Deep Learning‐Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard‐to‐Transfect Cells

Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Small (Weinheim an der Bergstrasse, Germany) Ročník 18; číslo 20; s. e2107795 - n/a
Hlavní autori: Mukherjee, Prithvijit, Patino, Cesar A., Pathak, Nibir, Lemaitre, Vincent, Espinosa, Horacio D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.05.2022
Wiley Blackwell (John Wiley & Sons)
Predmet:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human‐induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP‐E) system, a nanopipette‐based single‐cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell‐nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP‐E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation. In this article, the authors present a deep learning‐assisted nanofountain probe electroporation system in combination with microconfinement arrays to trap and transfect single cells. Using the combined platform, the authors demonstrate automated intracellular delivery and genetic perturbation in hard‐to‐transfect cells followed by temporal tracking of the perturbed cell colonies.
AbstractList Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human‐induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP‐E) system, a nanopipette‐based single‐cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell‐nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP‐E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation. In this article, the authors present a deep learning‐assisted nanofountain probe electroporation system in combination with microconfinement arrays to trap and transfect single cells. Using the combined platform, the authors demonstrate automated intracellular delivery and genetic perturbation in hard‐to‐transfect cells followed by temporal tracking of the perturbed cell colonies.
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies, is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting (FACS) for cell isolation that can be harsh to sensitive cell types such as human induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented, that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with micro-confinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation. In this article, the authors present a deep learning assisted Nanofountain Probe Electroporation system in combination with micro-confinement arrays to trap and transfect single cells. Using the combined platform, the authors demonstrate automated intracellular delivery and genetic perturbation in hard-to-transfect cells followed by temporal tracking of the perturbed cell colonies.
Abstract Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human‐induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP‐E) system, a nanopipette‐based single‐cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell‐nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP‐E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Author Mukherjee, Prithvijit
Patino, Cesar A.
Pathak, Nibir
Lemaitre, Vincent
Espinosa, Horacio D.
AuthorAffiliation 3 iNfinitesimal LLC, Skokie, Illinois 60077, United States
1 Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
2 Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
AuthorAffiliation_xml – name: 1 Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
– name: 2 Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
– name: 3 iNfinitesimal LLC, Skokie, Illinois 60077, United States
Author_xml – sequence: 1
  givenname: Prithvijit
  surname: Mukherjee
  fullname: Mukherjee, Prithvijit
  organization: iNfinitesimal LLC
– sequence: 2
  givenname: Cesar A.
  surname: Patino
  fullname: Patino, Cesar A.
  organization: iNfinitesimal LLC
– sequence: 3
  givenname: Nibir
  surname: Pathak
  fullname: Pathak, Nibir
  organization: Northwestern University
– sequence: 4
  givenname: Vincent
  surname: Lemaitre
  fullname: Lemaitre, Vincent
  organization: iNfinitesimal LLC
– sequence: 5
  givenname: Horacio D.
  orcidid: 0000-0002-1907-3213
  surname: Espinosa
  fullname: Espinosa, Horacio D.
  email: espinosa@northwestern.edu
  organization: iNfinitesimal LLC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35315229$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1856281$$D View this record in Osti.gov
BookMark eNqFkk1v1DAQhi1URD_gyhFZ9MJlF3_ESXxBWi1Li5QKpJaz5ThO68qxg-0U9caVG7-RX4K3KQtUQlxsy_O8M_Pacwj2nHcagOcYLTFC5HUcrF0SRDCqKs4egQNcYrooa8L3dmeM9sFhjNcIUUyK6gnYp4xiRgg_AN_eaj3CRsvgjLv88fX7KkYTk-7gakp-kNvTeY5YDdfaWrixWqXgRx9kMt7Bj1am3ocB5gVu-j5HzY2GJ9rpZBQ8k86Mk51Z38NTGbpcJPm8XATp4lZwlzk-BY97aaN-dr8fgU_vNhfr00Xz4eT9etUsFCsxW1SkRbhWRGGlikJmI7RvK0YKpqjkFc83tG37Wnc1b0vFSI2rgjLWVbjskCL0CLyZ845TO-hOaZeCtGIMZpDhVnhpxN8RZ67Epb8RHGPOCcoJXs4JfExGRGWSVlfKO5etCFyzMpfM0Kv7KsF_nnRMYjBRZZ_SaT9FQcoC1yWjFcvo8QP02k_B5TfIVFkSzlBNM_Xiz7Z3_f76ygwsZ0AFH2PQ_Q7BSGxnRWxnRexmJQuKB4Js5e6nsm1j_y3js-yLsfr2P0XE-VnT_Nb-BH_E2DU
CitedBy_id crossref_primary_10_1002_adhm_202502472
crossref_primary_10_1002_aisy_202200096
crossref_primary_10_1038_s41592_024_02177_x
crossref_primary_10_1002_smll_202307067
crossref_primary_10_1371_journal_pone_0302537
crossref_primary_10_1002_smll_202303053
crossref_primary_10_1021_acsnanoscienceau_5c00053
crossref_primary_10_1002_bit_28965
crossref_primary_10_1088_1361_665X_adaef9
crossref_primary_10_1063_5_0240667
crossref_primary_10_1002_advs_202416066
crossref_primary_10_1007_s11274_025_04276_z
crossref_primary_10_1063_5_0233580
Cites_doi 10.1038/nature19764
10.1093/nar/gkt555
10.1007/s12015-018-9811-3
10.1126/science.aax7852
10.1038/s41551-017-0039
10.1039/B613349E
10.1016/j.stem.2010.06.018
10.1021/acs.chemrev.7b00678
10.1007/s12015-015-9600-1
10.1038/nrg1066
10.1039/D0MH01016B
10.1093/nar/gky804
10.7150/thno.34412
10.1002/adma.202001668
10.1073/pnas.1818553116
10.1016/j.tibtech.2016.05.003
10.1038/nrg3899
10.1016/j.tibtech.2014.04.008
10.1021/acsnano.8b05473
10.1126/sciadv.aat5847
10.1073/pnas.1911718116
10.1002/smll.201702495
10.1038/nprot.2009.40
10.1016/j.stem.2019.02.019
10.1039/C8CS00008E
10.1002/smll.202004917
10.1038/nrd.2016.238
10.1021/acs.nanolett.8b00704
10.3389/fcell.2019.00011
10.1038/nrm.2015.27
10.1002/adfm.202104828
10.1007/s11517-011-0831-2
10.1021/acsnano.9b07930
10.1016/j.stem.2009.05.005
10.1016/j.mattod.2018.03.002
10.1038/nmeth.2019
10.1038/s41586-018-0326-5
10.1038/nmeth.4177
10.1002/smll.201401137
10.1021/acsnano.0c05169
10.1177/2472630320982320
10.1073/pnas.1218705110
10.1038/s41592-018-0261-2
10.1016/j.cell.2016.11.038
10.1021/nl400423c
10.1038/s41596-021-00600-7
10.1016/j.jneumeth.2020.108632
10.1002/smll.202002616
10.1016/j.ymeth.2015.12.002
10.1038/nrg.2017.15
10.1038/s41587-020-0470-y
10.1038/nrd.2016.280
10.1016/j.stemcr.2017.12.004
10.1038/srep21471
10.1038/nrd.2016.245
10.1126/sciadv.aat8131
10.1073/pnas.2001367117
10.1021/ac4021769
ContentType Journal Article
Copyright 2022 The Authors. Small published by Wiley‐VCH GmbH
2022 The Authors. Small published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
5PM
DOI 10.1002/smll.202107795
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE



Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID PMC9119920
1856281
35315229
10_1002_smll_202107795
SMLL202107795
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Basic Energy Sciences
– fundername: U.S. Department of Energy
– fundername: Office of Science
– fundername: NIGMS NIH HHS
  grantid: R43 GM128500
– fundername: NIGMS NIH HHS
  grantid: R21 GM132709
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
AAPBV
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
5PM
ID FETCH-LOGICAL-c5615-72b018c2c1cc44a5313fb75245c3a979a533bbf8ed89b6c528174355d716d0c23
IEDL.DBID DRFUL
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771229700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Tue Nov 04 02:06:43 EST 2025
Mon Aug 28 20:01:53 EDT 2023
Fri Sep 05 06:40:42 EDT 2025
Sat Sep 06 11:28:09 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Sat Nov 29 04:10:40 EST 2025
Tue Nov 18 19:44:50 EST 2025
Wed Jan 22 16:26:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords single-cell electroporation
deep learning
human-induced pluripotent stem cells (hiPSCs)
CRISPR/Cas9
intracellular delivery
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5615-72b018c2c1cc44a5313fb75245c3a979a533bbf8ed89b6c528174355d716d0c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
equal contribution
H.D.E. conceived the project. P.M. and C.A.P. contributed equally. P.M. and C.A.P. wrote the automation software. C.A.P. and P.M. developed the image segmentation routines. C.A.P. and P.M. fabricated the micro-well and micro-pattern arrays. P.M., N.P. and V.L. performed the biological experiments. All authors analyzed and interpreted the data. H.D.E., P.M. and C.A.P wrote the manuscript.
Author Contributions
ORCID 0000-0002-1907-3213
0000000219073213
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107795
PMID 35315229
PQID 2666295083
PQPubID 1046358
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119920
osti_scitechconnect_1856281
proquest_miscellaneous_2641865375
proquest_journals_2666295083
pubmed_primary_35315229
crossref_primary_10_1002_smll_202107795
crossref_citationtrail_10_1002_smll_202107795
wiley_primary_10_1002_smll_202107795_SMLL202107795
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2021; 26
2017; 1
2020; 16
2019; 16
2020; 14
2019; 365
2016; 34
2018; 47
2018; 46
2020; 7
2018; 4
2013; 13
2019; 24
2019; 116
2003; 4
2020; 337
2022; 32
2013; 110
2007; 3
2010; 7
2019; 7
2019; 9
2015; 16
2015; 11
2013; 41
2013; 85
2016; 167
2020; 38
2016; 96
2020; 32
2016; 17
2018; 21
2012; 50
2021; 16
2018; 18
2016; 6
2016; 538
2017; 14
2018; 559
2017; 16
2018; 118
2020; 117
2017
2016
2015
2017; 18
2009; 4
2018; 12
2018; 10
2018; 15
2018; 14
2014; 32
2012; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Gonzalez R. C. (e_1_2_10_62_1) 2017
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Goodfellow I. (e_1_2_10_63_1) 2016
e_1_2_10_1_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
DiTommaso T. (e_1_2_10_13_1) 2018; 15
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 50
  start-page: 11
  year: 2012
  publication-title: Med. Biol. Eng. Comput.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3280
  year: 2019
  publication-title: Theranostics
– volume: 21
  start-page: 703
  year: 2018
  publication-title: Mater. Today
– volume: 14
  year: 2018
  publication-title: Small
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 116
  start-page: 7899
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 225
  year: 2010
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 2810
  year: 2020
  publication-title: Mater. Horiz.
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 17
  start-page: 170
  year: 2016
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 16
  start-page: 89
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 559
  start-page: 405
  year: 2018
  publication-title: Nature
– volume: 1
  start-page: 0039
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 9
  start-page: 676
  year: 2012
  publication-title: Nat. Methods
– volume: 110
  start-page: 2082
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 115
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 18
  start-page: 2705
  year: 2018
  publication-title: Nano Lett.
– volume: 46
  year: 2018
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 9049
  year: 2013
  publication-title: Nucleic Acids Res.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 16
  year: 2020
  publication-title: Small
– volume: 4
  start-page: 767
  year: 2009
  publication-title: Nat. Protoc.
– volume: 14
  start-page: 297
  year: 2017
  publication-title: Nat. Methods
– volume: 13
  start-page: 2448
  year: 2013
  publication-title: Nano Lett.
– volume: 538
  start-page: 183
  year: 2016
  publication-title: Nature
– volume: 18
  start-page: 345
  year: 2017
  publication-title: Nat. Rev. Genet.
– volume: 4
  start-page: 472
  year: 2009
  publication-title: Cell Stem Cell
– volume: 11
  start-page: 774
  year: 2015
  publication-title: Stem Cell Rev. Rep.
– volume: 85
  start-page: 9333
  year: 2013
  publication-title: Anal. Chem.
– volume: 38
  start-page: 954
  year: 2020
  publication-title: Nat. Biotechnol.
– volume: 96
  start-page: 6
  year: 2016
  publication-title: Methods
– volume: 16
  start-page: 299
  year: 2015
  publication-title: Nat. Rev. Genet.
– volume: 26
  start-page: 26
  year: 2021
  publication-title: SLAS Technol.
– volume: 337
  year: 2020
  publication-title: J. Neurosci. Methods
– volume: 32
  start-page: 381
  year: 2014
  publication-title: Trends Biotechnol.
– volume: 118
  start-page: 7409
  year: 2018
  publication-title: Chem. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 14
  start-page: 323
  year: 2018
  publication-title: Stem Cell Rev. Rep.
– volume: 3
  start-page: 168
  year: 2007
  publication-title: Soft Matter
– volume: 24
  year: 2019
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 346
  year: 2003
  publication-title: Nat. Rev. Genet.
– year: 2016
– volume: 14
  start-page: 3048
  year: 2020
  publication-title: ACS Nano
– volume: 16
  start-page: 67
  year: 2019
  publication-title: Nat. Methods
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 167
  year: 2016
  publication-title: Cell
– volume: 11
  start-page: 2386
  year: 2015
  publication-title: Small
– volume: 34
  start-page: 665
  year: 2016
  publication-title: Trends Biotechnol.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 0588
  year: 2017
  end-page: 0592
– volume: 10
  start-page: 642
  year: 2018
  publication-title: Stem Cell Rep.
– volume: 365
  start-page: 1301
  year: 2019
  publication-title: Science
– volume: 16
  start-page: 387
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 16
  start-page: 4539
  year: 2021
  publication-title: Nat. Protoc.
– volume: 15
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11
  year: 2019
  publication-title: Front. Cell Dev. Biol.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– year: 2017
– volume: 47
  start-page: 3421
  year: 2018
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_10_9_1
  doi: 10.1038/nature19764
– ident: e_1_2_10_15_1
  doi: 10.1093/nar/gkt555
– ident: e_1_2_10_18_1
  doi: 10.1007/s12015-018-9811-3
– ident: e_1_2_10_57_1
  doi: 10.1126/science.aax7852
– ident: e_1_2_10_34_1
  doi: 10.1038/s41551-017-0039
– ident: e_1_2_10_52_1
  doi: 10.1039/B613349E
– ident: e_1_2_10_36_1
  doi: 10.1016/j.stem.2010.06.018
– ident: e_1_2_10_10_1
  doi: 10.1021/acs.chemrev.7b00678
– ident: e_1_2_10_7_1
  doi: 10.1007/s12015-015-9600-1
– ident: e_1_2_10_14_1
  doi: 10.1038/nrg1066
– ident: e_1_2_10_43_1
– ident: e_1_2_10_27_1
  doi: 10.1039/D0MH01016B
– ident: e_1_2_10_12_1
  doi: 10.1093/nar/gky804
– ident: e_1_2_10_50_1
  doi: 10.7150/thno.34412
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.202001668
– volume: 15
  year: 2018
  ident: e_1_2_10_13_1
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_10_20_1
  doi: 10.1073/pnas.1818553116
– ident: e_1_2_10_35_1
  doi: 10.1016/j.tibtech.2016.05.003
– ident: e_1_2_10_3_1
  doi: 10.1038/nrg3899
– ident: e_1_2_10_38_1
  doi: 10.1016/j.tibtech.2014.04.008
– ident: e_1_2_10_19_1
  doi: 10.1021/acsnano.8b05473
– ident: e_1_2_10_60_1
  doi: 10.1126/sciadv.aat5847
– ident: e_1_2_10_42_1
– ident: e_1_2_10_28_1
  doi: 10.1073/pnas.1911718116
– ident: e_1_2_10_41_1
  doi: 10.1002/smll.201702495
– ident: e_1_2_10_53_1
  doi: 10.1038/nprot.2009.40
– ident: e_1_2_10_54_1
  doi: 10.1016/j.stem.2019.02.019
– ident: e_1_2_10_49_1
  doi: 10.1039/C8CS00008E
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_10_63_1
– ident: e_1_2_10_26_1
  doi: 10.1002/smll.202004917
– ident: e_1_2_10_1_1
  doi: 10.1038/nrd.2016.238
– ident: e_1_2_10_30_1
  doi: 10.1021/acs.nanolett.8b00704
– ident: e_1_2_10_48_1
– ident: e_1_2_10_16_1
  doi: 10.3389/fcell.2019.00011
– ident: e_1_2_10_6_1
  doi: 10.1038/nrm.2015.27
– ident: e_1_2_10_22_1
  doi: 10.1002/adfm.202104828
– ident: e_1_2_10_46_1
  doi: 10.1007/s11517-011-0831-2
– ident: e_1_2_10_32_1
  doi: 10.1021/acsnano.9b07930
– ident: e_1_2_10_55_1
  doi: 10.1016/j.stem.2009.05.005
– ident: e_1_2_10_31_1
  doi: 10.1016/j.mattod.2018.03.002
– ident: e_1_2_10_64_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_10_11_1
  doi: 10.1038/s41586-018-0326-5
– ident: e_1_2_10_56_1
  doi: 10.1038/nmeth.4177
– ident: e_1_2_10_40_1
  doi: 10.1002/smll.201401137
– ident: e_1_2_10_33_1
  doi: 10.1021/acsnano.0c05169
– ident: e_1_2_10_45_1
  doi: 10.1177/2472630320982320
– ident: e_1_2_10_29_1
  doi: 10.1073/pnas.1218705110
– ident: e_1_2_10_44_1
  doi: 10.1038/s41592-018-0261-2
– ident: e_1_2_10_4_1
  doi: 10.1016/j.cell.2016.11.038
– volume-title: Digital Image Processing
  year: 2017
  ident: e_1_2_10_62_1
– ident: e_1_2_10_39_1
  doi: 10.1021/nl400423c
– ident: e_1_2_10_21_1
  doi: 10.1038/s41596-021-00600-7
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jneumeth.2020.108632
– ident: e_1_2_10_47_1
  doi: 10.1002/smll.202002616
– ident: e_1_2_10_59_1
  doi: 10.1016/j.ymeth.2015.12.002
– ident: e_1_2_10_51_1
  doi: 10.1038/nrg.2017.15
– ident: e_1_2_10_5_1
  doi: 10.1038/s41587-020-0470-y
– ident: e_1_2_10_8_1
  doi: 10.1038/nrd.2016.280
– ident: e_1_2_10_17_1
  doi: 10.1016/j.stemcr.2017.12.004
– ident: e_1_2_10_58_1
  doi: 10.1038/srep21471
– ident: e_1_2_10_2_1
  doi: 10.1038/nrd.2016.245
– ident: e_1_2_10_23_1
  doi: 10.1126/sciadv.aat8131
– ident: e_1_2_10_24_1
  doi: 10.1073/pnas.2001367117
– ident: e_1_2_10_37_1
  doi: 10.1021/ac4021769
SSID ssj0031247
Score 2.5161161
Snippet Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of...
Abstract Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107795
SubjectTerms Algorithms
Automation
CRISPR
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Deep Learning
Electroporation
Electroporation - methods
Gene Editing - methods
Genetic modification
Humans
human‐induced pluripotent stem cells (hiPSCs)
Induced Pluripotent Stem Cells - metabolism
intracellular delivery
Machine learning
Nanotechnology
Screening
single‐cell electroporation
Stem cells
Workflow
Title Deep Learning‐Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard‐to‐Transfect Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107795
https://www.ncbi.nlm.nih.gov/pubmed/35315229
https://www.proquest.com/docview/2666295083
https://www.proquest.com/docview/2641865375
https://www.osti.gov/biblio/1856281
https://pubmed.ncbi.nlm.nih.gov/PMC9119920
Volume 18
WOSCitedRecordID wos000771229700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc48H6ElspISJyibmwnto9V2xWHbbWiVNpblDgOrBSSVZPlzJUbv5Ffwkxe7AoQEuRgJbEdPzLj-ZzY3wC8VirJhc4iX0tjfYmHr0WufKOlSII8lS5IW2cT6vJSL5dmsbWLv-OHGD-4kWa04zUpeJLWxz9JQ-tPBf06wCmLUibcg33aWYXTr_2zd7Pr-TAaC7RfrYMVNFs-cW8NxI1Tfrz7hB3DNKlQwX4HOn9dO7mNaVujNLv__815APd6QMpOOgl6CLdc-QjubtEUPoavZ86tWc_E-uH7l2_4Tkk6MnayaSqEvHh2hTGFY6euKNh551pn3UsXWxRJQ9iYYcA6umQcYxkxXmOh7CIpV4MXMVbljBYTYCFNhUFrSilD--T6CVzPzt-fvvV7Fw6-RWBGjnLTaaAtt4G1Uiao8CJPVchlaEVilME7Ik1z7TJt0siGXNMMKQwznMZlU8vFU5iUVemeA5PS8sAKkxPKFKFJNHaWCbkKgsghDPLAH95fbHt-c3KzUcQdMzOPqYvjsYs9eDOmX3fMHn9MeUDiECMmIWJdSyuQbBMj0omwvh4cDlIS9_pfxwh7Ik4OdoUHr8Zo1Fz6HZOUrtpQGhnoKBQKC3jWCdVYEYE9hcjYeKB2xG1MQKzguzHl6mPLDo7Wyxg-9YC34vaXtsVXF_P5ePXiXzIdwB1Oe0LaVaCHMGluNu4l3Lafm1V9cwR7XC4wVEt91OvmD60kO6g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BgkQ58C6EFjASEqeoG9uJ7WNVWhWxu1qpRerNSrwOrBSSVTfLmSs3fiO_hJm86AoQEiKHKIntOHFmPJ_tyTcAr5RKc6EXSailcaHELdQiV6HRUqRRnkkfZU2wCTWb6YsLM--8CelfmJYfYphwI81o-mtScJqQPvjJGrr-VNDaAY5ZlDLxdbgh0TSRVx-X874zFmi-mvgqmBQS9VbP2zjmB9vlt-zSqEL9-h3m_NV18iqkbWzSyd3_8Db34E4HSNlhK0H34ZovH8DtKzSFD-HrG-9XrGNi_fD9yzf8piQdC3a4qSuEvHh0himFZ0e-KNhxG1pn1UkXmxdpTdiY4Y61dMnYxzJivMZK2TQtl30UMVbljJwJsJK6wl1jSqlAc-f1I3h_cnx-dBp2IRxCh8CMAuVm40g77iLnpExR4UWeqZjL2InUKINXRJbl2i-0yRIXc00jpDhe4DBuMXZc7MKorEr_BJiUjkdOmJxQpohNqrGxTMxVFCUeYVAAYf8Brev4zSnMRmFbZmZuqYnt0MQBvB7yr1pmjz_m3CN5sIhJiFjXkQeSqy0inQSfN4D9Xkxsp_9ri7An4RRgVwTwckhGzaXlmLT01YbyyEgnsVBYweNWqoYHEdhSiIxNAGpL3oYMxAq-nVIuPzbs4Gi9jOHjAHgjb395N3s2nUyGs6f_UugF3Do9n07s5O3s3R7scPo_pPEI3YdRfbnxz-Cm-1wv15fPG9X8AepAPD4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgQagceFNCCxgJiVPUjR-xfazarkBsVysVpN6sxHHKSiFZdbOcuXLjN_JLmHGyoStASIgcrCS248Se8XxOJt8Q8kqprOS6SGMtjIsFbLHmpYqNFjxLylz4JA_BJtRsps_Pzbz3JsR_YTp-iOGFG2pGmK9Rwf2yKA9-soauPlX47QDWLEoZeZ3cEFIF3WRivpmMOZivEF8FrFaM1Fsb3sYxO9iuv2WXRg3o1-8w56-uk1chbbBJk7v_4WnukTs9IKWHnQTdJ9d8_YDcvkJT-JB8PfZ-SXsm1ovvX77BmKJ0FPRw3TYAeWHvDHIqT498VdGTLrTOspcuOq-yFrExhYR2dMkwx1JkvIZG6WlWLzZRxGhTUnQmgEbaBpJgSrFCuPLqEfkwOXl_9CbuQzjEDoAZBsrNx4l2zCXOCZGBwvMyV5IJ6XhmlIEzPM9L7Qtt8tRJpnGFJGUBy7hi7Bh_TEZ1U_snhArhWOK4KRFlcmkyDZ1lJIMxTz3AoIjEmwG0ruc3xzAble2YmZnFLrZDF0fk9VB-2TF7_LHkHsqDBUyCxLoOPZBcawHppHC_EdnfiInt9X9lAfakDAPs8oi8HLJBc_FzTFb7Zo1lRKJTyRU0sNtJ1XAjHHoKkLGJiNqSt6EAsoJv59SLj4EdHKyXMWwcERbk7S_PZs9Op9Ph6Om_VHpBbs2PJ3b6dvZuj-ww_D0kOITuk1F7ufbPyE33uV2sLp8HzfwBHqA7uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Assisted+Automated+Single+Cell+Electroporation+Platform+for+Effective+Genetic+Manipulation+of+Hard-to-Transfect+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Mukherjee%2C+Prithvijit&rft.au=Patino%2C+Cesar+A&rft.au=Pathak%2C+Nibir&rft.au=Lemaitre%2C+Vincent&rft.date=2022-05-01&rft.eissn=1613-6829&rft.volume=18&rft.issue=20&rft.spage=e2107795&rft_id=info:doi/10.1002%2Fsmll.202107795&rft_id=info%3Apmid%2F35315229&rft.externalDocID=35315229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon