Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health
Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human...
Gespeichert in:
| Veröffentlicht in: | Molecules (Basel, Switzerland) Jg. 27; H. 22; S. 7823 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.11.2022
MDPI |
| Schlagworte: | |
| ISSN: | 1420-3049, 1420-3049 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health. |
|---|---|
| AbstractList | Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health.Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health. Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health. Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3- -galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health. |
| Audience | Academic |
| Author | Meyer, Gunnar Grebenc, Jessica R. Lei, Jizhou Ren, Yulin Frank, Tyler Slaughter, Ryan Gao, Yu G. Kinghorn, A. Douglas |
| AuthorAffiliation | 1 Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA 3 Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA 2 OSU South Centers, The Ohio State University, Columbus, OH 43210, USA |
| AuthorAffiliation_xml | – name: 1 Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA – name: 3 Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA – name: 2 OSU South Centers, The Ohio State University, Columbus, OH 43210, USA |
| Author_xml | – sequence: 1 givenname: Yulin orcidid: 0000-0003-3667-1466 surname: Ren fullname: Ren, Yulin – sequence: 2 givenname: Tyler orcidid: 0000-0002-9282-9371 surname: Frank fullname: Frank, Tyler – sequence: 3 givenname: Gunnar surname: Meyer fullname: Meyer, Gunnar – sequence: 4 givenname: Jizhou surname: Lei fullname: Lei, Jizhou – sequence: 5 givenname: Jessica R. surname: Grebenc fullname: Grebenc, Jessica R. – sequence: 6 givenname: Ryan surname: Slaughter fullname: Slaughter, Ryan – sequence: 7 givenname: Yu G. orcidid: 0000-0002-9901-8790 surname: Gao fullname: Gao, Yu G. – sequence: 8 givenname: A. Douglas orcidid: 0000-0002-6647-8707 surname: Kinghorn fullname: Kinghorn, A. Douglas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36431924$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1vEzEQhleoiH7AD-CCLHEphxSv7f3wBSmNKIlUCQ7lbM16ZxOnu3awvZX67_GSUpqCkA-2x8_72jOe0-zIOotZ9janF5xL-nFwPeqxx8Aqxqqa8RfZSS4YnXEq5NGT9XF2GsKWUpaLvHiVHfNS8FwycZKFby6ijQZ6cokWOxMDcR257EHfksXG3WKD3t-T87l31gAZsAfrNPgdfCBXfpx4sC252aDxZOFsiCaOyTEQY8lq2Hl3Z-yaLMcBLFki9HHzOnvZQR_wzcN8ln2_-nyzWM6uv35ZLebXM12UNM6g5W3V6BJqaAE7qDqpGTZNnrdSIisBUGPaV3nLadNo2lWsY5J2haBalpyfZau9b-tgq3beDODvlQOjfgWcXyvw0egeFQMpoaO5FmUqTUsllZwWtW7SEoWE5PVp77UbmwFbnTL00B-YHp5Ys1Frd6dkmZ5Sl8ng_MHAux8jhqgGEzT2qZzoxqBYJWhBSypZQt8_Q7du9DaVKlFcClFXov5DrSElYGzn0r16MlXzShSyFKysEnXxDyqNFgej3fTjKX4gePc00ccMf7dMAvI9oL0LwWP3iORUTW2p_mrLpKmeabSJEI2bamX6_yh_AqDE6xE |
| CitedBy_id | crossref_primary_10_1016_j_jtemb_2023_127205 crossref_primary_10_48130_fia_0024_0008 crossref_primary_10_3390_beverages11040115 crossref_primary_10_1016_j_foodres_2024_115094 crossref_primary_10_1080_00032719_2024_2324379 crossref_primary_10_3390_ijms242115512 crossref_primary_10_3390_molecules29132971 crossref_primary_10_1155_jfbc_8899523 crossref_primary_10_1002_cbf_3829 crossref_primary_10_3390_nu16040502 crossref_primary_10_1002_fsn3_70784 crossref_primary_10_3390_app13148186 crossref_primary_10_3390_plants13223136 crossref_primary_10_3389_frfst_2025_1656271 crossref_primary_10_2478_aucft_2025_0003 crossref_primary_10_1039_D3FO02177G crossref_primary_10_3390_plants14081202 crossref_primary_10_3390_molecules28196944 crossref_primary_10_1016_j_bcab_2024_103168 crossref_primary_10_3390_antiox12030746 crossref_primary_10_3390_molecules29112577 crossref_primary_10_1016_j_jfca_2025_107557 crossref_primary_10_1155_2024_1092462 crossref_primary_10_1016_j_ijbiomac_2024_137696 crossref_primary_10_3390_agriculture13030604 crossref_primary_10_51745_najfnr_9_20_1_15 crossref_primary_10_3390_nu17101652 crossref_primary_10_1080_27697061_2025_2551181 crossref_primary_10_3390_molecules28031080 crossref_primary_10_1007_s11240_023_02652_x crossref_primary_10_3389_fnut_2025_1603011 crossref_primary_10_3390_nu16070926 crossref_primary_10_1080_15428052_2024_2393161 crossref_primary_10_1016_j_burns_2025_107391 crossref_primary_10_1016_j_tifs_2025_104946 crossref_primary_10_3390_app132212256 crossref_primary_10_1016_j_microc_2024_112228 crossref_primary_10_3390_ijms252010887 crossref_primary_10_3390_cimb46080477 crossref_primary_10_3390_pharmaceutics17050669 crossref_primary_10_1016_j_heliyon_2024_e35630 crossref_primary_10_3390_antiox12040951 crossref_primary_10_1016_j_ijbiomac_2025_146286 crossref_primary_10_3390_app14219675 crossref_primary_10_1016_j_cjac_2023_100301 crossref_primary_10_3390_life14091211 crossref_primary_10_3390_ph17070911 crossref_primary_10_3390_foods13203255 crossref_primary_10_1002_jsfa_14064 crossref_primary_10_1016_j_cdnut_2025_107522 crossref_primary_10_3233_JBR_230066 crossref_primary_10_3390_antiox12081599 crossref_primary_10_1080_09712119_2024_2381729 crossref_primary_10_3390_plants12183276 |
| Cites_doi | 10.1089/jmf.2006.238 10.3389/fnut.2017.00053 10.1021/acs.orglett.5b01284 10.1007/s11010-021-04106-4 10.3390/ijms19092528 10.1089/jmf.2014.0171 10.1007/s00394-011-0238-8 10.5897/JMPR2021.7137 10.22159/ijpps.2021v13i6.41106 10.1089/jmf.2020.0127 10.1021/jf303712e 10.1002/cbdv.202000654 10.1080/10408398.2021.2000932 10.1016/j.fbio.2021.100910 10.3390/ijms150711626 10.1186/s12970-021-00447-z 10.3390/molecules26041109 10.1080/19390211.2020.1800887 10.1093/ajcn/nqz075 10.3390/molecules24203710 10.3390/nu13020387 10.1002/ptr.6587 10.2217/fon-2017-0585 10.3390/molecules23010139 10.3389/fnut.2021.689055 10.3390/nu12051484 10.1021/jm060087k 10.1089/jmf.2017.3939 10.1002/ptr.3226 10.1111/1541-4337.12221 10.3390/nu14132688 10.1016/j.foodchem.2019.01.108 10.3390/foods10030486 10.1016/j.nutres.2016.12.007 10.3390/nu10050531 10.3390/biom12010098 10.1016/j.etp.2005.01.001 10.1016/j.freeradbiomed.2012.02.035 10.1016/j.fct.2019.110674 10.3390/ijms22052261 10.3390/nu11051075 10.1016/j.tifs.2019.05.006 10.1530/JME-12-0171 10.3390/nu11051190 10.3390/antiox10101600 10.1021/acs.jnatprod.2c00036 10.1207/S15327914NC4602_12 10.2174/0929867321666140826115422 10.3390/ijms22168586 10.1089/jmf.2009.0062 10.3390/ph15050619 10.3389/fphar.2020.00867 10.1016/j.bmc.2018.07.025 10.1136/jclinpath-2013-202075 10.3390/ijms20133177 10.1016/j.sajb.2021.06.003 10.2174/1389450119666180403101555 10.3389/fphar.2018.00078 10.4103/jfmpc.jfmpc_1007_20 10.1080/01635581.2020.1789679 10.1016/j.jnutbio.2006.05.003 10.1016/j.bbrc.2005.08.103 10.3390/ijms22126541 10.3390/molecules22060944 10.1016/j.jff.2013.04.007 10.3390/ijms23147740 10.1021/acs.jnatprod.9b01285 10.1039/D0FO00946F 10.1055/a-0832-2383 10.1016/j.lwt.2021.112018 10.1016/j.nutres.2014.05.005 10.1016/j.canlet.2012.05.029 10.3389/fnut.2022.943911 10.1016/j.jep.2022.115190 10.32725/jab.2019.020 10.3390/foods10010063 10.1900/RDS.2022.18.76 10.1016/j.bbrc.2013.08.090 10.1016/j.biopha.2022.112831 10.2174/1389557521666210913113522 10.1080/1028415X.2022.2051957 10.3390/antiox10071052 10.1111/1750-3841.15109 10.1089/jmf.2011.0246 10.1007/s10787-022-01038-3 10.1016/j.biopha.2021.111988 10.7150/thno.34674 10.1186/s12970-019-0328-1 10.17221/258/2015-CJFS 10.1186/s12906-017-1716-1 10.1002/jat.3709 10.1016/j.jff.2017.07.050 10.1016/j.fct.2012.11.042 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/molecules27227823 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1420-3049 |
| ExternalDocumentID | oai_doaj_org_article_2a99af01c46643d09093058cbd09e49a PMC9696386 A745964267 36431924 10_3390_molecules27227823 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA125066 – fundername: National Cancer Institute, National Institutes of Health grantid: P01 CA125066 |
| GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFFHD AFKRA AFPKN AFRAH AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c560t-ad3d7bc6a8adaefa7f9c2ebb11d99e26aaeceebb71d30bbc0f72f290f540c9633 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887365500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-3049 |
| IngestDate | Fri Oct 03 12:46:03 EDT 2025 Tue Nov 04 02:08:52 EST 2025 Sun Nov 09 10:17:47 EST 2025 Tue Oct 07 07:11:59 EDT 2025 Tue Nov 11 10:48:37 EST 2025 Tue Nov 04 18:11:33 EST 2025 Thu Apr 03 07:07:49 EDT 2025 Tue Nov 18 21:52:56 EST 2025 Sat Nov 29 07:12:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | black chokeberry Aronia melanocarpa antioxidants antitumor effects anti-infectives human health phenolic constituents |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c560t-ad3d7bc6a8adaefa7f9c2ebb11d99e26aaeceebb71d30bbc0f72f290f540c9633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9901-8790 0000-0002-9282-9371 0000-0002-6647-8707 0000-0003-3667-1466 |
| OpenAccessLink | https://doaj.org/article/2a99af01c46643d09093058cbd09e49a |
| PMID | 36431924 |
| PQID | 2739448748 |
| PQPubID | 2032355 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a99af01c46643d09093058cbd09e49a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9696386 proquest_miscellaneous_2740506092 proquest_journals_2739448748 gale_infotracmisc_A745964267 gale_infotracacademiconefile_A745964267 pubmed_primary_36431924 crossref_primary_10_3390_molecules27227823 crossref_citationtrail_10_3390_molecules27227823 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Molecules (Basel, Switzerland) |
| PublicationTitleAlternate | Molecules |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Ren (ref_38) 2019; 85 Ho (ref_55) 2014; 15 Liu (ref_32) 2020; 11 Wang (ref_30) 2022; 9 Negm (ref_57) 2022; 30 ref_17 Naman (ref_4) 2015; 17 Li (ref_76) 2005; 336 Wei (ref_23) 2020; 17 ref_25 Luan (ref_40) 2022; 22 Denev (ref_45) 2019; 284 Ren (ref_77) 2006; 49 Li (ref_10) 2012; 60 ref_29 Saksida (ref_56) 2020; 11 Yu (ref_47) 2021; 24 Newman (ref_88) 2020; 83 Kardum (ref_64) 2015; 18 ref_26 Huang (ref_31) 2019; 9 Borowska (ref_79) 2018; 19 Kundu (ref_97) 2012; 52 ref_71 Banjari (ref_67) 2017; 4 ref_75 Hejrati (ref_54) 2021; 10 ref_74 Yang (ref_2) 2021; 42 Li (ref_46) 2022; 292 ref_82 Kokotkiewicz (ref_5) 2010; 13 Zec (ref_60) 2021; 8 Rajan (ref_94) 2021; 142 ref_89 Makanae (ref_37) 2019; 16 Kedzierska (ref_43) 2013; 53 Cao (ref_78) 2013; 51 Borowska (ref_7) 2016; 15 ref_87 ref_86 ref_84 Sconta (ref_16) 2012; 15 Gill (ref_18) 2021; 73 Malik (ref_20) 2003; 46 Anari (ref_98) 2018; 14 Jeon (ref_70) 2018; 21 Zeng (ref_85) 2022; 149 Daskalova (ref_83) 2019; 132 Olas (ref_15) 2018; 9 Arvandi (ref_69) 2019; 17 Ren (ref_91) 2021; 15 ref_58 Deng (ref_48) 2021; 150 Mu (ref_68) 2020; 85 Chrubasik (ref_95) 2010; 24 Shriwas (ref_35) 2020; 34 ref_53 Nowak (ref_12) 2016; 34 Xie (ref_13) 2017; 37 Keshavarz (ref_28) 2014; 67 ref_59 Stankiewicz (ref_14) 2021; 18 Sun (ref_8) 2017; 38 Marazova (ref_81) 2005; 56 Yu (ref_22) 2021; 40 (ref_80) 2019; 39 ref_66 Istas (ref_65) 2019; 110 Polat (ref_92) 2021; 142 Sharif (ref_27) 2013; 5 Hawkins (ref_61) 2021; 18 Handeland (ref_50) 2014; 34 Dai (ref_19) 2007; 10 Kausar (ref_24) 2012; 325 ref_34 ref_33 Sidor (ref_51) 2017; 37 Sidor (ref_1) 2019; 89 Shaikh (ref_39) 2021; 13 Dragan (ref_73) 2015; 22 Christiansen (ref_72) 2022; 18 Sikora (ref_62) 2012; 51 Li (ref_11) 2018; Volume 1286 Larrosa (ref_21) 2007; 18 ref_44 ref_42 ref_41 Tasic (ref_63) 2021; 476 ref_3 Lima (ref_93) 2014; 5 ref_49 Park (ref_52) 2013; 440 Aldrich (ref_90) 2022; 85 ref_9 Yoshida (ref_36) 2014; 18 Ren (ref_96) 2018; 26 ref_6 |
| References_xml | – volume: 10 start-page: 258 year: 2007 ident: ref_19 article-title: Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties publication-title: J Med. Food doi: 10.1089/jmf.2006.238 – volume: 4 start-page: 53 year: 2017 ident: ref_67 article-title: Antidiabetic effects of Aronia melanocarpa and its other therapeutic properties publication-title: Front. Nutr. doi: 10.3389/fnut.2017.00053 – volume: 17 start-page: 2988 year: 2015 ident: ref_4 article-title: Computer-assisted structure elucidation of black chokeberry (Aronia melanocarpa) fruit juice isolates with a new fused pentacyclic flavonoid skeleton publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01284 – volume: 476 start-page: 2663 year: 2021 ident: ref_63 article-title: Black chokeberry Aronia melanocarpa extract reduces blood pressure, glycemia and lipid profile in patients with metabolic syndrome: A prospective controlled trial publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-021-04106-4 – ident: ref_42 doi: 10.3390/ijms19092528 – volume: 18 start-page: 1231 year: 2015 ident: ref_64 article-title: Beneficial effects of polyphenol-rich chokeberry juice consumption on blood pressure level and lipid status in hypertensive subjects publication-title: J. Med. Food doi: 10.1089/jmf.2014.0171 – volume: 18 start-page: 67 year: 2014 ident: ref_36 article-title: Aronia extract for supporting an active life publication-title: Food Style 21 – volume: 51 start-page: 549 year: 2012 ident: ref_62 article-title: Short-term supplementation with Aronia melanocarpa extract improves platelet aggregation, clotting, and fibrinolysis in patients with metabolic syndrome publication-title: Eur. J. Nutr. doi: 10.1007/s00394-011-0238-8 – volume: 15 start-page: 540 year: 2021 ident: ref_91 article-title: Bioactive small-molecule constituents of Lao plants publication-title: J. Med. Plants Res. doi: 10.5897/JMPR2021.7137 – volume: 13 start-page: 1 year: 2021 ident: ref_39 article-title: A review on ursolic acid: A naturally obtained pentacyclic triterpene publication-title: Int. J. Pharm. Pharm. Sci. doi: 10.22159/ijpps.2021v13i6.41106 – volume: 24 start-page: 586 year: 2021 ident: ref_47 article-title: Anthocyanin-rich Aronia berry extract mitigates high-fat and high-sucrose diet-induced adipose tissue inflammation by inhibiting nuclear factor-κB activation publication-title: J. Med. Food doi: 10.1089/jmf.2020.0127 – volume: 60 start-page: 11551 year: 2012 ident: ref_10 article-title: Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits publication-title: J. Agric. Food Chem. doi: 10.1021/jf303712e – volume: 17 start-page: e2000654 year: 2020 ident: ref_23 article-title: Anthocyanins from Aronia melanocarpa induce apoptosis in Caco-2 cells through Wnt/β-catenin signaling pathway publication-title: Chem. Biodiversity doi: 10.1002/cbdv.202000654 – ident: ref_74 doi: 10.1080/10408398.2021.2000932 – volume: 40 start-page: 100910 year: 2021 ident: ref_22 article-title: Aronia melanocarpa Elliot anthocyanins inhibit colon cancer by regulating glutamine metabolism publication-title: Food Biosci. doi: 10.1016/j.fbio.2021.100910 – volume: 15 start-page: 11626 year: 2014 ident: ref_55 article-title: Immunomodulating activity of Aronia melanocarpa polyphenols publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150711626 – volume: 18 start-page: 44 year: 2021 ident: ref_14 article-title: Effects of antioxidant supplementation on oxidative stress balance in young footballer—A randomized double-blind trial publication-title: J. Int. Soc. Sports Nutr. doi: 10.1186/s12970-021-00447-z – ident: ref_89 doi: 10.3390/molecules26041109 – volume: 18 start-page: 517 year: 2021 ident: ref_61 article-title: Daily supplementation with Aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials publication-title: J. Diet. Suppl. doi: 10.1080/19390211.2020.1800887 – volume: 110 start-page: 316 year: 2019 ident: ref_65 article-title: Effects of Aronia berry (poly) phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqz075 – ident: ref_9 doi: 10.3390/molecules24203710 – ident: ref_66 doi: 10.3390/nu13020387 – volume: 34 start-page: 1027 year: 2020 ident: ref_35 article-title: Plant-derived glucose transport inhibitors with potential antitumor activity publication-title: Phytother. Res. doi: 10.1002/ptr.6587 – volume: 14 start-page: 1409 year: 2018 ident: ref_98 article-title: Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer publication-title: Future Oncol. doi: 10.2217/fon-2017-0585 – ident: ref_17 doi: 10.3390/molecules23010139 – volume: 8 start-page: 689055 year: 2021 ident: ref_60 article-title: Polyphenol-rich Aronia melanocarpa juice consumption affects LINE-1 DNA methylation in peripheral blood leukocytes in dyslipidemic women publication-title: Front. Nutr. doi: 10.3389/fnut.2021.689055 – ident: ref_59 doi: 10.3390/nu12051484 – volume: Volume 1286 start-page: 3 year: 2018 ident: ref_11 article-title: Isolation and analysis of antioxidant phytochemicals from black chokeberry, maqui, and goji berry dietary supplements publication-title: Advances in Plant Phenolics: From Chemistry to Human Health – volume: 49 start-page: 2829 year: 2006 ident: ref_77 article-title: Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-D-glucopyranose and its analogs publication-title: J. Med. Chem. doi: 10.1021/jm060087k – volume: 21 start-page: 244 year: 2018 ident: ref_70 article-title: The effect of Aronia berry on type 1 diabetes in vivo and in vitro publication-title: J. Med. Food doi: 10.1089/jmf.2017.3939 – volume: 24 start-page: 1107 year: 2010 ident: ref_95 article-title: The clinical effectiveness of chokeberry: A systematic review publication-title: Phytother. Res. doi: 10.1002/ptr.3226 – volume: 15 start-page: 982 year: 2016 ident: ref_7 article-title: Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics publication-title: Compr. Rev. Food Sci. Food Safety doi: 10.1111/1541-4337.12221 – ident: ref_71 doi: 10.3390/nu14132688 – volume: 284 start-page: 108 year: 2019 ident: ref_45 article-title: Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.01.108 – ident: ref_44 doi: 10.3390/foods10030486 – volume: 37 start-page: 67 year: 2017 ident: ref_13 article-title: Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial publication-title: Nutr. Res. doi: 10.1016/j.nutres.2016.12.007 – ident: ref_75 doi: 10.3390/nu10050531 – ident: ref_49 doi: 10.3390/biom12010098 – volume: 56 start-page: 385 year: 2005 ident: ref_81 article-title: Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats publication-title: Exp. Toxicol. Pathol. doi: 10.1016/j.etp.2005.01.001 – volume: 52 start-page: 2013 year: 2012 ident: ref_97 article-title: Emerging avenues linking inflammation and cancer publication-title: Free Rad. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.02.035 – volume: 132 start-page: 110674 year: 2019 ident: ref_83 article-title: Aronia melanocarpa (Michx.) Elliot fruit juice reveals neuroprotective effect and improves cognitive and locomotor functions of aged rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.110674 – ident: ref_29 doi: 10.3390/ijms22052261 – ident: ref_25 doi: 10.3390/nu11051075 – volume: 89 start-page: 45 year: 2019 ident: ref_1 article-title: Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors–an overview publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2019.05.006 – volume: 51 start-page: 15 year: 2013 ident: ref_78 article-title: Orally efficacious novel small molecule 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose selectively and potently stimulates insulin receptor and alleviates diabetes publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-12-0171 – ident: ref_87 doi: 10.3390/nu11051190 – ident: ref_26 doi: 10.3390/antiox10101600 – volume: 85 start-page: 702 year: 2022 ident: ref_90 article-title: Discovery of anticancer agents of diverse natural origin publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.2c00036 – volume: 46 start-page: 186 year: 2003 ident: ref_20 article-title: Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells publication-title: Nutr. Cancer doi: 10.1207/S15327914NC4602_12 – volume: 22 start-page: 14 year: 2015 ident: ref_73 article-title: Polyphenols-rich natural products for treatment of diabetes publication-title: Curr. Med. Chem. doi: 10.2174/0929867321666140826115422 – ident: ref_33 doi: 10.3390/ijms22168586 – volume: 13 start-page: 255 year: 2010 ident: ref_5 article-title: Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine publication-title: J. Med. Food doi: 10.1089/jmf.2009.0062 – volume: 38 start-page: 220 year: 2017 ident: ref_8 article-title: Research progress of anthocyanin antioxidant function in Aronia melanocarpa publication-title: Food Res. Dev. – ident: ref_53 doi: 10.3390/ph15050619 – volume: 11 start-page: 867 year: 2020 ident: ref_32 article-title: Chlorogenic acid decreases malignant characteristics of hepatocellular carcinoma cells by inhibiting DNMT1 expression publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00867 – volume: 26 start-page: 4452 year: 2018 ident: ref_96 article-title: Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2018.07.025 – volume: 67 start-page: 949 year: 2014 ident: ref_28 article-title: Cytotoxicity of gemcitabine enhanced by polyphenolics from Aronia melanocarpa in pancreatic cancer cell line AsPC-1 publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2013-202075 – ident: ref_34 doi: 10.3390/ijms20133177 – volume: 142 start-page: 53 year: 2021 ident: ref_92 article-title: An ethnoveterinary study on plants used for the treatment of livestock diseases in the province of Giresun (Turkey) publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2021.06.003 – volume: 19 start-page: 1612 year: 2018 ident: ref_79 article-title: Complexation of bioelements and toxic metals by polyphenolic compounds—Implications for health publication-title: Curr. Drug Targets doi: 10.2174/1389450119666180403101555 – volume: 9 start-page: 78 year: 2018 ident: ref_15 article-title: Berry phenolic antioxidants–implications for human health? publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00078 – volume: 10 start-page: 609 year: 2021 ident: ref_54 article-title: Association of coronavirus pathogencity with the level of antioxidants and immune system publication-title: J. Family Med. Prim. Care doi: 10.4103/jfmpc.jfmpc_1007_20 – volume: 73 start-page: 1168 year: 2021 ident: ref_18 article-title: Anticancer effects of extracts from three different chokeberry species publication-title: Nutr. Cancer doi: 10.1080/01635581.2020.1789679 – volume: 18 start-page: 259 year: 2007 ident: ref_21 article-title: Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2006.05.003 – volume: 336 start-page: 430 year: 2005 ident: ref_76 article-title: Natural antidiabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.08.103 – volume: 42 start-page: 206 year: 2021 ident: ref_2 article-title: Advances in studies on the function and application of Aronia melanocarpa publication-title: Food Res. Dev. – ident: ref_58 doi: 10.3390/ijms22126541 – ident: ref_6 doi: 10.3390/molecules22060944 – volume: 5 start-page: 1244 year: 2013 ident: ref_27 article-title: The polyphenolic-rich Aronia melanocarpa juice kills teratocarcinomal cancer stem-like cells, but not their differentiated counterparts publication-title: J. Funct. Foods doi: 10.1016/j.jff.2013.04.007 – ident: ref_41 doi: 10.3390/ijms23147740 – volume: 83 start-page: 770 year: 2020 ident: ref_88 article-title: Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019 publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.9b01285 – volume: 11 start-page: 7793 year: 2020 ident: ref_56 article-title: Immunomodulatory activity and protective effects of chokeberry fruit extract on Listeria monocytogenes infection in mice publication-title: Food Funct. doi: 10.1039/D0FO00946F – volume: 85 start-page: 802 year: 2019 ident: ref_38 article-title: Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity publication-title: Planta Med. doi: 10.1055/a-0832-2383 – volume: 150 start-page: 112018 year: 2021 ident: ref_48 article-title: Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli publication-title: LWT Food Sci. Technol. doi: 10.1016/j.lwt.2021.112018 – volume: 34 start-page: 518 year: 2014 ident: ref_50 article-title: Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term—A pilot study publication-title: Nutr. Res. doi: 10.1016/j.nutres.2014.05.005 – volume: 325 start-page: 54 year: 2012 ident: ref_24 article-title: Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.05.029 – volume: 9 start-page: 943911 year: 2022 ident: ref_30 article-title: The biological activity mechanism of chlorogenic acid and its applications in food industry: A review publication-title: Front. Nutr. doi: 10.3389/fnut.2022.943911 – volume: 292 start-page: 115190 year: 2022 ident: ref_46 article-title: Aronia melanocarpa (Michx.) Elliott attenuates dextran sulfate sodium-induced inflammatory bowel disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2022.115190 – volume: 17 start-page: 218 year: 2019 ident: ref_69 article-title: Chokeberry juice supplementation in type 2 diabetic patients—Impact on health status publication-title: J. Appl. Biomed. doi: 10.32725/jab.2019.020 – ident: ref_84 doi: 10.3390/foods10010063 – volume: 18 start-page: 76 year: 2022 ident: ref_72 article-title: Effects of Aronia melanocarpa on cardiometabolic diseases: A systematic review of quasi-design studies and randomized controlled trials publication-title: Rev. Diabetic Stud. doi: 10.1900/RDS.2022.18.76 – volume: 440 start-page: 14 year: 2013 ident: ref_52 article-title: Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.08.090 – volume: 149 start-page: 112831 year: 2022 ident: ref_85 article-title: The regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2022.112831 – volume: 22 start-page: 422 year: 2022 ident: ref_40 article-title: Advances in anti-inflammatory activity, mechanism and therapeutic application of ursolic acid publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557521666210913113522 – ident: ref_86 doi: 10.1080/1028415X.2022.2051957 – ident: ref_3 doi: 10.3390/antiox10071052 – volume: 85 start-page: 1307 year: 2020 ident: ref_68 article-title: Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats publication-title: J. Food Sci. doi: 10.1111/1750-3841.15109 – volume: 15 start-page: 700 year: 2012 ident: ref_16 article-title: Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells publication-title: J. Med. Food doi: 10.1089/jmf.2011.0246 – volume: 30 start-page: 1493 year: 2022 ident: ref_57 article-title: Ursolic acid and SARS-CoV-2 infection: A new horizon and perspective publication-title: Inflammopharmacology doi: 10.1007/s10787-022-01038-3 – volume: 142 start-page: 111988 year: 2021 ident: ref_94 article-title: Dieckol: A brown algal phlorotannin with biological potential publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.111988 – volume: 9 start-page: 6745 year: 2019 ident: ref_31 article-title: Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation publication-title: Theranostics doi: 10.7150/thno.34674 – volume: 16 start-page: 60 year: 2019 ident: ref_37 article-title: Dietary Aronia melanocarpa extract enhances mTORC1 signaling, but has no effect on protein synthesis and protein breakdown-related signaling, in response to resistance exercise in rat skeletal muscle publication-title: J. Int. Soc. Sports Nutr. doi: 10.1186/s12970-019-0328-1 – volume: 5 start-page: 1065 year: 2014 ident: ref_93 article-title: Polyphenols in fruits and vegetables and its effect on human health publication-title: Food Nutr. Sci. – volume: 34 start-page: 39 year: 2016 ident: ref_12 article-title: Effect of chokeberry juice consumption on antioxidant capacity, lipids profile and endothelial function in healthy people: A pilot study publication-title: Czech J. Food Sci. doi: 10.17221/258/2015-CJFS – ident: ref_82 doi: 10.1186/s12906-017-1716-1 – volume: 39 start-page: 117 year: 2019 ident: ref_80 article-title: Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3709 – volume: 37 start-page: 116 year: 2017 ident: ref_51 article-title: Berries as a potential anti-influenza factor—A review publication-title: J. Funct. Foods doi: 10.1016/j.jff.2017.07.050 – volume: 53 start-page: 126 year: 2013 ident: ref_43 article-title: Chemotherapy modulates the biological activity of breast cancer patients plasma: The protective properties of black chokeberry extract publication-title: Food Chem. Toxicol doi: 10.1016/j.fct.2012.11.042 |
| SSID | ssj0021415 |
| Score | 2.5886505 |
| SecondaryResourceType | review_article |
| Snippet | Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 7823 |
| SubjectTerms | Amino acids Anthocyanin Anthocyanins - chemistry anti-infectives Antidiabetics Antifungal agents Antioxidants Antioxidants - chemistry antitumor effects Aronia melanocarpa Berries black chokeberry Cancer Cell cycle Cell growth Chemotherapy Chlorogenic Acid - analysis Clinical trials Colorectal cancer COVID-19 Drug Treatment Cyclin-dependent kinases Cytotoxicity Development and progression Enzymes Fruit Fruit - chemistry Health aspects Humans Kinases Liver cancer Lung cancer Metastasis Natural products Oncology, Experimental Oxidative stress phenolic constituents Photinia - chemistry Quercetin - analysis Review Stem cells |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbtptBe-n64TYsKhT7ARJa8lnUquyFLD2VZSlpyM3omSxM7tXcL_fedsb1uTCCX3ow1AokZzWg0M98Q8g6smFOS2zjhGh0UkcRKMB9bk-fOZEKGNnn8x1e5XOYnJ2rVP7g1fVrlTie2itpVFt_ID8DMKnAlZJp_vvwVY9cojK72LTRukz1EKksnZG9-tFx9G1yuBOxTF8sU4NwfXHQtZ33DJZaAcjGyRi1o_3XVfMU2jfMmrxiixYP_3cJDcr-_gtJZJzOPyC1fPiZ3D3ed356QZlVtMIkIiOagCsN609Aq0Patjx6eVT-BJXX9h36YIbCuphf-XJcVRnL0R7qot0ivS0ePMQhBsSUo5iNgxgZdl3R4xqBtAIF2hVBPyffF0fHhl7hvzhBbuCRtYu2Ek8ZmOtdO-6BlUJZ7Y5LEKeV5prUH-2uMTJxgxlgWJA9csQBXRAunXjwjk7Iq_QtCpdbBJiwwPWVpyn3OpdEZt5w58N7zJCJsx6TC9sjl2EDjvAAPBvlaXONrRD4NUy472I6biOfI-YEQEbfbH1V9WvQHuOBaKR1YYhGPXzimGMj0NLcGPn2qdETeo9wUqBdgcVb35Q0Vsgn-z2Q6VeDsZTIi-yNKYK4dD--kp-j1SVP8E52IvB2GcSbmyJW-2iINXL5ZxhSPyPNOUIctCVgzutoRkSMRHu15PFKuz1q0cYRPEnn28uZlvSL3OBaGtFWa-2Syqbf-Nbljf2_WTf2mP5Z_ASlTRj0 priority: 102 providerName: ProQuest |
| Title | Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36431924 https://www.proquest.com/docview/2739448748 https://www.proquest.com/docview/2740506092 https://pubmed.ncbi.nlm.nih.gov/PMC9696386 https://doaj.org/article/2a99af01c46643d09093058cbd09e49a |
| Volume | 27 |
| WOSCitedRecordID | wos000887365500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0FPRF_LZ6LhEEP6Bcmuw2zePucouCLoucsj6VJE24xbv22O4e-N8703aXLQf64ktpmymkmUlmfsl8ALxFLVZoJVycCEMARSaxltzHzmZZYVOpQuM8_uOLms-z5VIvDkp9kU9Ymx64HbgTYbQ2gSeO8qDLgmuE4HyUOYu3fqgb0witnh2Y6qBWgnqpPcOUCOpPLttSs74WikI_hexpoSZZ_80l-UAn9f0lDxTQ7CE86CxHNm57_Ahu-fIx3JvuCrY9gXpRbcj3B4kmuIKF1aZmVWDNFh2bnle_cCTX69_s_Zjy4Rp26S9MWdEBjPnAZust0ZuyYGd0dsCokie5EZCjBVuVbL_7wJp9f9bGLz2F77PTs-mnuKupEDu0bTaxKWShrEtNZgrjg1FBO-GtTZJCay9SYzyqTWtVUkhureNBiSA0D2jZOZys8hkclVXpXwBTxgSX8MDNiA-HwmdCWZMKJ3iBoDtLIuC7Mc5dl3Cc6l5c5Ag8iC35DbZE8HH_yVWbbeNvxBNi3J6QEmU3L1B88k588n-JTwTviO05TWfsnDNdVEJFbML3YzUcacRoqYrguEeJzHX95p3g5N0yUOdoG2rEv2qYRfBm30xfkmtb6ast0aDNzFOuRQTPWznb_5LEPhNCjkD1JLD3z_2WcnXeJAmnrEcyS1_-j0F6BfcFRX00IZjHcLRZb_1ruOuuN6t6PYDbaqmaazaAO5PT-eLboJmN-LT4_HXx8w-yLjse |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQSoX3o9AASOBeEhRHTsbxweEtgurVl1WPRS0t-DYDl3RJiXZBfVP8RuZyWPbqFJvPXCL4klkx9_MZDwvQl6BFrNKcuMHXKOBIgJfCeZ8k8axTSMhszp4_NtETqfxbKb218jfLhcGwyo7mVgLalsYPCPfAjWrwJSQYfzx5JePXaPQu9q10GhgsedO_4DJVn3Y_QT7-5rz8eeD0Y7fdhXwDWj3ha-tsDI1kY611S7TMlOGuzQNAquU45HWDhRHmsrACpamhmWSZ1yxDP5tDMBVwHuvkesgxyWGkMnZmYEXgDZsPKdCKLZ13DS4dRWXmHDKRU_31S0CLiqCc5qwH6V5Tu2Nb_9vH-wOudX-YNNhwxF3yZrL75GNUdfX7j6p9osFhkgB0TYI-my-qGiR0fokk44Oi58AuLI8pW-HWDZY02N3pPMC_VT6HR2XS6TXuaUH6GKh2PAUoy0wHoXOc7o6pKG1e4Q2aV4PyNcrWfNDsp4XuXtMqNQ6MwHLmB6wMOQu5jLVETecWRZGceAR1oEiMW1ddmwPcpSAfYY4Si7gyCPvV4-cNEVJLiPeRqStCLGeeH2jKH8krXhKuFZKZyww2G1AWKYYcOwgNilculBpj7xBnCYo9WByRrfJGwVuE9wfynCgwJSNpEc2e5SwuaY_3KE1aaVllZxB1SMvV8P4JEYA5q5YIg2YFixiinvkUcMYqyUJmDMeJHhE9limt-b-SD4_rGupY3EoEUdPLp_WC7Kxc_Blkkx2p3tPyU2OKTB1PuomWV-US_eM3DC_F_OqfF4LBEq-XzVD_QOXp6d3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKi4AL70eggJFAPKRoHScbxweEtltWrFpWeyhVOQXHsemKNinJLqh_jV_HTF40qtRbD9xW8WRlxzPzeTwvQl4CiqVScO16XKGB4nuu9JlxdRJFaRL6wlbB4_u7YjaLDg7kfI38aXNhMKyy1YmVok5zjXfkA4BZCaaECKKBbcIi5tuTDyc_XewghZ7Wtp1GzSI75vQ3mG_l--k27PUrzicf98af3KbDgKsB6ZeuSv1UJDpUkUqVsUpYqblJEs9LpTQ8VMoAiCSJ8FKfJYlmVnDLJbNwztHAuj787xWyAUfyAGRsYz79PP_amXseYGPtR_V9yQbHdbtbU3KB6afc7yFh1TDgPCycwcV-zOYZEJzc-p8_321yszl601EtK3fImsnukuvjtuPdPVLO8yUGTwHRFkCAXSxLmlta3XHS8WH-A1ixKE7pmxEWFFb02BypLEcPlnpLJ8UK6VWW0j10vlBshYpxGBipQhcZ7a5vaOU4oXUC2H3y5VLW_ICsZ3lmHhEqlLLaY5apIQsCbiIuEhVyzVnKgjDyHMJaBol1U7EdG4ccxWC5IU_F53jKIe-6V07qciUXEW8h13WEWGm8epAX3-NGccVcSaks8zT2IfBTJhnI8jDSCfw0gVQOeY08G6M-hMlp1aR15LhN8HwkgqEEIzcUDtnsUcLm6v5wy7lxo0fL-B_bOuRFN4xvYmxgZvIV0oDRwUImuUMe1kLSLcmHOeMVg0NET3x6a-6PZIvDqso6lo3yo_DxxdN6Tq6BHMW709nOE3KDY25Mlai6SdaXxco8JVf1r-WiLJ412oGSb5ctUX8BzZ6xxg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Benefits+of+Black+Chokeberry+%28Aronia+melanocarpa%29+Fruits+and+Their+Constituents+in+Improving+Human+Health&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Ren%2C+Yulin&rft.au=Frank%2C+Tyler&rft.au=Meyer%2C+Gunnar&rft.au=Lei%2C+Jizhou&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=27&rft.issue=22&rft_id=info:doi/10.3390%2Fmolecules27227823&rft.externalDocID=PMC9696386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |