_0495_5
crossref_primary_10_3390_geosciences5030264
crossref_primary_10_1002_hyp_14158
crossref_primary_10_3390_rs9070664
crossref_primary_10_3390_rs15204956
crossref_primary_10_1002_2016GL072495
crossref_primary_10_1073_pnas_1413090112
crossref_primary_10_1007_s00442_017_3853_0
crossref_primary_10_1016_j_scib_2021_02_023
crossref_primary_10_1002_2016GL069769
crossref_primary_10_5194_acp_23_2273_2023
crossref_primary_10_1016_j_foreco_2018_08_026
crossref_primary_10_1111_gcb_14947
crossref_primary_10_1111_jbi_12996
crossref_primary_10_1002_2017JG004099
crossref_primary_10_1002_2016GB005392
crossref_primary_10_5194_se_6_1185_2015
crossref_primary_10_1016_j_ecolind_2017_04_006
crossref_primary_10_1016_j_scitotenv_2020_138926
crossref_primary_10_1111_gcb_12086
crossref_primary_10_1007_s10533_016_0193_9
crossref_primary_10_1890_ES15_00394_1
crossref_primary_10_1016_j_agrformet_2012_09_012
crossref_primary_10_1016_j_agrformet_2020_108212
crossref_primary_10_1029_2022GL098323
crossref_primary_10_1080_17550874_2014_904950
crossref_primary_10_1371_journal_pone_0049230
crossref_primary_10_1111_gcb_15349
crossref_primary_10_3390_rs13040828
crossref_primary_10_1016_j_agrformet_2018_03_017
crossref_primary_10_1002_gbc_20017
crossref_primary_10_1111_1365_2745_13634
crossref_primary_10_1002_2015GL065855
crossref_primary_10_1111_j_1365_2486_2010_02269_x
crossref_primary_10_1029_2018JG004438
crossref_primary_10_1029_2020JG006150
crossref_primary_10_1890_09_0504_1
crossref_primary_10_1002_ecs2_1610
crossref_primary_10_1016_j_jhydrol_2020_125646
crossref_primary_10_1111_gcb_12077
crossref_primary_10_12677_IJE_2020_91004
crossref_primary_10_1002_2014GL060495
crossref_primary_10_3390_rs16010021
crossref_primary_10_1186_s13021_023_00238_w
crossref_primary_10_1038_s41598_017_06629_7
crossref_primary_10_1016_j_ecolmodel_2015_01_027
crossref_primary_10_1007_s10021_015_9845_1
crossref_primary_10_5194_hess_27_4173_2023
crossref_primary_10_1016_j_agrformet_2017_05_009
crossref_primary_10_1038_s41558_020_0806_0
crossref_primary_10_1029_2021JG006465
crossref_primary_10_1080_15230430_2019_1623607
crossref_primary_10_1016_j_agrformet_2011_03_003
crossref_primary_10_1016_j_scitotenv_2023_167663
crossref_primary_10_1016_j_ecolind_2024_112737
crossref_primary_10_1029_2018JG004883
crossref_primary_10_1029_2020JG006049
crossref_primary_10_1002_ecs2_2912
crossref_primary_10_5194_hess_25_6041_2021
crossref_primary_10_1016_j_agrformet_2020_108232
crossref_primary_10_1016_j_scitotenv_2024_173155
crossref_primary_10_1111_gcb_14435
crossref_primary_10_3389_fevo_2022_1007010
crossref_primary_10_1073_pnas_2200333119
crossref_primary_10_1111_1365_2745_12440
crossref_primary_10_1007_s10021_014_9770_8
crossref_primary_10_1016_j_agrformet_2018_02_030
crossref_primary_10_1890_ES14_00296_1
crossref_primary_10_1002_ecs2_3212
crossref_primary_10_5194_bg_12_7349_2015
crossref_primary_10_3390_rs11171989
crossref_primary_10_1002_eap_2211
crossref_primary_10_1007_s00442_021_05060_0
crossref_primary_10_1093_aobpla_plab077
crossref_primary_10_1016_j_foreco_2012_10_036
crossref_primary_10_1016_j_agrformet_2016_03_020
crossref_primary_10_1007_s11629_017_4425_9
crossref_primary_10_1016_j_envdev_2023_100899
crossref_primary_10_1002_ecy_1963
crossref_primary_10_1016_j_agrformet_2022_108863
crossref_primary_10_1016_j_jhydrol_2024_131791
crossref_primary_10_1029_2023WR034690
crossref_primary_10_1088_1748_9326_acde92
crossref_primary_10_1016_j_agrformet_2011_04_015
crossref_primary_10_1073_pnas_1700299114
crossref_primary_10_1111_j_1365_2486_2010_02281_x
crossref_primary_10_1029_2021EF002530
crossref_primary_10_1111_gcb_14464
crossref_primary_10_1007_s10533_012_9797_x
crossref_primary_10_1111_gcb_12283
crossref_primary_10_1139_x2012_043
crossref_primary_10_1111_gcb_12710
crossref_primary_10_1016_j_agrformet_2014_09_015
crossref_primary_10_3390_rs15153733
crossref_primary_10_1016_j_agrformet_2014_04_011
crossref_primary_10_1657_1938_4246_46_4_829
crossref_primary_10_1038_s41558_020_0713_4
crossref_primary_10_1111_1365_2745_13559
crossref_primary_10_1139_cjfr_2017_0361
crossref_primary_10_1016_j_foreco_2016_06_027
crossref_primary_10_1080_17550874_2016_1143536
crossref_primary_10_1016_j_foreco_2021_119157
crossref_primary_10_1016_j_agrformet_2019_107774
crossref_primary_10_1016_j_agrformet_2024_110054
crossref_primary_10_1038_s41467_025_61308_w
crossref_primary_10_5194_bg_13_5183_2016
crossref_primary_10_1002_hyp_10450
crossref_primary_10_1093_treephys_tpaa083
crossref_primary_10_1007_s00484_017_1472_4
crossref_primary_10_1002_2016GL068062
crossref_primary_10_1111_ele_14082
crossref_primary_10_1002_ecs2_3432
crossref_primary_10_1890_14_0005_1
Cites_doi 10.1046/j.1365-2486.2001.00383.x
10.1007/s004840050097
10.1073/pnas.0702737104
10.1111/j.1365-2486.2006.01221.x
10.1126/science.1165000
10.1126/science.260.5112.1314
10.1016/S0038-0717(03)00007-5
10.1016/S0304-3800(01)00287-3
10.1111/j.1365-2486.2005.001012.x
10.1007/s00442-006-0565-2
10.1046/j.1365-2486.2003.00585.x
10.1139/f73-072
10.1111/j.1365-2486.2005.01059.x
10.3354/cr005207
10.1061/(ASCE)1084-0699(2008)13:3(156)
10.1029/2006GL026600
10.1126/science.287.5460.2004
10.1139/X06-072
10.1007/BF00328606
10.1038/30460
10.1073/pnas.0501647102
10.2307/1932053
10.1016/0967-0645(96)00007-0
10.1007/978-1-4612-1224-9_13
10.1111/j.1365-2486.2005.00897.x
10.1029/1999GL011234
10.1175/1520-0442(1992)005<1468:CFATTO>2.0.CO;2
10.1038/35009084
10.1016/S0168-1923(01)00290-8
10.2307/1937468
10.1038/nature06444
10.1007/BF00317837
10.1007/s00442-005-0169-2
10.1038/382146a0
10.1175/BAMS-86-1-39
10.1029/2002EO000314
10.1175/JCLI-3272.1
10.1111/j.1365-2486.2006.01281.x
10.1046/j.0269-8463.2001.00597.x
10.1063/1.1699114
10.1046/j.1365-2486.2002.00480.x
10.1016/j.agrformet.2008.04.013
10.1073/pnas.0506179102
10.1038/386698a0
10.1126/science.271.5255.1576
10.1016/S0168-1923(03)00136-9
10.1126/science.133.3465.1702
10.1016/S0168-1923(03)00023-6
10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2
10.1890/04-1769
10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
2015 INIST-CNRS
2010 Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TG
7U6
KL.
SOI
DOI 10.1111/j.1365-2486.2009.01967.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList

CrossRef
Meteorological & Geoastrophysical Abstracts
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Forestry
EISSN 1365-2486
EndPage 783
ExternalDocumentID 1934548821
22314847
10_1111_j_1365_2486_2009_01967_x
GCB1967
ark_67375_WNG_WLFFWL77_X
US201301724690
Genre article
Feature
GeographicLocations Rocky Mountains
Colorado
Rocky Mountain region
North America, Rocky Mts
USA, Colorado
GeographicLocations_xml – name: Rocky Mountains
– name: Colorado
– name: Rocky Mountain region
– name: USA, Colorado
– name: North America, Rocky Mts
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AEUQT
AFPWT
ESX
WRC
WUP
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TG
7U6
KL.
SOI
ID FETCH-LOGICAL-c5617-2b791dbd345fb9a36689931f3e11f61f80e14cd586e7b61fbbce3a2a2538d3783
IEDL.DBID DRFUL
ISICitedReferencesCount 305
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274419400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Mon Oct 06 18:19:22 EDT 2025
Sun Nov 09 09:30:02 EST 2025
Mon Nov 10 02:59:17 EST 2025
Mon Jul 21 09:11:58 EDT 2025
Sat Nov 29 06:02:13 EST 2025
Tue Nov 18 20:42:36 EST 2025
Wed Jan 22 16:20:17 EST 2025
Tue Nov 11 03:34:20 EST 2025
Thu Apr 03 09:45:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Productivity
Forests
Primary productivity
Growing season
Biogeochemical cycle
isotope
net ecosystem productivity
Picea engelmannii
Carbon sequestration
SIPNET
Dynamical climatology
Carbon cycle
Subalpine forests
Climate change
growing season length
Ecosystem
Global change
Gymnospermae
Coniferales
Spermatophyta
Isotopes
subalpine forest
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5617-2b791dbd345fb9a36689931f3e11f61f80e14cd586e7b61fbbce3a2a2538d3783
Notes http://dx.doi.org/10.1111/j.1365-2486.2009.01967.x
ark:/67375/WNG-WLFFWL77-X
ArticleID:GCB1967
istex:3B0234FFFAEE7AC2D9CFAF45E952608FCBFDF3DA
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 205238322
PQPubID 30327
PageCount 13
ParticipantIDs proquest_miscellaneous_902347616
proquest_miscellaneous_46485248
proquest_journals_205238322
pascalfrancis_primary_22314847
crossref_citationtrail_10_1111_j_1365_2486_2009_01967_x
crossref_primary_10_1111_j_1365_2486_2009_01967_x
wiley_primary_10_1111_j_1365_2486_2009_01967_x_GCB1967
istex_primary_ark_67375_WNG_WLFFWL77_X
fao_agris_US201301724690
PublicationCentury 2000
PublicationDate February 2010
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: February 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
Kalra A, Piechota TC, Davie SR, Tootle GA (2008) Changes in US streamflow and western US snowpack. Journal of Hydrologic Engineering, 13, 156-163.
Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in Western North America. Bulletin of the American Meteorological Society, 86, 39-49.
Richardson AD, Hollinger DY, Burba GG et al. (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 136, 1-18.
Schimel D, Melillo J, Tian HQ et al. (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004-2006.
Bishop DM (1962) Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon. Ecology, 43, 140-142.
Aber JD, Ollinger SV, Federer CA et al. (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207-222.
Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology, 11, 335-355.
Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537.
Kueppers LM, Harte J (2005) Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecological Applications, 15, 1984-1999.
Black TA, Chen WJ, Barr AG et al. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27, 1271-1274.
Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463-474.
Aguado E, Cayan D, Riddle L, Roos M (1992) Climatic fluctuations and the timing of West-Coast streamflow. Journal of Climate, 5, 1468-1483.
Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of sub-alpine trees in the Colorado front range. Ecology, 75, 1450-1462.
Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 110, 177-201.
Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623.
Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate, 18, 372-384.
Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702.
White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139-145.
Bergeron O, Margolis HA, Black TA, Coursolle C, Dunn AL, Barr AG, Wofsy SC (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Global Change Biology, 13, 89-107.
Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 151, 54-68.
Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
Van Mantgem PJ, Stephenson NL, Byrne JC et al. (2009) Widespread increase of tree mortality rates in the Western United States. Science, 323, 521-524.
Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 12, 240-259.
Reynolds J, Knight D (1973) The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce-fir forests in Wyoming. Northwest Science, 47, 50-60.
Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
Schimel D, Kittel T, Running S, Monson R, Turnipseed A, Anderson D (2002) Carbon sequestration studied in Western U. S. mountains. Eos, Transactions, American Geophysical Union, 83, 445-449.
Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13521-13525.
Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142, 155-184.
Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478.
Wofsy SC, Goulden ML, Munger JW et al. (1993) Net exchange of CO2 in a midlatitude forest. Science, 260, 1314-1317.
Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13, 577-590.
Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 271, 1576-1578.
Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865.
Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 106, 257-265.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agricultural and Forest Meteorology, 148, 1467-1477.
Craig H (1961) Isotopic variations in meteoric waters. Science, 133, 1702-1703.
Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agricultural and Forest Meteorology, 119, 1-21.
Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research Part II-Topical Studies in Oceanography, 43, 653-683.
Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36, 1871-1883.
IPCC (2007) IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), 966 pp. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 35, 525-534.
Hunter T, Tootle G, Piechota T (2006) Oceanic-atmospheric variability and western US snowfall. Geophysical Research Letters, 33, L13706, doi: DOI: 10.1029/2006GL026600.
Monson RK, Sparks JP, Rosenstiel TN et al. (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130-147.
Ricker WE (1973) Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409-434.
Griffis TJ, Black TA, Morgenstern K et al. (2003) Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology, 117, 53-71.
Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11, 1777-1787.
Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827.
Canadell JG, Le Quere C, Raupach MR et al. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866-18870.
White MA, Nemani AR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967-972.
2007; 104
2003; 119
2001; 142
2003; 117
2002; 110
2006; 33
2006; 36
1996; 382
1999; 42
2008; 148
1998; 393
1996; 106
2006; 136
1992; 92
2000
2002; 83
2005; 102
2005; 146
1973; 47
2000; 404
1997; 386
2003; 9
1962; 43
2000; 287
2009; 323
1953; 21
1992; 5
1994; 75
2000; 27
1973; 30
2006; 12
2002; 8
2003; 35
1993; 260
1961; 133
2007
2005; 86
2000; 70
2008; 13
2003
2007; 13
1995; 5
1995; 8
2001; 7
2007; 151
1996; 271
2005; 15
2008; 451
2005; 18
2005; 11
1996; 43
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
IPCC (e_1_2_7_26_1) 2007
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_6_1
e_1_2_7_4_1
Reynolds J (e_1_2_7_39_1) 1973; 47
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Baldwin C (e_1_2_7_8_1) 2003
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Monson RK, Sparks JP, Rosenstiel TN et al. (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130-147.
– reference: Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478.
– reference: Kueppers LM, Harte J (2005) Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecological Applications, 15, 1984-1999.
– reference: Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702.
– reference: Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463-474.
– reference: Griffis TJ, Black TA, Morgenstern K et al. (2003) Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology, 117, 53-71.
– reference: Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of sub-alpine trees in the Colorado front range. Ecology, 75, 1450-1462.
– reference: Schimel D, Melillo J, Tian HQ et al. (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004-2006.
– reference: Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 271, 1576-1578.
– reference: Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
– reference: Van Mantgem PJ, Stephenson NL, Byrne JC et al. (2009) Widespread increase of tree mortality rates in the Western United States. Science, 323, 521-524.
– reference: Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology, 11, 335-355.
– reference: Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 110, 177-201.
– reference: Craig H (1961) Isotopic variations in meteoric waters. Science, 133, 1702-1703.
– reference: Aber JD, Ollinger SV, Federer CA et al. (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207-222.
– reference: Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865.
– reference: Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11, 1777-1787.
– reference: Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry, 35, 525-534.
– reference: Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
– reference: Bergeron O, Margolis HA, Black TA, Coursolle C, Dunn AL, Barr AG, Wofsy SC (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Global Change Biology, 13, 89-107.
– reference: Richardson AD, Hollinger DY, Burba GG et al. (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 136, 1-18.
– reference: Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13, 577-590.
– reference: Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537.
– reference: Kalra A, Piechota TC, Davie SR, Tootle GA (2008) Changes in US streamflow and western US snowpack. Journal of Hydrologic Engineering, 13, 156-163.
– reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
– reference: Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in Western North America. Bulletin of the American Meteorological Society, 86, 39-49.
– reference: White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139-145.
– reference: Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agricultural and Forest Meteorology, 148, 1467-1477.
– reference: Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827.
– reference: Ricker WE (1973) Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409-434.
– reference: White MA, Nemani AR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967-972.
– reference: IPCC (2007) IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), 966 pp. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
– reference: Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36, 1871-1883.
– reference: Hunter T, Tootle G, Piechota T (2006) Oceanic-atmospheric variability and western US snowfall. Geophysical Research Letters, 33, L13706, doi: DOI: 10.1029/2006GL026600.
– reference: Piao SL, Ciais P, Friedlingstein P et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
– reference: Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate, 18, 372-384.
– reference: Reynolds J, Knight D (1973) The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce-fir forests in Wyoming. Northwest Science, 47, 50-60.
– reference: Canadell JG, Le Quere C, Raupach MR et al. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104, 18866-18870.
– reference: Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 151, 54-68.
– reference: Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research Part II-Topical Studies in Oceanography, 43, 653-683.
– reference: Schimel D, Kittel T, Running S, Monson R, Turnipseed A, Anderson D (2002) Carbon sequestration studied in Western U. S. mountains. Eos, Transactions, American Geophysical Union, 83, 445-449.
– reference: Wofsy SC, Goulden ML, Munger JW et al. (1993) Net exchange of CO2 in a midlatitude forest. Science, 260, 1314-1317.
– reference: Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 12, 240-259.
– reference: Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13521-13525.
– reference: Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agricultural and Forest Meteorology, 119, 1-21.
– reference: Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142, 155-184.
– reference: Aguado E, Cayan D, Riddle L, Roos M (1992) Climatic fluctuations and the timing of West-Coast streamflow. Journal of Climate, 5, 1468-1483.
– reference: Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
– reference: Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia, 106, 257-265.
– reference: Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606-623.
– reference: Black TA, Chen WJ, Barr AG et al. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27, 1271-1274.
– reference: Bishop DM (1962) Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon. Ecology, 43, 140-142.
– volume: 75
  start-page: 1450
  year: 1994
  end-page: 1462
  article-title: Climatic influences on the growth of sub‐alpine trees in the Colorado front range
  publication-title: Ecology
– volume: 13
  start-page: 89
  year: 2007
  end-page: 107
  article-title: Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada
  publication-title: Global Change Biology
– volume: 13
  start-page: 156
  year: 2008
  end-page: 163
  article-title: Changes in US streamflow and western US snowpack
  publication-title: Journal of Hydrologic Engineering
– volume: 146
  start-page: 130
  year: 2005
  end-page: 147
  article-title: Climatic influences on net ecosystem CO exchange during the transition from wintertime carbon source to springtime carbon sink in a high‐elevation, subalpine forest
  publication-title: Oecologia
– volume: 70
  start-page: 517
  year: 2000
  end-page: 537
  article-title: Intra‐ and interspecific variation for summer precipitation use in pinyon‐juniper woodlands
  publication-title: Ecological Monographs
– volume: 271
  start-page: 1576
  year: 1996
  end-page: 1578
  article-title: Exchange of carbon dioxide by a deciduous forest
  publication-title: Science
– volume: 33
  year: 2006
  article-title: Oceanic–atmospheric variability and western US snowfall
  publication-title: Geophysical Research Letters
– volume: 47
  start-page: 50
  year: 1973
  end-page: 60
  article-title: The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce‐fir forests in Wyoming
  publication-title: Northwest Science
– volume: 136
  start-page: 1
  year: 2006
  end-page: 18
  article-title: A multi‐site analysis of random error in tower‐based measurements of carbon and energy fluxes
  publication-title: Agricultural and Forest Meteorology
– volume: 9
  start-page: 967
  year: 2003
  end-page: 972
  article-title: Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest
  publication-title: Global Change Biology
– volume: 35
  start-page: 525
  year: 2003
  end-page: 534
  article-title: Spatial and temporal controls of soil respiration rate in a high‐elevation, subalpine forest
  publication-title: Soil Biology and Biochemistry
– volume: 92
  start-page: 463
  year: 1992
  end-page: 474
  article-title: A generalized, lumped‐parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems
  publication-title: Oecologia
– volume: 260
  start-page: 1314
  year: 1993
  end-page: 1317
  article-title: Net exchange of CO in a midlatitude forest
  publication-title: Science
– volume: 86
  start-page: 39
  year: 2005
  end-page: 49
  article-title: Declining mountain snowpack in Western North America
  publication-title: Bulletin of the American Meteorological Society
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– volume: 102
  start-page: 10823
  year: 2005
  end-page: 10827
  article-title: Drier summers cancel out the CO uptake enhancement induced by warmer springs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 459
  year: 2002
  end-page: 478
  article-title: Carbon sequestration in a high‐elevation, subalpine forest
  publication-title: Global Change Biology
– volume: 11
  start-page: 1777
  year: 2005
  end-page: 1787
  article-title: Spatial analysis of growing season length control over net ecosystem exchange
  publication-title: Global Change Biology
– volume: 404
  start-page: 861
  year: 2000
  end-page: 865
  article-title: Respiration as the main determinant of carbon balance in European forests
  publication-title: Nature
– volume: 43
  start-page: 140
  year: 1962
  end-page: 142
  article-title: Lodgepole pine rooting habits in Blue Mountains of Northeastern Oregon
  publication-title: Ecology
– volume: 18
  start-page: 372
  year: 2005
  end-page: 384
  article-title: Seasonal cycle shifts in hydroclimatology over the western United States
  publication-title: Journal of Climate
– volume: 133
  start-page: 1702
  year: 1961
  end-page: 1703
  article-title: Isotopic variations in meteoric waters
  publication-title: Science
– volume: 7
  start-page: 357
  year: 2001
  end-page: 373
  article-title: Global response of terrestrial ecosystem structure and function to CO and climate change
  publication-title: Global Change Biology
– volume: 151
  start-page: 54
  year: 2007
  end-page: 68
  article-title: Coupling between carbon cycling and climate in a high‐elevation, subalpine forest
  publication-title: Oecologia
– volume: 386
  start-page: 698
  year: 1997
  end-page: 702
  article-title: Increased plant growth in the northern high latitudes from 1981 to 1991
  publication-title: Nature
– volume: 36
  start-page: 1871
  year: 2006
  end-page: 1883
  article-title: Anchorage of coniferous trees in relation to species, soil type, and rooting depth
  publication-title: Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere
– volume: 451
  start-page: 49
  year: 2008
  end-page: 52
  article-title: Net carbon dioxide losses of northern ecosystems in response to autumn warming
  publication-title: Nature
– volume: 323
  start-page: 521
  year: 2009
  end-page: 524
  article-title: Widespread increase of tree mortality rates in the Western United States
  publication-title: Science
– volume: 119
  start-page: 1
  year: 2003
  end-page: 21
  article-title: Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects
  publication-title: Agricultural and Forest Meteorology
– volume: 42
  start-page: 139
  year: 1999
  end-page: 145
  article-title: The impact of growing‐season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest
  publication-title: International Journal of Biometeorology
– volume: 393
  start-page: 249
  year: 1998
  end-page: 252
  article-title: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change
  publication-title: Nature
– volume: 83
  start-page: 445
  year: 2002
  end-page: 449
  article-title: Carbon sequestration studied in Western U. S. mountains
  publication-title: Eos, Transactions, American Geophysical Union
– volume: 102
  start-page: 13521
  year: 2005
  end-page: 13525
  article-title: Satellite‐observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 409
  year: 1973
  end-page: 434
  article-title: Linear regressions in fishery research
  publication-title: Journal of the Fisheries Research Board of Canada
– start-page: 181
  year: 2000
  end-page: 198
– volume: 117
  start-page: 53
  year: 2003
  end-page: 71
  article-title: Ecophysiological controls on the carbon balances of three southern boreal forests
  publication-title: Agricultural and Forest Meteorology
– volume: 382
  start-page: 146
  year: 1996
  end-page: 149
  article-title: Increased activity of northern vegetation inferred from atmospheric CO measurements
  publication-title: Nature
– volume: 13
  start-page: 577
  year: 2007
  end-page: 590
  article-title: A long‐term record of carbon exchange in a boreal black spruce forest
  publication-title: Global Change Biology
– volume: 5
  start-page: 1468
  year: 1992
  end-page: 1483
  article-title: Climatic fluctuations and the timing of West‐Coast streamflow
  publication-title: Journal of Climate
– volume: 106
  start-page: 257
  year: 1996
  end-page: 265
  article-title: Extrapolating leaf CO exchange to the canopy
  publication-title: Oecologia
– start-page: 79
  year: 2003
  end-page: 112
– volume: 27
  start-page: 1271
  year: 2000
  end-page: 1274
  article-title: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring
  publication-title: Geophysical Research Letters
– volume: 142
  start-page: 155
  year: 2001
  end-page: 184
  article-title: Modeling CO and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales
  publication-title: Ecological Modelling
– volume: 8
  start-page: 606
  year: 1995
  end-page: 623
  article-title: Large‐scale atmospheric forcing of recent trends toward early snowmelt runoff in California
  publication-title: Journal of Climate
– volume: 15
  start-page: 1984
  year: 2005
  end-page: 1999
  article-title: Subalpine forest carbon cycling
  publication-title: Ecological Applications
– volume: 5
  start-page: 207
  year: 1995
  end-page: 222
  article-title: Predicting the effects of climate change on water yield and forest production in the northeastern United States
  publication-title: Climate Research
– volume: 11
  start-page: 335
  year: 2005
  end-page: 355
  article-title: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations
  publication-title: Global Change Biology
– volume: 104
  start-page: 18866
  year: 2007
  end-page: 18870
  article-title: Contributions to accelerating atmospheric CO growth from economic activity, carbon intensity, and efficiency of natural sinks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 966
  year: 2007
– volume: 43
  start-page: 653
  year: 1996
  end-page: 683
  article-title: A pelagic ecosystem model calibrated with BATS data
  publication-title: Deep-Sea Research Part II-Topical Studies in Oceanography
– volume: 110
  start-page: 177
  year: 2002
  end-page: 201
  article-title: Energy budget above a high‐elevation subalpine forest in complex topography
  publication-title: Agricultural and Forest Meteorology
– volume: 287
  start-page: 2004
  year: 2000
  end-page: 2006
  article-title: Contribution of increasing CO and climate to carbon storage by ecosystems in the United States
  publication-title: Science
– volume: 12
  start-page: 240
  year: 2006
  end-page: 259
  article-title: Model‐data synthesis of diurnal and seasonal CO fluxes at Niwot Ridge, Colorado
  publication-title: Global Change Biology
– volume: 148
  start-page: 1467
  year: 2008
  end-page: 1477
  article-title: Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO and H O fluxes
  publication-title: Agricultural and Forest Meteorology
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1365-2486.2001.00383.x
– ident: e_1_2_7_53_1
  doi: 10.1007/s004840050097
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.0702737104
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2486.2006.01221.x
– ident: e_1_2_7_50_1
  doi: 10.1126/science.1165000
– ident: e_1_2_7_55_1
  doi: 10.1126/science.260.5112.1314
– ident: e_1_2_7_46_1
  doi: 10.1016/S0038-0717(03)00007-5
– ident: e_1_2_7_7_1
  doi: 10.1016/S0304-3800(01)00287-3
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2486.2005.001012.x
– ident: e_1_2_7_42_1
  doi: 10.1007/s00442-006-0565-2
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1365-2486.2003.00585.x
– ident: e_1_2_7_41_1
  doi: 10.1139/f73-072
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2486.2005.01059.x
– ident: e_1_2_7_3_1
  doi: 10.3354/cr005207
– ident: e_1_2_7_27_1
  doi: 10.1061/(ASCE)1084-0699(2008)13:3(156)
– ident: e_1_2_7_24_1
  doi: 10.1029/2006GL026600
– ident: e_1_2_7_45_1
  doi: 10.1126/science.287.5460.2004
– ident: e_1_2_7_36_1
  doi: 10.1139/X06-072
– ident: e_1_2_7_4_1
  doi: 10.1007/BF00328606
– ident: e_1_2_7_14_1
  doi: 10.1038/30460
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.0501647102
– start-page: 966
  volume-title: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_7_26_1
– ident: e_1_2_7_10_1
  doi: 10.2307/1932053
– ident: e_1_2_7_25_1
  doi: 10.1016/0967-0645(96)00007-0
– ident: e_1_2_7_20_1
  doi: 10.1007/978-1-4612-1224-9_13
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2486.2005.00897.x
– ident: e_1_2_7_11_1
  doi: 10.1029/1999GL011234
– ident: e_1_2_7_5_1
  doi: 10.1175/1520-0442(1992)005<1468:CFATTO>2.0.CO;2
– ident: e_1_2_7_49_1
  doi: 10.1038/35009084
– volume: 47
  start-page: 50
  year: 1973
  ident: e_1_2_7_39_1
  article-title: The magnitude of snowmelt and rainfall interception by litter in lodgepole pine and spruce‐fir forests in Wyoming
  publication-title: Northwest Science
– ident: e_1_2_7_48_1
  doi: 10.1016/S0168-1923(01)00290-8
– ident: e_1_2_7_51_1
  doi: 10.2307/1937468
– ident: e_1_2_7_37_1
  doi: 10.1038/nature06444
– ident: e_1_2_7_2_1
  doi: 10.1007/BF00317837
– ident: e_1_2_7_31_1
  doi: 10.1007/s00442-005-0169-2
– ident: e_1_2_7_28_1
  doi: 10.1038/382146a0
– ident: e_1_2_7_34_1
  doi: 10.1175/BAMS-86-1-39
– ident: e_1_2_7_44_1
  doi: 10.1029/2002EO000314
– ident: e_1_2_7_38_1
  doi: 10.1175/JCLI-3272.1
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2486.2006.01281.x
– ident: e_1_2_7_40_1
  doi: 10.1046/j.0269-8463.2001.00597.x
– ident: e_1_2_7_30_1
  doi: 10.1063/1.1699114
– ident: e_1_2_7_32_1
  doi: 10.1046/j.1365-2486.2002.00480.x
– ident: e_1_2_7_33_1
  doi: 10.1016/j.agrformet.2008.04.013
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.0506179102
– ident: e_1_2_7_35_1
  doi: 10.1038/386698a0
– ident: e_1_2_7_22_1
  doi: 10.1126/science.271.5255.1576
– ident: e_1_2_7_47_1
  doi: 10.1016/S0168-1923(03)00136-9
– start-page: 79
  volume-title: Water Resources
  year: 2003
  ident: e_1_2_7_8_1
– ident: e_1_2_7_16_1
  doi: 10.1126/science.133.3465.1702
– ident: e_1_2_7_23_1
  doi: 10.1016/S0168-1923(03)00023-6
– ident: e_1_2_7_18_1
  doi: 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1890/04-1769
– ident: e_1_2_7_54_1
  doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
SSID ssj0003206
Score 2.4733775
Snippet As global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to reduce the...
AbstractAs global temperatures increase, the potential for longer growing seasons to enhance the terrestrial carbon sink has been proposed as a mechanism to...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 771
SubjectTerms Abies lasiocarpa
Biological and medical sciences
carbon
Carbon dioxide
Carbon sequestration
Carbon sinks
Climate change
Climate change models
Climatology. Bioclimatology. Climate change
Colorado
Coniferous trees
Dominant species
Earth, ocean, space
Ecosystem models
Ecosystem studies
Ecosystems
eddy covariance
Exact sciences and technology
External geophysics
Forestry
Forests
Fundamental and applied biological sciences. Psychology
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
Global temperatures
Global warming
Growing season
growing season length
hydrogen
Hydrogen isotopes
isotope
isotopes
melting
Meltwater
Meteorology
Mountain ecosystems
Mountains
net ecosystem productivity
Picea engelmannii
Pine trees
Pinus contorta var. latifolia
Plant species
primary productivity
Rain
Rocky Mountain region
SIPNET
snow
Snow-water equivalent
Snowmelt
Snowpack
Spring
subalpine forest
temperature
trees
Winter
xylem
Title Longer growing seasons lead to less carbon sequestration by a subalpine forest
URI https://api.istex.fr/ark:/67375/WNG-WLFFWL77-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.01967.x
https://www.proquest.com/docview/205238322
https://www.proquest.com/docview/46485248
https://www.proquest.com/docview/902347616
Volume 16
WOSCitedRecordID wos000274419400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CDiQu_ChMC4PhA9otqPGPODlCWcehVAio2ptlJ840USVT0qLtv-fZScMigTQhTm0UO4pfPj9_z_nyHsBbYyeZq-AQiqhgIeciDw2XMjSMGmZZInVW-GITcrFI1uv0S6d_ct_CtPkh-g03NzO8v3YTXJtmOMm9QosncZd2EsEk3yGfPKAIYzGCg49fZ8t575cZ9ZU2IyY4Op-IDXU9f7zWYLG6X-gKKayz_rWTUOoGrVi05S8G_PQ2y_XL1OzJ_xzgU3jckVXyvkXXM7hnyzE8bMtX3ozh8Oz3V3LYrHMTzRiCz0jFq9o3I6dkurlEXuyPnsNiXrmNRHKB8T8um8RtUiLyyQbBRrYV_jYNyXRtqpJ4nfc-sS8xN0STZmf05grHRpBt47kXsJydfZ9-CruiDmGGVE2G1Mg0yk3OuChMqlkcY8THECg2ioo4KpKJjXiWiyS20uCxMZllmmqKnjlnMmGHMCqr0h4BMUkicgwAdZxQjPJpaoWlNNWZkwzoYhKA3D89lXUZz13hjY26FfmgiZUzsavHmSpvYnUdQNT3vGqzftyhzxECROkLdM5q-Y26V8LIDt32QwCnHjX9tXT9wwnqpFCrxblazWez1VxKtQ7gZACrvgOSOIxbuQzgeI8z1TmbBu9CIPFCzxzAm_4segn36keXtto1isc8EXjLAZC_tEiRvHEZR3EAsUflnQeuzqcf3L-X_9rxGB61mgwnEnoFo229s6_hQfZze9nUJ900_gWPg0GX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb5RAEJ5oq7Ev_jhtitV2H0zfMAe7sPCoZ681UmK0l7u3zS4sTeMFGriz7X_v7MJhSTRpjE9A2CW7w7ez3wzDDMA7pceZqeDgBl5BXcaC3FWMc1dRX1FNIy6zwhab4GkaLRbx164ckPkXps0P0TvczMqw-toscOOQHq5yG6LForDLO4lo4u-RUG4zRBXCffvTt-ks6RUz9W2pTY8GDLWPR4eBPX981mC3eljICjmsEf-NiaGUDYqxaOtfDAjqXZpr96nps_86w-fwtKOr5EOLrxfwQJcjeNwWsLwdwe7x7__ksFmnKJoROGdIxqvaNiNHZLK8RGZsr15CmlTGlUgu6uoaN05i3JSIfbJEuJFVhcemIZmsVVUSG-m9Se1L1C2RpFkrubzCyRHk23jvFcymx-eTU7cr6-BmSNa46ysee7nKKQsKFUsahmjzUYSK9rwi9IporD2W5UEUaq7wWqlMU-lLH3VzTnlEd2GrrEq9B0RFUZCjCSjDyEc73491oH0_lpkJGpDF2AG-eX0i63Kem9IbS3HH9kERCyNiU5EzFlbE4sYBr-951eb9uEefPUSIkBeonsXsu28-CiM_NA4IB44sbPpnyfqHCanjgZinJ2KeTKfzhHOxcOBggKu-A9I4tFwZd2B_AzTRqZsGRxEg9ULd7MBhfxf1hPn4I0tdrRvBQhYFOGQHyF9axEjfGA-90IHQwvLeExcnk4_m7PW_djyEJ6fnZ4lIPqdf9mGnjdAwIUNvYGtVr_VbeJT9XF029UG3pn8B2lJFhw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BB2gv_CibFgabH9DegprYiZNH6JaBKNUEVO2bZSfONFElVdKO7b_n7KRhkUCaEE9tFDuKL5_P3zmX-wDeKj1KjYKDG3g5dRkLMlcxzl1FfUU1jbhMcys2wafTaLGIL1o5IPMtTFMfottwMzPD-mszwfUqy_uz3KZosShs604imvg7JJQ7zGjKDGDn9Gsym3SOmfpWatOjAUPv49F-Ys8fr9VbrR7mskQOa8x_Y3IoZY1mzBv9ix5BvUtz7TqVPPuvI3wOT1u6St43-HoBD3QxhMeNgOXtEPbPfn8nh81aR1EPwfmCZLysbDNyQsbLK2TG9uglTCel2Uokl1X5ExdOYrYpEftkiXAj6xJ_65qkslJlQWym97a0L1G3RJJ6o-RyhYMjyLfx3B7MkrPv449uK-vgpkjWuOsrHnuZyigLchVLGoYY81GEiva8PPTyaKQ9lmZBFGqu8FipVFPpSx99c0Z5RPdhUJSFPgCioijIMASUYeRjnO_HOtC-H8vUJA3IfOQA3z4-kbY1z430xlLciX3QxMKY2ChyxsKaWNw44HU9V03dj3v0OUCECHmJ7lnMvvnmpTDyQ7MB4cCJhU13LVn9MCl1PBDz6bmYT5JkPuFcLBw46uGq64A0DiNXxh043AJNtO6mxrsIkHqhb3bguDuLfsK8_JGFLje1YCGLArxlB8hfWsRI3xgPvdCB0MLy3gMX5-MP5t-rf-14DE8uThMx-TT9fAi7TYKGyRh6DYN1tdFv4FF6vb6qq6N2Sv8C-_JFAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longer+growing+seasons+lead+to+less+carbon+sequestration+by+a+subalpine+forest&rft.jtitle=Global+change+biology&rft.au=HU%2C+JIA&rft.au=MOORE%2C+DAVID+J.+P.&rft.au=BURNS%2C+SEAN+P.&rft.au=MONSON%2C+RUSSELL+K.&rft.date=2010-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=16&rft.issue=2&rft.spage=771&rft.epage=783&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.01967.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WLFFWL77_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon