Customizing poly(lactic-co-glycolic acid) particles for biomedical applications
[Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discu...
Uloženo v:
| Vydáno v: | Acta biomaterialia Ročník 73; s. 38 - 51 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.06.2018
Elsevier BV |
| Témata: | |
| ISSN: | 1742-7061, 1878-7568, 1878-7568 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications.
Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. |
|---|---|
| AbstractList | Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications.Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications.Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.STATEMENT OF SIGNIFICANCENanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Statement of Significance Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. [Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. |
| Author | Tel, Jurjen Cruz, Luis J. de Vries, I. Jolanda M. Koshkina, Olga Swider, Edyta Srinivas, Mangala |
| Author_xml | – sequence: 1 givenname: Edyta surname: Swider fullname: Swider, Edyta organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands – sequence: 2 givenname: Olga surname: Koshkina fullname: Koshkina, Olga organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands – sequence: 3 givenname: Jurjen surname: Tel fullname: Tel, Jurjen organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands – sequence: 4 givenname: Luis J. surname: Cruz fullname: Cruz, Luis J. organization: Department of Radiology, Leiden University Medical Center, Leiden, Netherlands – sequence: 5 givenname: I. Jolanda M. surname: de Vries fullname: de Vries, I. Jolanda M. organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands – sequence: 6 givenname: Mangala surname: Srinivas fullname: Srinivas, Mangala email: Mangala.Srinivas@radboudumc.nl organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29653217$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1q3DAUhUVIyF_7BqUYupku7F5JtiR3EShD2gQC2bRrIcty0KCxHMkOTJ6-N5m0iyySlQT3O0dX55yRwzGOjpBPFCoKVHzbVMbOnY8VA6oqqCsAcUBOqZKqlI1Qh3iXNSslCHpCznLeAHBFmTomJ6wVDWdUnpLb9ZLnuPWPfrwrphh2q4C23pY2lndhZ2PwtjDW91-LySQcBJeLIaYCX9663lsTCjNNSJnZxzF_IEeDCdl9fDnPyZ-fl7_XV-XN7a_r9Y-b0jYC5tIoy0TN7KBczZzqKChp2r6mnahpz1vVdx2XgqvewMClpawB44BJBzhpO35OVnvfKcX7xeVZb322LgQzurhkzYA1nLZAOaJfXqGbuKQRt0NKScyEM4XU5xdq6fBjekp-a9JO_4sKgXoP2BRzTm74j1DQT43ojd43op8a0VBrbARl31_JrJ-fs5qT8eE98cVe7DDKB--Szta70WLwydlZ99G_bfAXRh-oag |
| CitedBy_id | crossref_primary_10_1007_s12247_021_09600_2 crossref_primary_10_3390_pharmaceutics14030474 crossref_primary_10_3390_polym13203471 crossref_primary_10_1134_S107042721908010X crossref_primary_10_3389_fphar_2025_1670397 crossref_primary_10_1016_j_lwt_2025_117747 crossref_primary_10_3390_polym15143025 crossref_primary_10_3762_bjnano_14_29 crossref_primary_10_1007_s10924_025_03587_4 crossref_primary_10_3390_molecules25030735 crossref_primary_10_1088_2053_1591_ac3f5e crossref_primary_10_1039_D4NJ02783C crossref_primary_10_1016_j_biomaterials_2020_120307 crossref_primary_10_1016_j_bioactmat_2022_10_016 crossref_primary_10_1002_mabi_202300312 crossref_primary_10_1016_j_lfs_2021_119344 crossref_primary_10_1186_s11671_019_3241_2 crossref_primary_10_1007_s40005_019_00446_y crossref_primary_10_3390_ijms232214427 crossref_primary_10_1371_journal_pone_0251821 crossref_primary_10_3389_fbioe_2025_1629816 crossref_primary_10_52711_0974_360X_2022_00018 crossref_primary_10_3390_ijms24054333 crossref_primary_10_2478_acph_2020_0011 crossref_primary_10_1016_j_ijpharm_2021_120926 crossref_primary_10_1080_09506608_2022_2069451 crossref_primary_10_1007_s11051_020_04798_7 crossref_primary_10_1016_j_jddst_2022_103918 crossref_primary_10_3390_nu11123053 crossref_primary_10_3390_pharmaceutics13020246 crossref_primary_10_3390_nano12030354 crossref_primary_10_3390_pharmaceutics16020273 crossref_primary_10_1016_j_mtcomm_2023_106176 crossref_primary_10_1016_j_addr_2022_114482 crossref_primary_10_1016_j_jvssci_2023_100126 crossref_primary_10_2174_1381612826666200116153912 crossref_primary_10_1002_nano_202300191 crossref_primary_10_1208_s12249_024_02760_7 crossref_primary_10_3390_ijms23042034 crossref_primary_10_3390_pharmaceutics13020235 crossref_primary_10_1002_advs_202004213 crossref_primary_10_1016_j_matdes_2020_108768 crossref_primary_10_1080_10717544_2019_1686085 crossref_primary_10_1016_j_ijpharm_2021_120340 crossref_primary_10_1007_s11426_022_1243_5 crossref_primary_10_1016_j_addr_2020_05_005 crossref_primary_10_1016_j_asems_2024_100092 crossref_primary_10_1016_j_ijpharm_2019_05_072 crossref_primary_10_1002_wnan_1990 crossref_primary_10_3390_app11094305 crossref_primary_10_1002_bit_28870 crossref_primary_10_1186_s12943_023_01797_9 crossref_primary_10_1007_s00604_022_05441_z crossref_primary_10_1111_raq_12518 crossref_primary_10_1016_j_addr_2020_11_008 crossref_primary_10_1016_j_ijpharm_2021_120578 crossref_primary_10_1002_adhm_202401832 crossref_primary_10_3390_polym16020206 crossref_primary_10_1016_j_sajb_2025_02_031 crossref_primary_10_3390_ma12162521 crossref_primary_10_1016_j_powtec_2020_10_056 crossref_primary_10_2147_IJN_S463119 crossref_primary_10_1002_adfm_202004307 crossref_primary_10_1007_s11814_020_0696_x crossref_primary_10_1016_j_mtcomm_2020_100951 crossref_primary_10_3390_ijms25136826 crossref_primary_10_3390_ph16060802 crossref_primary_10_3390_polym16091253 crossref_primary_10_1002_smll_201904673 crossref_primary_10_1016_j_ccr_2020_213467 crossref_primary_10_1080_09205063_2019_1659712 crossref_primary_10_1016_j_ijbiomac_2022_08_148 crossref_primary_10_1002_adma_202507743 crossref_primary_10_3390_ma13081807 crossref_primary_10_1038_s41598_024_53548_5 crossref_primary_10_3389_fcimb_2022_926363 crossref_primary_10_3390_nano10010161 crossref_primary_10_1002_pol_20200706 crossref_primary_10_1002_adma_202401763 crossref_primary_10_1016_j_jcis_2020_05_067 crossref_primary_10_1080_03639045_2024_2332889 crossref_primary_10_3390_pharmaceutics14010080 crossref_primary_10_1016_j_omtn_2023_102086 crossref_primary_10_1016_j_xphs_2020_11_031 crossref_primary_10_1002_smll_202400977 crossref_primary_10_1016_j_apmt_2024_102278 crossref_primary_10_1016_j_ijbiomac_2022_06_211 crossref_primary_10_3390_molecules25081879 crossref_primary_10_1016_j_heliyon_2024_e38392 crossref_primary_10_1016_j_molstruc_2021_131459 crossref_primary_10_1080_02652048_2023_2178538 crossref_primary_10_3390_pharmaceutics15051499 crossref_primary_10_3389_fmed_2021_712367 crossref_primary_10_1016_j_colsurfa_2024_134894 crossref_primary_10_1155_2022_6090846 crossref_primary_10_1007_s11095_024_03682_6 crossref_primary_10_3390_pharmaceutics13101590 crossref_primary_10_1089_ten_teb_2024_0364 crossref_primary_10_3389_fchem_2020_00286 crossref_primary_10_1186_s12951_020_00620_7 crossref_primary_10_3390_ijms24032945 crossref_primary_10_3390_ijms25031396 crossref_primary_10_1007_s13346_025_01945_2 crossref_primary_10_1016_j_mtchem_2024_102506 crossref_primary_10_3390_pharmaceutics15061594 crossref_primary_10_1016_j_jddst_2022_103743 crossref_primary_10_1002_jor_25491 crossref_primary_10_1002_anbr_202100070 crossref_primary_10_3390_molecules26123611 crossref_primary_10_1016_j_bbrc_2020_02_171 crossref_primary_10_1080_17425247_2023_2223941 crossref_primary_10_1016_j_ijpharm_2021_120655 crossref_primary_10_3390_ijms20010204 crossref_primary_10_1039_D1RA05871A crossref_primary_10_1016_j_mee_2020_111360 crossref_primary_10_3390_pharmaceutics15020479 crossref_primary_10_1016_j_carbpol_2020_116968 crossref_primary_10_1039_D2QM00039C crossref_primary_10_3390_pharmaceutics13111769 crossref_primary_10_3390_app12020935 crossref_primary_10_1021_acsabm_5c00387 crossref_primary_10_1016_j_ceramint_2021_01_229 crossref_primary_10_2217_nnm_2022_0287 crossref_primary_10_1007_s10856_023_06765_9 crossref_primary_10_1016_j_lfs_2020_118361 crossref_primary_10_3390_pharmaceutics13081313 crossref_primary_10_1021_acsbiomaterials_9b00790 crossref_primary_10_1016_j_mtcomm_2022_103661 crossref_primary_10_3390_polym12112751 crossref_primary_10_1016_j_jconrel_2020_10_003 crossref_primary_10_1016_j_mtcomm_2023_105364 crossref_primary_10_1016_j_colsurfb_2022_112932 crossref_primary_10_3390_ijms26062633 crossref_primary_10_1039_D4RA09032B crossref_primary_10_1016_j_eurpolymj_2023_112040 crossref_primary_10_2174_0929867331666230823094737 crossref_primary_10_1016_j_arr_2022_101658 crossref_primary_10_1039_D3NR04577C crossref_primary_10_1080_00914037_2024_2355188 crossref_primary_10_3389_fbioe_2020_00048 crossref_primary_10_3389_fbioe_2021_748151 crossref_primary_10_1007_s12668_024_01677_6 crossref_primary_10_1007_s10904_020_01746_9 crossref_primary_10_1016_j_jcis_2019_12_083 crossref_primary_10_1002_app_53559 crossref_primary_10_1007_s10856_020_06380_y crossref_primary_10_1080_00914037_2021_1985495 crossref_primary_10_1002_advs_202100067 crossref_primary_10_1016_j_polymer_2021_124269 crossref_primary_10_1016_j_jddst_2024_106130 crossref_primary_10_1016_j_addr_2020_07_012 crossref_primary_10_1016_j_jclepro_2021_126063 crossref_primary_10_1016_j_ejpb_2024_114366 crossref_primary_10_1007_s10965_021_02562_6 crossref_primary_10_1002_psc_70020 crossref_primary_10_1016_j_mtla_2019_100395 crossref_primary_10_1016_j_cis_2021_102582 crossref_primary_10_1016_j_jhazmat_2021_125454 crossref_primary_10_1002_btm2_10441 crossref_primary_10_1088_1742_6596_2891_2_022020 crossref_primary_10_3390_nano10040656 crossref_primary_10_1016_j_ijpharm_2024_123988 crossref_primary_10_2174_0113816128275385231027054743 crossref_primary_10_3389_fbioe_2020_00381 crossref_primary_10_1016_j_biotri_2021_100184 crossref_primary_10_34248_bsengineering_1510380 crossref_primary_10_1007_s11705_025_2585_7 crossref_primary_10_1016_j_molliq_2020_114429 crossref_primary_10_1016_j_ijbiomac_2023_123159 crossref_primary_10_1208_s12249_019_1613_7 crossref_primary_10_3390_polym13091413 crossref_primary_10_1002_jcp_29298 crossref_primary_10_1016_j_matchemphys_2024_130309 crossref_primary_10_1016_j_jphotobiol_2019_111619 crossref_primary_10_1002_tox_23103 crossref_primary_10_1080_10717544_2022_2100010 crossref_primary_10_3390_pharmaceutics14030614 crossref_primary_10_3390_ijms25116147 crossref_primary_10_1002_marc_201900560 crossref_primary_10_1016_j_addr_2023_114721 crossref_primary_10_3390_molecules24091825 crossref_primary_10_1016_j_chroma_2025_466061 crossref_primary_10_1039_D5BM00374A crossref_primary_10_1016_j_jmmm_2021_168853 crossref_primary_10_1080_10717544_2021_1902021 crossref_primary_10_1007_s13204_023_02853_y crossref_primary_10_2147_IJN_S358606 crossref_primary_10_1016_j_ejps_2022_106189 crossref_primary_10_1002_adtp_201900190 crossref_primary_10_3390_pharmaceutics11060280 crossref_primary_10_1016_j_bioactmat_2022_02_014 crossref_primary_10_3390_pharmaceutics12050472 crossref_primary_10_1016_j_heares_2020_107981 crossref_primary_10_1039_D2NR02293A crossref_primary_10_1002_adma_202505714 crossref_primary_10_2147_IJN_S290466 crossref_primary_10_1016_j_nantod_2021_101370 crossref_primary_10_3390_polym14132593 crossref_primary_10_1016_j_ijpharm_2020_119309 crossref_primary_10_3390_pharmaceutics12010016 |
| Cites_doi | 10.1016/j.jconrel.2012.01.043 10.1016/j.addr.2013.05.009 10.1039/C4RA17153E 10.1016/j.biomaterials.2005.10.027 10.1039/C6LC00249H 10.1186/1477-3155-8-18 10.1016/j.ejpb.2006.06.009 10.1126/scitranslmed.3003651 10.1002/btm2.10003 10.1016/S0378-5173(02)00356-3 10.1038/s41598-017-05184-5 10.1080/10717544.2017.1381200 10.1038/nmat1645 10.1002/app.29199 10.1021/acsnano.6b04695 10.4049/jimmunol.1300787 10.1016/0278-6915(93)90092-D 10.1016/0378-5173(92)90249-2 10.3390/polym4021278 10.1016/S0168-3659(98)00116-3 10.1080/17425247.2016.1193151 10.1155/2015/794601 10.1016/j.trac.2015.06.014 10.1021/la903890h 10.1016/j.biomaterials.2011.07.032 10.1039/C5NR01084E 10.3389/fbioe.2016.00047 10.1021/mp5002747 10.1088/0957-4484/24/45/455302 10.1039/C6RA15401H 10.1111/cbdd.12318 10.1002/jps.23163 10.1007/s11095-010-0152-4 10.1016/S0939-6411(97)00056-8 10.1016/j.addr.2010.10.008 10.1016/0378-5173(92)90248-Z 10.1038/nmat3776 10.1021/ja102595j 10.3390/ijms15033640 10.3109/1061186X.2013.878944 10.1021/ja8014428 10.1021/nl801736q 10.1016/j.ijpharm.2005.10.010 10.1016/S0142-9612(00)00115-0 10.1021/ja306866w 10.2217/nnm.15.76 10.1016/j.jconrel.2013.09.013 10.1016/j.colsurfb.2017.07.038 10.1016/j.jconrel.2015.09.001 10.3390/polym3031377 10.1016/j.biomaterials.2011.03.031 10.1039/c2lc21164e 10.1016/j.ijpharm.2008.04.042 10.1007/s11051-012-1316-4 10.1016/j.colsurfb.2014.07.030 10.1002/mrm.24741 10.1016/j.addr.2010.08.009 10.1002/app.30813 10.1039/b505099e 10.1007/s11095-014-1299-1 10.1016/j.tibtech.2010.04.002 10.1021/acs.macromol.5b00455 10.1016/j.biomaterials.2012.08.048 10.1021/bm500438x 10.1007/s11095-016-1958-5 10.1103/PhysRevLett.86.4163 10.1063/1.4738586 10.3791/50802-v 10.4161/biom.22494 10.3762/bjnano.6.260 10.1081/DDC-100102197 10.1021/ar2000315 10.1002/anie.200462226 10.18520/cs/v112/i10/2021-2028 10.1016/j.actbio.2012.04.042 10.1021/la2042185 10.1016/j.ejpb.2016.12.009 10.1016/j.matlet.2012.03.004 10.1021/nl104117p 10.1615/CritRevTherDrugCarrierSyst.2013006475 10.1021/nn900215k 10.1016/j.biomaterials.2006.09.047 10.2147/IJN.S18905 10.1002/smll.200801855 10.1039/c0cc00474j 10.2741/e102 10.1016/j.biomaterials.2010.05.069 10.1039/b600913c 10.1016/j.colsurfb.2009.09.001 10.1016/j.cocis.2005.06.004 10.1088/0957-4484/25/44/445103 10.3389/fphar.2016.00185 10.1016/S1359-0286(02)00117-1 10.1166/jnn.2016.11735 10.1586/erm.09.15 10.5582/ddt.2016.01230 10.1182/blood-2011-07-367615 10.1155/2011/727241 10.1021/la0502084 10.1016/j.ijpharm.2014.08.067 10.1002/mabi.200700241 10.1155/2013/374252 10.1002/adfm.200700456 10.1248/bpb.b13-00661 10.1016/j.addr.2013.07.017 10.1364/BOE.7.004125 10.1021/ja051977c 10.1021/mp400717r 10.1002/smll.201100520 10.1016/S1081-1206(10)61024-1 10.1039/C5LC00614G 10.1021/acs.langmuir.5b01514 10.1002/anie.200902672 10.1016/j.cis.2004.10.002 10.1016/j.jconrel.2013.08.017 10.1016/0378-5173(84)90142-X 10.1021/acs.biomac.5b00336 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10 10.1016/B978-0-12-391858-1.00008-3 10.1007/s11060-014-1658-0 10.1016/j.ejps.2009.02.018 10.1158/1078-0432.CCR-06-0946 10.1210/en.2009-1082 10.1007/s11595-013-0853-8 |
| ContentType | Journal Article |
| Copyright | 2018 Acta Materialia Inc. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jun 2018 |
| Copyright_xml | – notice: 2018 Acta Materialia Inc. – notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jun 2018 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1016/j.actbio.2018.04.006 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-7568 |
| EndPage | 51 |
| ExternalDocumentID | 29653217 10_1016_j_actbio_2018_04_006 S174270611830196X |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c560t-a8c2642cf8e42e8b1087a9d41b641d398dbb37638da0f37c1250ae027e0dbb9b3 |
| ISICitedReferencesCount | 251 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436222600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1742-7061 1878-7568 |
| IngestDate | Wed Oct 01 14:25:30 EDT 2025 Wed Aug 13 06:37:42 EDT 2025 Wed Feb 19 02:35:36 EST 2025 Sat Nov 29 07:02:11 EST 2025 Tue Nov 18 21:52:54 EST 2025 Fri Feb 23 02:39:50 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drug delivery Theranostics Imaging Poly(lactic-co-glycolic acid) Particles |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c560t-a8c2642cf8e42e8b1087a9d41b641d398dbb37638da0f37c1250ae027e0dbb9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.actbio.2018.04.006 |
| PMID | 29653217 |
| PQID | 2087381328 |
| PQPubID | 2045286 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2025319013 proquest_journals_2087381328 pubmed_primary_29653217 crossref_primary_10_1016_j_actbio_2018_04_006 crossref_citationtrail_10_1016_j_actbio_2018_04_006 elsevier_sciencedirect_doi_10_1016_j_actbio_2018_04_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Kidlington |
| PublicationTitle | Acta biomaterialia |
| PublicationTitleAlternate | Acta Biomater |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M. Teresa Lopez-Franco, G. Mendoza, V. Sebastian, D.S. Kohane, M. Arruebo, Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species, (n.d.). Perry, Herlihy, Napier, Desimone (b0350) 2011; 44 Wadajkar, Bhavsar, Ko, Koppolu, Cui, Tang, Nguyen (b0395) 2012; 8 Li, Rothstein, Little, Edenborn, Meyer (b0065) 2012; 134 Srinivas, Tel, Schreibelt, Bonetto, Cruz, Amiri, Heerschap, Figdor, de Vries (b0610) 2015; 10 Kumari, Yadav, Yadav (b0120) 2010; 75 Ding, Anton, Vandamme, Serra (b0325) 2016; 13 González-Béjar, Francés-Soriano, Pérez-Prieto (b0420) 2016; 4 Badilescu, Packirisamy (b0290) 2012; 4 Ibrahim, Bindschaedler, Doelker, Buri, Gurny (b0240) 1992; 87 Perugini, Simeoni, Scalia, Genta, Modena, Conti, Pavanetto (b0250) 2002; 246 Jiang, Yu, Carbone, Nelson, Kan, Lo (b0515) 2014; 475 Locatelli, Franchini (b0140) 2012; 14 Joseph, Bunjes (b0335) 2012; 101 Srinivas, Cruz, Bonetto, Heerschap, Figdor, de Vries (b0615) 2010; 31 Houchin, Topp (b0085) 2009; 114 Tacken, Zeelenberg, Cruz, van Hout-Kuijer, van de Glind, Fokkink, Lambeck, Figdor (b0545) 2011; 118 Amann, Gandal, Lin, Liang, Siegel (b0660) 2010; 27 Das, Duan, Sahoo (b0570) 2014 Xu, Nie, Seo, Lewis, Kumacheva, Stone, Garstecki, Weibel, Gitlin, Whitesides (b0705) 2005; 44 Webster (b0005) 2012 Windbergs, Weitz (b0300) 2011; 7 Perro, Reculusa, Ravaine, Bourgeat-Lami, Duguet (b0450) 2005; 15 Makadia, Siegel (b0075) 2011; 3 Hu, Zhou, Liu, Liu, Liu, Tang, Li, Zhang, Sheng, Zhao, Wu, Chen (b0260) 2015 K. Miladi, D. Ibraheem, M. Iqbal, S. Sfar, H. Fessi, A. Elaissari, R. Avicenne, Particles from preformed polymers as carriers for drug delivery, (2014) 28–57. Vladisavljević, Williams (b0330) 2005; 113 Mir, Ahmed, ur Rehman (b0550) 2017; 159 Acharya, Sahoo (b0575) 2011; 63 Mariano, Alberti, Cutrin, Geninatti Crich, Aime (b0605) 2014; 11 Dinarvand, Sepehri, Manoochehri, Rouhani, Atyabi (b0015) 2011; 6 Jain, Das, Swarnakar, Jain (b0095) 2011; 28 Li, Feng, Fan, Zha, Guo, Zhang, Chen, Pang, Wang, Jiang, Yang, Wen (b0145) 2011; 32 Li, Dong, Tang, Ma, Cao, Chen, Eisen, Langer, Chu, Cheon, Tseng (b0455) 2015; 5 Danhier, Ansorena, Silva, Coco, Le Breton, Préat (b0020) 2012; 161 Hosseininasab, Pashaei-Asl, Khandaghi, Nasrabadi, Nejati-Koshki, Akbarzadeh, Joo, Hanifehpour, Davaran (b0155) 2014; 84 Allemann, Gurny, Doelker (b0245) 1992; 87 Liang, Chen, Chen, Kulkarni, Chiu, Chen, Sung (b0505) 2006; 27 S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine) – poly (ethylene glycol) – folate conjugate, (2005) 8852–8857. Chen, Zhao, Luo, Zheng, Tian, Gong, Gao, Pan, Liu, Ma, Cui, Ma, Cai (b0530) 2016; 10 Li, Li, Niu, Fan, Yan, Kenyon, Darr, Lin, Hyeon (b0460) 2016; 6 Bobo, Robinson, Islam, Thurecht, Corrie (b0035) 2016; 33 Wang, Ng, Chen, Shuter, Yi, Ding, Wang, Feng (b0580) 2008; 18 Xu, Yu, Liang, Liu, Tian, Deng, Zhu (b0340) 2012; 77 Tel, Sittig, Blom, Cruz, Schreibelt, Figdor, de Vries (b0535) 2013; 191 Granot, Nkansah, Bennewitz, Tang, Markakis, Shapiro (b0650) 2014; 71 Knop, Hoogenboom, Fischer, Schubert (b0685) 2010; 49 Koshkina, Westmeier, Lang, Bantz, Hahlbrock, Würth, Resch-Genger, Braun, Thiermann, Weise, Eravci, Mohr, Schlaad, Stauber, Docter, Bertin, Maskos (b0170) 2016; 1–14 Zhang, Zhou, Guo, Ao, Zheng, Wang (b0600) 2013; 8 Solans, Izquierdo, Nolla, Azemar, Garciacelma (b0195) 2005; 10 Kosinski, Brugnano, Seal, Knight, Panitch (b0390) 2012; 2 Lalani, Patil, Kolate, Lalani, Misra (b0210) 2014 Xie, Smith (b0025) 2010; 8 Kelly, DeSimone (b0720) 2008; 130 Song, Cai, Zheng, He, Cui, Gong, Hou, Xiong, Lei, Wei (b0255) 2009; 37 Anselmo, Mitragotri (b0030) 2016; 1 Matsumoto, Murao, Matsumoto, Watanabe, Murakami (b0430) 2016; 10 Blanco, Alonso (b0490) 1997; 43 Wang, Strohm, Sun, Wang, Zheng, Wang, Kolios (b0525) 2016; 7 Alvarez-Lorenzo, Rey-Rico, Sosnik, Taboada, Concheiro (b0130) 2010; 2 Ernsting, Murakami, Roy, Li (b0465) 2013; 172 Gentile, Chiono, Carmagnola, Hatton (b0050) 2014; 15 Han, Thurecht, Whittaker, Smith (b0100) 2016; 7 Srinivas, Boehm-Sturm, Aswendt, Pracht, Figdor, de Vries, Hoehn (b0620) 2013 Park, Yang, Lee, Haam, Choi, Yoo (b0415) 2009; 3 Euliss, DuPont, Gratton, DeSimone (b0355) 2006; 35 Xu, Hashimoto, Dang, Hoare, Kohane, Whitesides, Langer, Anderson (b0275) 2009; 5 Wischke, Schwendeman (b0670) 2008; 364 Hauser, Langer, Schonhoff (b0385) 2015; 6 Kelly, Jefferies, Cryan (b0500) 2011; 2011 Rahmani, Park, Dishman, Lahann (b0370) 2013; 172 Govender (b0200) 1999; 57 Li, Li, Tong (b0640) 2016; 16 Wan, Maltesen, Andersen, Bjerregaard, Foged, Rantanen, Yang (b0215) 2014; 31 Enlow, Luft, Napier, DeSimone (b0360) 2011; 11 Owens, Peppas (b0105) 2006; 307 Shah, Chaudhary, Mehta (b0695) 2014; 6 Astete, Sabliov (b0185) 2012 Choi, Cao, Naeem, Noh, Hasan, Choi, Yoo (b0205) 2014; 122 Musyanovych, Schmitz-Wienke, Mailänder, Walther, Landfester (b0180) 2008; 8 Rigaux, Roullin, Cadiou, Portefaix, Van Gulick, Bœuf, Andry, Hoeffel, Vander Elst, Laurent, Muller, Molinari, Chuburu (b0560) 2014; 25 Hao (b0225) 2013; 28 Hrkach, Von Hoff, Mukkaram Ali, Andrianova, Auer, Campbell, De Witt, Figa, Figueiredo, Horhota, Low, McDonnell, Peeke, Retnarajan, Sabnis, Schnipper, Song, Song, Summa, Tompsett, Troiano, Van Geen Hoven, Wright, LoRusso, Kantoff, Bander, Sweeney, Farokhzad, Langer, Zale (b0655) 2012; 4 Thorsen, Roberts, Arnold, Quake (b0320) 2001; 86 Salehi, Davaran, Rashidi, Entezami (b0400) 2009; 111 S. Takada, Y. Uda, H. Toguchi, Y. Ogawa, Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers., PDA J. Pharm. Sci. Technol. 49 (n.d.) 180–184. Nagavarma, Yadav, Ayaz, Vasudha, Shivakumar (b0235) 2012; 5 Coors, Seybold, Merk, Mahler (b0135) 2005; 95 Chen, Muir, Such, Postma, McLean, Caruso (b0435) 2010; 46 Wu, Williams, Li, Wang, Li, Zhu (b0480) 2017; 24 Swider, Staal, van Riessen, Jacobs, White, Fokkink, Janssen, van Dinther, Figdor, de Vries, Koshkina, Srinivas (b0635) 2018; 8 Liu, Zhu, Qin, Dong, Du (b0595) 2014; 15 Rolland, Maynor, Euliss, Exner, Denison, DeSimone (b0710) 2005; 127 Matthaiou, Barar, Sandaltzopoulos, Li, Coukos, Omidi (b0520) 2014; 9 J.M. Barichello, M. Morishita, K. Takayama, T. Nagai, Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method, 25(4) (1999) 471–476. Miller, Drabik (b0125) 1984; 18 Siegel, Kahn, Metzger, Winey, Werner, Dan (b0495) 2006; 64 Olejniczak, Chan, Almutairi (b0410) 2015; 48 Sharma, Parmar, Kori, Sandhir (b0045) 2015; 80 Zhao (b0315) 2013; 65 Kim, Matsunaga (b0365) 2017 Shembekar, Chaipan, Utharala, Merten (b0665) 2016; 16 Fomina, McFearin, Sermsakdi, Edigin, Almutairi (b0405) 2010; 132 Guo, Zhang, Ye, Zhang, Ding, Hao, Zhao, Zhang, Zhang (b0220) 2014; 22 Salmaso, Caliceti (b0090) 2013; 2013 Pagels, Prud’homme (b0070) 2015; 219 Merkel, Herlihy, Nunes, Orgel, Rolland, DeSimone (b0715) 2010; 26 Putnam (b0010) 2006; 5 Menale, Piccolo, Favicchia, Aruta, Baldi, Nicolucci, Barba, Mita, Crispi, Diano (b0565) 2014 Cheng, Teply, Sherifi, Sung, Luther, Gu, Levy-Nissenbaum, Radovic-Moreno, Langer, Farokhzad (b0150) 2007; 28 Duncanson, Lin, Abate, Seiffert, Shah, Weitz (b0270) 2012; 12 Zolnik, González-Fernández, Sadrieh, Dobrovolskaia (b0165) 2010; 151 Wang, Zhao, Wu, Hu, Nan, Nie, Chen (b0160) 2011; 32 Zhang, Liu, Wan (b0175) 2014; 37 Collins, Neild, deMello, Liu, Ai (b0305) 2015; 15 Mosafer, Abnous, Tafaghodi, Mokhtarzadeh, Ramezani (b0645) 2017; 113 Strohbehn, Coman, Han, Ragheb, Fahmy, Huttner, Hyder, Piepmeier, Saltzman, Zhou (b0590) 2015; 121 Avila, Erbetta, Alves, Resende, Fernando, Freitas, De Sousa (b0055) 2012; 2012 Lü, Wang, Marin-Muller, Wang, Lin, Yao, Chen (b0060) 2009; 9 Stolzoff, Ekladious, Colby, Colson, Porter, Grinstaff (b0380) 2015 Mahesh, Vaidya (b0265) 2017; 112 Mura, Nicolas, Couvreur (b0375) 2013; 12 Kong, Wu, To, Wai Kwok Yeung, Cheung Shum, Wang (b0285) 2012; 6 Karnik, Gu, Basto, Cannizzaro, Dean, Kyei-Manu, Langer, Farokhzad (b0280) 2008; 8 Reddy, Bhojani, McConville, Moody, Moffat, Hall, Kim, Koo, Woolliscroft, Sugai, Johnson, Philbert, Kopelman, Rehemtulla, Ross (b0510) 2006; 12 Jain (b0190) 2000; 21 Samavedi, Poindexter, Van Dyke, Goldstein (b0080) 2014 Srinivas, Heerschap, Ahrens, Figdor, de Vries (b0630) 2010; 28 Dong, Li, Tang, Ma, Cao (b0445) 2015; 5 Srinivas, Boehm-Sturm, Figdor, de Vries, Hoehn (b0625) 2012; 33 Gajdová, Jakubovsky, Války (b0700) 1993; 31 Xu, Zhang, Machado, Lecommandoux, Sandre, Gu, Colin (b0470) 2017; 7 Shaik, Korsapati, Panati (b0485) 2012; 2 Akamatsu, Kanasugi, Nakao, Weitz (b0295) 2015; 31 Liang, Wang, Wu, Dong, Deng, Wang, Sullivan, Liu, Wu, Tao, Yang, Zhu (b0345) 2013; 24 Sah, Sah (b0040) 2015; 2015 Srinivas, Aarntzen, Bulte, Oyen, Heerschap, de Vries, Figdor (b0555) 2010; 62 Vladisavljević, Khalid, Neves, Kuroiwa, Nakajima, Uemura, Ichikawa, Kobayashi (b0310) 2013; 65 Alshamsan (b0680) 2014; 22 Cruz, Tacken, Zeelenberg, Srinivas, Bonetto, Weigelin, Eich, de Vries, Figdor (b0585) 2014 Xie, She, Wang, Sharma, Smith (b0440) 2012; 28 Cruz, Tacken, Rueda, Domingo, Albericio, Figdor (b0540) 2012; 509 Hines, Kaplan (b0475) 2013; 30 Hans, Lowman (b0115) 2002; 6 Li (10.1016/j.actbio.2018.04.006_b0460) 2016; 6 Olejniczak (10.1016/j.actbio.2018.04.006_b0410) 2015; 48 Vladisavljević (10.1016/j.actbio.2018.04.006_b0310) 2013; 65 Srinivas (10.1016/j.actbio.2018.04.006_b0620) 2013 Mahesh (10.1016/j.actbio.2018.04.006_b0265) 2017; 112 Srinivas (10.1016/j.actbio.2018.04.006_b0625) 2012; 33 Thorsen (10.1016/j.actbio.2018.04.006_b0320) 2001; 86 Salehi (10.1016/j.actbio.2018.04.006_b0400) 2009; 111 Xu (10.1016/j.actbio.2018.04.006_b0340) 2012; 77 Alshamsan (10.1016/j.actbio.2018.04.006_b0680) 2014; 22 Gentile (10.1016/j.actbio.2018.04.006_b0050) 2014; 15 Rolland (10.1016/j.actbio.2018.04.006_b0710) 2005; 127 Enlow (10.1016/j.actbio.2018.04.006_b0360) 2011; 11 Locatelli (10.1016/j.actbio.2018.04.006_b0140) 2012; 14 Cruz (10.1016/j.actbio.2018.04.006_b0585) 2014 Amann (10.1016/j.actbio.2018.04.006_b0660) 2010; 27 Akamatsu (10.1016/j.actbio.2018.04.006_b0295) 2015; 31 Hrkach (10.1016/j.actbio.2018.04.006_b0655) 2012; 4 Hauser (10.1016/j.actbio.2018.04.006_b0385) 2015; 6 Sharma (10.1016/j.actbio.2018.04.006_b0045) 2015; 80 Choi (10.1016/j.actbio.2018.04.006_b0205) 2014; 122 Hans (10.1016/j.actbio.2018.04.006_b0115) 2002; 6 Miller (10.1016/j.actbio.2018.04.006_b0125) 1984; 18 Anselmo (10.1016/j.actbio.2018.04.006_b0030) 2016; 1 Jain (10.1016/j.actbio.2018.04.006_b0190) 2000; 21 Li (10.1016/j.actbio.2018.04.006_b0455) 2015; 5 Avila (10.1016/j.actbio.2018.04.006_b0055) 2012; 2012 Stolzoff (10.1016/j.actbio.2018.04.006_b0380) 2015 Kong (10.1016/j.actbio.2018.04.006_b0285) 2012; 6 Rigaux (10.1016/j.actbio.2018.04.006_b0560) 2014; 25 Li (10.1016/j.actbio.2018.04.006_b0640) 2016; 16 Shembekar (10.1016/j.actbio.2018.04.006_b0665) 2016; 16 Wang (10.1016/j.actbio.2018.04.006_b0525) 2016; 7 Pagels (10.1016/j.actbio.2018.04.006_b0070) 2015; 219 Kim (10.1016/j.actbio.2018.04.006_b0365) 2017 Nagavarma (10.1016/j.actbio.2018.04.006_b0235) 2012; 5 Acharya (10.1016/j.actbio.2018.04.006_b0575) 2011; 63 Samavedi (10.1016/j.actbio.2018.04.006_b0080) 2014 Chen (10.1016/j.actbio.2018.04.006_b0435) 2010; 46 Fomina (10.1016/j.actbio.2018.04.006_b0405) 2010; 132 Matthaiou (10.1016/j.actbio.2018.04.006_b0520) 2014; 9 Cruz (10.1016/j.actbio.2018.04.006_b0540) 2012; 509 Blanco (10.1016/j.actbio.2018.04.006_b0490) 1997; 43 10.1016/j.actbio.2018.04.006_b0675 Bobo (10.1016/j.actbio.2018.04.006_b0035) 2016; 33 González-Béjar (10.1016/j.actbio.2018.04.006_b0420) 2016; 4 Kelly (10.1016/j.actbio.2018.04.006_b0720) 2008; 130 Karnik (10.1016/j.actbio.2018.04.006_b0280) 2008; 8 Govender (10.1016/j.actbio.2018.04.006_b0200) 1999; 57 Perro (10.1016/j.actbio.2018.04.006_b0450) 2005; 15 Zhang (10.1016/j.actbio.2018.04.006_b0600) 2013; 8 Zolnik (10.1016/j.actbio.2018.04.006_b0165) 2010; 151 Kumari (10.1016/j.actbio.2018.04.006_b0120) 2010; 75 Alvarez-Lorenzo (10.1016/j.actbio.2018.04.006_b0130) 2010; 2 Ernsting (10.1016/j.actbio.2018.04.006_b0465) 2013; 172 Menale (10.1016/j.actbio.2018.04.006_b0565) 2014 Xu (10.1016/j.actbio.2018.04.006_b0470) 2017; 7 Badilescu (10.1016/j.actbio.2018.04.006_b0290) 2012; 4 Webster (10.1016/j.actbio.2018.04.006_b0005) 2012 Dinarvand (10.1016/j.actbio.2018.04.006_b0015) 2011; 6 Tacken (10.1016/j.actbio.2018.04.006_b0545) 2011; 118 Srinivas (10.1016/j.actbio.2018.04.006_b0610) 2015; 10 Park (10.1016/j.actbio.2018.04.006_b0415) 2009; 3 Astete (10.1016/j.actbio.2018.04.006_b0185) 2012 Xu (10.1016/j.actbio.2018.04.006_b0705) 2005; 44 Jain (10.1016/j.actbio.2018.04.006_b0095) 2011; 28 10.1016/j.actbio.2018.04.006_b0425 Gajdová (10.1016/j.actbio.2018.04.006_b0700) 1993; 31 Wang (10.1016/j.actbio.2018.04.006_b0160) 2011; 32 Ding (10.1016/j.actbio.2018.04.006_b0325) 2016; 13 Liang (10.1016/j.actbio.2018.04.006_b0505) 2006; 27 Windbergs (10.1016/j.actbio.2018.04.006_b0300) 2011; 7 Putnam (10.1016/j.actbio.2018.04.006_b0010) 2006; 5 Shah (10.1016/j.actbio.2018.04.006_b0695) 2014; 6 Joseph (10.1016/j.actbio.2018.04.006_b0335) 2012; 101 Mura (10.1016/j.actbio.2018.04.006_b0375) 2013; 12 Danhier (10.1016/j.actbio.2018.04.006_b0020) 2012; 161 Xu (10.1016/j.actbio.2018.04.006_b0275) 2009; 5 Shaik (10.1016/j.actbio.2018.04.006_b0485) 2012; 2 Hao (10.1016/j.actbio.2018.04.006_b0225) 2013; 28 Zhao (10.1016/j.actbio.2018.04.006_b0315) 2013; 65 Allemann (10.1016/j.actbio.2018.04.006_b0245) 1992; 87 Musyanovych (10.1016/j.actbio.2018.04.006_b0180) 2008; 8 Owens (10.1016/j.actbio.2018.04.006_b0105) 2006; 307 Song (10.1016/j.actbio.2018.04.006_b0255) 2009; 37 Liang (10.1016/j.actbio.2018.04.006_b0345) 2013; 24 Knop (10.1016/j.actbio.2018.04.006_b0685) 2010; 49 Zhang (10.1016/j.actbio.2018.04.006_b0175) 2014; 37 Wadajkar (10.1016/j.actbio.2018.04.006_b0395) 2012; 8 Wischke (10.1016/j.actbio.2018.04.006_b0670) 2008; 364 Perry (10.1016/j.actbio.2018.04.006_b0350) 2011; 44 Srinivas (10.1016/j.actbio.2018.04.006_b0615) 2010; 31 Mir (10.1016/j.actbio.2018.04.006_b0550) 2017; 159 Duncanson (10.1016/j.actbio.2018.04.006_b0270) 2012; 12 Euliss (10.1016/j.actbio.2018.04.006_b0355) 2006; 35 Tel (10.1016/j.actbio.2018.04.006_b0535) 2013; 191 10.1016/j.actbio.2018.04.006_b0690 Hines (10.1016/j.actbio.2018.04.006_b0475) 2013; 30 Collins (10.1016/j.actbio.2018.04.006_b0305) 2015; 15 Kelly (10.1016/j.actbio.2018.04.006_b0500) 2011; 2011 Perugini (10.1016/j.actbio.2018.04.006_b0250) 2002; 246 Vladisavljević (10.1016/j.actbio.2018.04.006_b0330) 2005; 113 Mariano (10.1016/j.actbio.2018.04.006_b0605) 2014; 11 Ibrahim (10.1016/j.actbio.2018.04.006_b0240) 1992; 87 Wu (10.1016/j.actbio.2018.04.006_b0480) 2017; 24 Swider (10.1016/j.actbio.2018.04.006_b0635) 2018; 8 Srinivas (10.1016/j.actbio.2018.04.006_b0555) 2010; 62 Strohbehn (10.1016/j.actbio.2018.04.006_b0590) 2015; 121 Hu (10.1016/j.actbio.2018.04.006_b0260) 2015 Cheng (10.1016/j.actbio.2018.04.006_b0150) 2007; 28 Guo (10.1016/j.actbio.2018.04.006_b0220) 2014; 22 Dong (10.1016/j.actbio.2018.04.006_b0445) 2015; 5 Jiang (10.1016/j.actbio.2018.04.006_b0515) 2014; 475 Xie (10.1016/j.actbio.2018.04.006_b0025) 2010; 8 Liu (10.1016/j.actbio.2018.04.006_b0595) 2014; 15 Koshkina (10.1016/j.actbio.2018.04.006_b0170) 2016; 1–14 Chen (10.1016/j.actbio.2018.04.006_b0530) 2016; 10 Wang (10.1016/j.actbio.2018.04.006_b0580) 2008; 18 Merkel (10.1016/j.actbio.2018.04.006_b0715) 2010; 26 Salmaso (10.1016/j.actbio.2018.04.006_b0090) 2013; 2013 10.1016/j.actbio.2018.04.006_b0110 Li (10.1016/j.actbio.2018.04.006_b0145) 2011; 32 Solans (10.1016/j.actbio.2018.04.006_b0195) 2005; 10 Rahmani (10.1016/j.actbio.2018.04.006_b0370) 2013; 172 Li (10.1016/j.actbio.2018.04.006_b0065) 2012; 134 Han (10.1016/j.actbio.2018.04.006_b0100) 2016; 7 Mosafer (10.1016/j.actbio.2018.04.006_b0645) 2017; 113 10.1016/j.actbio.2018.04.006_b0230 Kosinski (10.1016/j.actbio.2018.04.006_b0390) 2012; 2 Matsumoto (10.1016/j.actbio.2018.04.006_b0430) 2016; 10 Makadia (10.1016/j.actbio.2018.04.006_b0075) 2011; 3 Xie (10.1016/j.actbio.2018.04.006_b0440) 2012; 28 Lü (10.1016/j.actbio.2018.04.006_b0060) 2009; 9 Coors (10.1016/j.actbio.2018.04.006_b0135) 2005; 95 Srinivas (10.1016/j.actbio.2018.04.006_b0630) 2010; 28 Hosseininasab (10.1016/j.actbio.2018.04.006_b0155) 2014; 84 Granot (10.1016/j.actbio.2018.04.006_b0650) 2014; 71 Lalani (10.1016/j.actbio.2018.04.006_b0210) 2014 Das (10.1016/j.actbio.2018.04.006_b0570) 2014 Sah (10.1016/j.actbio.2018.04.006_b0040) 2015; 2015 Wan (10.1016/j.actbio.2018.04.006_b0215) 2014; 31 Houchin (10.1016/j.actbio.2018.04.006_b0085) 2009; 114 Reddy (10.1016/j.actbio.2018.04.006_b0510) 2006; 12 Siegel (10.1016/j.actbio.2018.04.006_b0495) 2006; 64 |
| References_xml | – volume: 31 start-page: 183 year: 1993 end-page: 190 ident: b0700 article-title: Delayed effects of neonatal exposure to Tween 80 on female reproductive organs in rats publication-title: Food Chem. Toxicol. – volume: 475 start-page: 547 year: 2014 end-page: 557 ident: b0515 article-title: Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications publication-title: Int. J. Pharm. – volume: 28 start-page: 4459 year: 2012 end-page: 4463 ident: b0440 article-title: One-step fabrication of polymeric Janus nanoparticles for drug delivery publication-title: Langmuir – volume: 22 start-page: 421 year: 2014 end-page: 427 ident: b0220 article-title: Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol publication-title: J. Drug Target. – volume: 31 start-page: 1967 year: 2014 end-page: 1977 ident: b0215 article-title: One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle publication-title: Pharm. Res. – volume: 2 start-page: 195 year: 2012 end-page: 201 ident: b0390 article-title: Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system publication-title: Biomatter – volume: 64 start-page: 287 year: 2006 end-page: 293 ident: b0495 article-title: Effect of drug type on the degradation rate of PLGA matrices publication-title: Eur. J. Pharm. Biopharm. – volume: 8 start-page: 127 year: 2008 end-page: 139 ident: b0180 article-title: Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions publication-title: Macromol. Biosci. – volume: 101 start-page: 2479 year: 2012 end-page: 2489 ident: b0335 article-title: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification publication-title: J. Pharm. Sci. – volume: 31 start-page: 7070 year: 2010 end-page: 7077 ident: b0615 article-title: Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging publication-title: Biomaterials – volume: 9 start-page: 325 year: 2009 end-page: 341 ident: b0060 article-title: Current advances in research and clinical applications of PLGA-based nanotechnology publication-title: Expert Rev. Mol. Diagn. – volume: 2 start-page: 112 year: 2012 end-page: 116 ident: b0485 article-title: Polymers in controlled drug delivery systems publication-title: Int. J. Pharma Sci. – volume: 87 start-page: 247 year: 1992 end-page: 253 ident: b0245 article-title: Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size publication-title: Int. J. Pharm. – volume: 24 start-page: 455302 year: 2013 ident: b0345 article-title: Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity publication-title: Nanotechnology – volume: 10 start-page: 10049 year: 2016 end-page: 10057 ident: b0530 article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy publication-title: ACS Nano – volume: 77 start-page: 96 year: 2012 end-page: 99 ident: b0340 article-title: Generation of polymer nanocapsules via a membrane-extrusion emulsification approach publication-title: Mater. Lett. – volume: 32 start-page: 4943 year: 2011 end-page: 4950 ident: b0145 article-title: Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides publication-title: Biomaterials – volume: 27 start-page: 2051 year: 2006 end-page: 2059 ident: b0505 article-title: Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer publication-title: Biomaterials – volume: 10 start-page: 2339 year: 2015 end-page: 2348 ident: b0610 article-title: PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI publication-title: Nanomedicine – volume: 5 start-page: 16 year: 2012 end-page: 23 ident: b0235 article-title: Different techniques for preparation of polymeri nanoparticles-a review publication-title: Asian J. Pharm. Clin. Res. – year: 2014 ident: b0570 article-title: Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy publication-title: Nanomedicine – volume: 6 start-page: 319 year: 2002 end-page: 327 ident: b0115 article-title: Biodegradable nanoparticles for drug delivery and targeting publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 15 start-page: 1586 year: 2014 end-page: 1592 ident: b0595 article-title: Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery publication-title: Biomacromolecules – volume: 112 start-page: 2021 year: 2017 ident: b0265 article-title: Microfluidics: a boon for biological research publication-title: Curr. Sci. – volume: 6 start-page: 2504 year: 2015 end-page: 2512 ident: b0385 article-title: pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles publication-title: Beilstein J. Nanotechnol. – volume: 6 start-page: 99034 year: 2016 end-page: 99043 ident: b0460 article-title: Electrospraying magnetic-fluorescent bifunctional Janus PLGA microspheres with dual rare earth ions fluorescent-labeling drugs publication-title: RSC Adv. – volume: 14 start-page: 1 year: 2012 end-page: 17 ident: b0140 article-title: Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system publication-title: J. Nanoparticle Res. – volume: 7 start-page: 3011 year: 2011 end-page: 3015 ident: b0300 article-title: Drug Dissolution Chip (DDC): a microfluidic approach for drug release publication-title: Small – volume: 134 start-page: 16352 year: 2012 end-page: 16359 ident: b0065 article-title: The effect of monomer order on the hydrolysis of biodegradable poly(lactic- publication-title: J. Am. Chem. Soc. – volume: 2013 start-page: 1 year: 2013 end-page: 19 ident: b0090 article-title: Stealth properties to improve therapeutic efficacy of drug nanocarriers publication-title: J. Drug Deliv. – volume: 12 start-page: 6677 year: 2006 end-page: 6686 ident: b0510 article-title: Vascular targeted nanoparticles for imaging and treatment of brain tumors publication-title: Clin. Cancer Res. – volume: 7 start-page: 4125 year: 2016 ident: b0525 article-title: Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods publication-title: Biomed. Opt. Express – volume: 8 start-page: 2996 year: 2012 end-page: 3004 ident: b0395 article-title: Multifunctional particles for melanoma-targeted drug delivery publication-title: Acta Biomater. – volume: 127 start-page: 10096 year: 2005 end-page: 10100 ident: b0710 article-title: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 2848 year: 2009 end-page: 2854 ident: b0085 article-title: Physical properties of PLGA films during polymer degradation publication-title: J. Appl. Polym. Sci. – volume: 1–14 year: 2016 ident: b0170 article-title: Tuning the surface of nanoparticles: impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake publication-title: Macromol. Biosci. – volume: 8 start-page: 2906 year: 2008 end-page: 2912 ident: b0280 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. – volume: 121 start-page: 441 year: 2015 end-page: 449 ident: b0590 article-title: Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance publication-title: J. Neurooncol. – volume: 71 start-page: 1238 year: 2014 end-page: 1250 ident: b0650 article-title: Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking publication-title: Magn. Reson. Med. – volume: 16 start-page: 1314 year: 2016 end-page: 1331 ident: b0665 article-title: Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics publication-title: Lab Chip – volume: 44 start-page: 990 year: 2011 end-page: 998 ident: b0350 article-title: PRINT: a novel platform toward shape and size specific nanoparticle theranostics publication-title: Acc. Chem. Res. – volume: 32 start-page: 8281 year: 2011 end-page: 8290 ident: b0160 article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles publication-title: Biomaterials – volume: 219 start-page: 519 year: 2015 end-page: 535 ident: b0070 article-title: Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics publication-title: J. Control. Release – volume: 9 start-page: 1855 year: 2014 end-page: 1870 ident: b0520 article-title: Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer publication-title: Int. J. Nanomed. – volume: 6 start-page: 34104 year: 2012 ident: b0285 article-title: Droplet based microfluidic fabrication of designer microparticles for encapsulation applications publication-title: Biomicrofluidics – volume: 49 start-page: 6288 year: 2010 end-page: 6308 ident: b0685 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 991 year: 2013 end-page: 1003 ident: b0375 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. – volume: 191 start-page: 5005 year: 2013 end-page: 5012 ident: b0535 article-title: Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion publication-title: J. Immunol. – volume: 11 start-page: 808 year: 2011 end-page: 813 ident: b0360 article-title: Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings publication-title: Nano Lett. – start-page: 8607 year: 2015 end-page: 8618 ident: b0260 article-title: Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells publication-title: Nanoscale – reference: M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M. Teresa Lopez-Franco, G. Mendoza, V. Sebastian, D.S. Kohane, M. Arruebo, Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species, (n.d.). – reference: K. Miladi, D. Ibraheem, M. Iqbal, S. Sfar, H. Fessi, A. Elaissari, R. Avicenne, Particles from preformed polymers as carriers for drug delivery, (2014) 28–57. – reference: S. Takada, Y. Uda, H. Toguchi, Y. Ogawa, Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers., PDA J. Pharm. Sci. Technol. 49 (n.d.) 180–184. – volume: 161 start-page: 505 year: 2012 end-page: 522 ident: b0020 article-title: PLGA-based nanoparticles: an overview of biomedical applications publication-title: J. Control. Release – volume: 130 start-page: 5438 year: 2008 end-page: 5439 ident: b0720 article-title: Shape-specific, monodisperse nano-molding of protein particles publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 424 year: 2010 end-page: 440 ident: b0130 article-title: Poloxamine-based nanomaterials for drug delivery publication-title: Front. Biosci. (Elite Ed) – volume: 113 start-page: 1 year: 2005 end-page: 20 ident: b0330 article-title: Recent developments in manufacturing emulsions and particulate products using membranes publication-title: Adv. Colloid Interface Sci. – volume: 26 start-page: 13086 year: 2010 end-page: 13096 ident: b0715 article-title: Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles publication-title: Langmuir – volume: 25 start-page: 445103 year: 2014 ident: b0560 article-title: A new magnetic resonance imaging contrast agent loaded into poly(lacide-co-glycolide) nanoparticles for long-term detection of tumors publication-title: Nanotechnology – start-page: 81 year: 2014 end-page: 99 ident: b0080 article-title: Synthetic biomaterials for regenerative medicine applications publication-title: Regen. Med. Appl. Organ Transplant. – volume: 2012 start-page: 208 year: 2012 end-page: 225 ident: b0055 article-title: Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer publication-title: J. Biomater. Nanobiotechnol. – volume: 63 start-page: 170 year: 2011 end-page: 183 ident: b0575 article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect publication-title: Adv. Drug Deliv. Rev. – volume: 151 start-page: 458 year: 2010 end-page: 465 ident: b0165 article-title: Minireview: Nanoparticles and the immune system publication-title: Endocrinology – volume: 7 start-page: 4794 year: 2017 ident: b0470 article-title: Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor publication-title: Sci. Rep. – volume: 5 start-page: 23181 year: 2015 end-page: 23188 ident: b0445 article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery application publication-title: RSC Adv. – volume: 27 start-page: 1730 year: 2010 end-page: 1737 ident: b0660 article-title: In vitro–in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia publication-title: Pharm. Res. – volume: 4 year: 2012 ident: b0655 article-title: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile publication-title: Sci. Transl. Med. – volume: 46 start-page: 5121 year: 2010 end-page: 5123 ident: b0435 article-title: Fabrication of asymmetric “Janus” particles via plasma polymerization publication-title: Chem. Commun. (Camb) – volume: 57 start-page: 171 year: 1999 end-page: 185 ident: b0200 article-title: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug publication-title: J. Control. Release – year: 2014 ident: b0585 article-title: Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism publication-title: Mol. Pharm. – year: 2014 ident: b0210 article-title: Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management publication-title: AAPS PharmSciTech. – volume: 8 start-page: 6460 year: 2018 end-page: 6470 ident: b0635 article-title: Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications publication-title: RCS Adv. – reference: J.M. Barichello, M. Morishita, K. Takayama, T. Nagai, Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method, 25(4) (1999) 471–476. – volume: 3 start-page: 1377 year: 2011 end-page: 1397 ident: b0075 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers (Basel) – reference: S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine) – poly (ethylene glycol) – folate conjugate, (2005) 8852–8857. – volume: 35 start-page: 1095 year: 2006 end-page: 1104 ident: b0355 article-title: Imparting size, shape, and composition control of materials for nanomedicine publication-title: Chem. Soc. Rev. – volume: 2011 start-page: 727241 year: 2011 ident: b0500 article-title: Targeted liposomal drug delivery to monocytes and macrophages publication-title: J. Drug Deliv. – volume: 7 start-page: 185 year: 2016 ident: b0100 article-title: Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading publication-title: Front. Pharmacol. – volume: 364 start-page: 298 year: 2008 end-page: 327 ident: b0670 article-title: Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles publication-title: Int. J. Pharm. – volume: 5 start-page: 439 year: 2006 end-page: 451 ident: b0010 article-title: Polymers for gene delivery across length scales publication-title: Nat. Mater. – volume: 37 start-page: 300 year: 2009 end-page: 305 ident: b0255 article-title: Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles publication-title: Eur. J. Pharm. Sci. – volume: 246 start-page: 37 year: 2002 end-page: 45 ident: b0250 article-title: Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate publication-title: Int. J. Pharm. – volume: 86 start-page: 4163 year: 2001 end-page: 4166 ident: b0320 article-title: Dynamic pattern formation in a vesicle-generating microfluidic device publication-title: Phys. Rev. Lett. – volume: 80 start-page: 30 year: 2015 end-page: 40 ident: b0045 article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications publication-title: TrAC Trends Anal. Chem. – volume: 28 start-page: 363 year: 2010 end-page: 370 ident: b0630 article-title: (19)F MRI for quantitative in vivo cell tracking publication-title: Trends Biotechnol. – volume: 18 start-page: 269 year: 1984 end-page: 276 ident: b0125 article-title: Rheological properties of poloxamer vehicles publication-title: Int. J. Pharm. – volume: 37 start-page: 335 year: 2014 end-page: 339 ident: b0175 article-title: Discussion about several potential drawbacks of PEGylated therapeutic proteins publication-title: Biol. Pharm. Bull. – volume: 65 start-page: 1420 year: 2013 end-page: 1446 ident: b0315 article-title: Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 23181 year: 2015 end-page: 23188 ident: b0455 article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications publication-title: RSC Adv. – volume: 132 start-page: 9540 year: 2010 end-page: 9542 ident: b0405 article-title: UV and near-IR triggered release from polymeric nanoparticles publication-title: J. Am. Chem. Soc. – volume: 307 start-page: 93 year: 2006 end-page: 102 ident: b0105 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. – volume: 87 start-page: 239 year: 1992 end-page: 246 ident: b0240 article-title: Aqueous nanodispersions prepared by a salting-out process publication-title: Int. J. Pharm. – volume: 13 start-page: 1447 year: 2016 end-page: 1460 ident: b0325 article-title: Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview publication-title: Expert Opin. Drug Deliv. – volume: 48 start-page: 3166 year: 2015 end-page: 3172 ident: b0410 article-title: Light-triggered intramolecular cyclization in poly(lactic- publication-title: Macromolecules – volume: 122 start-page: 545 year: 2014 end-page: 551 ident: b0205 article-title: Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition publication-title: Colloids Surf. B. Biointerfaces – year: 2017 ident: b0365 article-title: Thermo-responsive polymers and their application as smart biomaterials publication-title: J. Mater. Chem. B – year: 2014 ident: b0565 article-title: Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells publication-title: Pharm. Res. – volume: 33 start-page: 2373 year: 2016 end-page: 2387 ident: b0035 article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date publication-title: Pharm. Res. – volume: 1 start-page: 10 year: 2016 end-page: 29 ident: b0030 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. – volume: 62 start-page: 1080 year: 2010 end-page: 1093 ident: b0555 article-title: Imaging of cellular therapies publication-title: Adv. Drug Deliv. Rev. – volume: 43 start-page: 287 year: 1997 end-page: 294 ident: b0490 article-title: Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres publication-title: Eur. J. Pharm. Biopharm. – volume: 172 start-page: 782 year: 2013 end-page: 794 ident: b0465 article-title: Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles publication-title: J. Control. Release – volume: 4 start-page: 1278 year: 2012 end-page: 1310 ident: b0290 article-title: Microfluidics-nano-integration for synthesis and sensing publication-title: Polymers (Basel) – year: 2012 ident: b0005 article-title: Nanomedicine: Technologies and Applications – volume: 2015 start-page: 1 year: 2015 end-page: 22 ident: b0040 article-title: Recent trends in preparation of poly(lactide- publication-title: J. Nanomater. – volume: 6 start-page: 95 year: 2014 end-page: 101 ident: b0695 article-title: Review article polyox (polyethylene oxide) multifunctional polymer in novel drug delivery publication-title: System – year: 2015 ident: b0380 article-title: Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability publication-title: Biomacromolecules – volume: 10 start-page: 102 year: 2005 end-page: 110 ident: b0195 article-title: Nano-emulsions publication-title: Curr. Opin. Colloid Interface Sci. – volume: 28 start-page: 869 year: 2007 end-page: 876 ident: b0150 article-title: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery publication-title: Biomaterials – volume: 65 start-page: 1626 year: 2013 end-page: 1663 ident: b0310 article-title: Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery publication-title: Adv. Drug Deliv. Rev. – volume: 111 start-page: 1905 year: 2009 end-page: 1910 ident: b0400 article-title: Thermosensitive nanoparticles prepared from poly( publication-title: J. Appl. Polym. Sci. – volume: 21 start-page: 2475 year: 2000 end-page: 2490 ident: b0190 article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices publication-title: Biomaterials – year: 2013 ident: b0620 article-title: In vivo 19F MRI for cell tracking publication-title: J. Vis. Exp. – volume: 12 start-page: 2135 year: 2012 end-page: 2145 ident: b0270 article-title: Microfluidic synthesis of advanced microparticles for encapsulation and controlled release publication-title: Lab Chip – volume: 18 start-page: 308 year: 2008 end-page: 318 ident: b0580 article-title: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging publication-title: Adv. Funct. Mater. – volume: 6 start-page: 877 year: 2011 end-page: 895 ident: b0015 article-title: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents publication-title: Int. J. Nanomed. – volume: 75 start-page: 1 year: 2010 end-page: 18 ident: b0120 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf. B. Biointerfaces – volume: 10 start-page: 307 year: 2016 end-page: 313 ident: b0430 article-title: Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method publication-title: Drug Discov. Ther. – volume: 30 start-page: 257 year: 2013 end-page: 276 ident: b0475 article-title: Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights publication-title: Crit. Rev. Ther. Drug Carrier Syst. – volume: 95 start-page: 593 year: 2005 end-page: 599 ident: b0135 article-title: Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions publication-title: Ann. Allergy Asthma Immunol. – start-page: 37 year: 2012 end-page: 41 ident: b0185 article-title: Synthesis and characterization of PLGA nanoparticles publication-title: J. Biomater. Sci. – volume: 159 start-page: 217 year: 2017 end-page: 231 ident: b0550 article-title: Recent applications of PLGA based nanostructures in drug delivery publication-title: Colloids Surfaces B Biointerfaces – volume: 31 start-page: 7166 year: 2015 end-page: 7172 ident: b0295 article-title: Membrane-integrated glass capillary device for preparing small-sized water-in-oil-in-water emulsion droplets publication-title: Langmuir – volume: 15 start-page: 3640 year: 2014 end-page: 3659 ident: b0050 article-title: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 18 year: 2010 ident: b0025 article-title: Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system publication-title: J. Nanobiotechnol. – volume: 84 start-page: 307 year: 2014 end-page: 315 ident: b0155 article-title: Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery publication-title: Chem. Biol. Drug Des. – volume: 172 start-page: 239 year: 2013 end-page: 245 ident: b0370 article-title: Multimodal delivery of irinotecan from microparticles with two distinct compartments publication-title: J. Control. Release – volume: 11 start-page: 4100 year: 2014 end-page: 4106 ident: b0605 article-title: Design of PLGA based nanoparticles for imaging guided applications publication-title: Mol. Pharm. – volume: 24 start-page: 1513 year: 2017 end-page: 1525 ident: b0480 article-title: Insulin-loaded PLGA microspheres for glucose-responsive release publication-title: Drug Deliv. – volume: 8 start-page: 3745 year: 2013 end-page: 3756 ident: b0600 article-title: Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus publication-title: Int. J. Nanomed. – volume: 22 start-page: 219 year: 2014 end-page: 222 ident: b0680 article-title: Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles publication-title: Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. – volume: 15 start-page: 3439 year: 2015 end-page: 3459 ident: b0305 article-title: The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation publication-title: Lab Chip – volume: 509 start-page: 143 year: 2012 end-page: 163 ident: b0540 article-title: Targeting nanoparticles to dendritic cells for immunotherapy publication-title: Methods Enzymol. – volume: 113 start-page: 60 year: 2017 end-page: 74 ident: b0645 article-title: In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy publication-title: Eur. J. Pharm. Biopharm. – volume: 3 start-page: 2919 year: 2009 end-page: 2926 ident: b0415 article-title: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments publication-title: ACS Nano – volume: 16 start-page: 5569 year: 2016 end-page: 5576 ident: b0640 article-title: Nile Red loaded PLGA nanoparticles surface modified with Gd-DTPA for potential dual-modal imaging publication-title: J. Nanosci. Nanotechnol. – volume: 118 start-page: 6836 year: 2011 end-page: 6844 ident: b0545 article-title: Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity publication-title: Blood – volume: 44 start-page: 724 year: 2005 end-page: 728 ident: b0705 article-title: Generation of monodisperse particles by using microfluidics: control over size, shape, and composition publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 47 year: 2016 ident: b0420 article-title: Upconversion nanoparticles for bioimaging and regenerative medicine publication-title: Front. Bioeng. Biotechnol. – volume: 15 start-page: 3745 year: 2005 ident: b0450 article-title: Design and synthesis of Janus micro- and nanoparticles publication-title: J. Mater. Chem. – volume: 28 start-page: 1 year: 2011 end-page: 45 ident: b0095 article-title: Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics publication-title: Crit. Rev. Ther. Drug Carrier Syst. – volume: 5 start-page: 1575 year: 2009 end-page: 1581 ident: b0275 article-title: Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery publication-title: Small – volume: 33 start-page: 8830 year: 2012 end-page: 8840 ident: b0625 article-title: Labeling cells for in vivo tracking using (19)F MRI publication-title: Biomaterials – volume: 28 start-page: 1242 year: 2013 end-page: 1245 ident: b0225 article-title: Preparation of PLGA ceftiofur hydrochlorate lungtargeted microsphere with spray drying process publication-title: J. Wuhan Univ. Technol. Sci. Ed. – volume: 161 start-page: 505 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0020 article-title: PLGA-based nanoparticles: an overview of biomedical applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.01.043 – volume: 65 start-page: 1420 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0315 article-title: Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.05.009 – volume: 5 start-page: 23181 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0455 article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications publication-title: RSC Adv. doi: 10.1039/C4RA17153E – volume: 27 start-page: 2051 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0505 article-title: Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.027 – volume: 16 start-page: 1314 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0665 article-title: Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics publication-title: Lab Chip doi: 10.1039/C6LC00249H – volume: 8 start-page: 18 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0025 article-title: Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-8-18 – year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0365 article-title: Thermo-responsive polymers and their application as smart biomaterials publication-title: J. Mater. Chem. B – volume: 64 start-page: 287 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0495 article-title: Effect of drug type on the degradation rate of PLGA matrices publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2006.06.009 – volume: 4 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0655 article-title: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3003651 – volume: 1 start-page: 10 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0030 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10003 – volume: 246 start-page: 37 year: 2002 ident: 10.1016/j.actbio.2018.04.006_b0250 article-title: Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00356-3 – volume: 7 start-page: 4794 year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0470 article-title: Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor publication-title: Sci. Rep. doi: 10.1038/s41598-017-05184-5 – volume: 24 start-page: 1513 year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0480 article-title: Insulin-loaded PLGA microspheres for glucose-responsive release publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1381200 – volume: 5 start-page: 439 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0010 article-title: Polymers for gene delivery across length scales publication-title: Nat. Mater. doi: 10.1038/nmat1645 – volume: 111 start-page: 1905 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0400 article-title: Thermosensitive nanoparticles prepared from poly(N-isopropylacrylamide-acrylamide-vinilpyrrolidone) and its blend with poly(lactide-co-glycolide) for efficient drug delivery system publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29199 – volume: 10 start-page: 10049 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0530 article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b04695 – volume: 191 start-page: 5005 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0535 article-title: Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion publication-title: J. Immunol. doi: 10.4049/jimmunol.1300787 – volume: 31 start-page: 183 year: 1993 ident: 10.1016/j.actbio.2018.04.006_b0700 article-title: Delayed effects of neonatal exposure to Tween 80 on female reproductive organs in rats publication-title: Food Chem. Toxicol. doi: 10.1016/0278-6915(93)90092-D – volume: 87 start-page: 247 year: 1992 ident: 10.1016/j.actbio.2018.04.006_b0245 article-title: Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(92)90249-2 – ident: 10.1016/j.actbio.2018.04.006_b0425 – volume: 1–14 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0170 article-title: Tuning the surface of nanoparticles: impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake publication-title: Macromol. Biosci. – volume: 4 start-page: 1278 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0290 article-title: Microfluidics-nano-integration for synthesis and sensing publication-title: Polymers (Basel) doi: 10.3390/polym4021278 – volume: 2012 start-page: 208 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0055 article-title: Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer publication-title: J. Biomater. Nanobiotechnol. – volume: 57 start-page: 171 year: 1999 ident: 10.1016/j.actbio.2018.04.006_b0200 article-title: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug publication-title: J. Control. Release doi: 10.1016/S0168-3659(98)00116-3 – ident: 10.1016/j.actbio.2018.04.006_b0110 – volume: 13 start-page: 1447 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0325 article-title: Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1193151 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0040 article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent publication-title: J. Nanomater. doi: 10.1155/2015/794601 – volume: 80 start-page: 30 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0045 article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2015.06.014 – volume: 26 start-page: 13086 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0715 article-title: Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles publication-title: Langmuir doi: 10.1021/la903890h – volume: 32 start-page: 8281 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0160 article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.032 – start-page: 8607 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0260 article-title: Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells publication-title: Nanoscale doi: 10.1039/C5NR01084E – volume: 4 start-page: 47 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0420 article-title: Upconversion nanoparticles for bioimaging and regenerative medicine publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2016.00047 – volume: 11 start-page: 4100 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0605 article-title: Design of PLGA based nanoparticles for imaging guided applications publication-title: Mol. Pharm. doi: 10.1021/mp5002747 – volume: 24 start-page: 455302 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0345 article-title: Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity publication-title: Nanotechnology doi: 10.1088/0957-4484/24/45/455302 – volume: 6 start-page: 99034 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0460 article-title: Electrospraying magnetic-fluorescent bifunctional Janus PLGA microspheres with dual rare earth ions fluorescent-labeling drugs publication-title: RSC Adv. doi: 10.1039/C6RA15401H – volume: 84 start-page: 307 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0155 article-title: Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.12318 – year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0565 article-title: Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells publication-title: Pharm. Res. – volume: 101 start-page: 2479 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0335 article-title: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification publication-title: J. Pharm. Sci. doi: 10.1002/jps.23163 – volume: 27 start-page: 1730 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0660 article-title: In vitro–in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia publication-title: Pharm. Res. doi: 10.1007/s11095-010-0152-4 – volume: 43 start-page: 287 year: 1997 ident: 10.1016/j.actbio.2018.04.006_b0490 article-title: Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(97)00056-8 – volume: 63 start-page: 170 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0575 article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.10.008 – volume: 87 start-page: 239 year: 1992 ident: 10.1016/j.actbio.2018.04.006_b0240 article-title: Aqueous nanodispersions prepared by a salting-out process publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(92)90248-Z – volume: 12 start-page: 991 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0375 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 132 start-page: 9540 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0405 article-title: UV and near-IR triggered release from polymeric nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102595j – volume: 15 start-page: 3640 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0050 article-title: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15033640 – volume: 22 start-page: 421 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0220 article-title: Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol publication-title: J. Drug Target. doi: 10.3109/1061186X.2013.878944 – volume: 8 start-page: 3745 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0600 article-title: Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus publication-title: Int. J. Nanomed. – volume: 130 start-page: 5438 year: 2008 ident: 10.1016/j.actbio.2018.04.006_b0720 article-title: Shape-specific, monodisperse nano-molding of protein particles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8014428 – volume: 8 start-page: 2906 year: 2008 ident: 10.1016/j.actbio.2018.04.006_b0280 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. doi: 10.1021/nl801736q – volume: 307 start-page: 93 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0105 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.10.010 – volume: 21 start-page: 2475 year: 2000 ident: 10.1016/j.actbio.2018.04.006_b0190 article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00115-0 – volume: 134 start-page: 16352 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0065 article-title: The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306866w – volume: 10 start-page: 2339 issue: 15 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0610 article-title: PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI publication-title: Nanomedicine doi: 10.2217/nnm.15.76 – volume: 172 start-page: 782 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0465 article-title: Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.09.013 – volume: 159 start-page: 217 year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0550 article-title: Recent applications of PLGA based nanostructures in drug delivery publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2017.07.038 – volume: 219 start-page: 519 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0070 article-title: Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.09.001 – volume: 3 start-page: 1377 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0075 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers (Basel) doi: 10.3390/polym3031377 – volume: 32 start-page: 4943 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0145 article-title: Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.031 – volume: 12 start-page: 2135 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0270 article-title: Microfluidic synthesis of advanced microparticles for encapsulation and controlled release publication-title: Lab Chip doi: 10.1039/c2lc21164e – volume: 22 start-page: 219 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0680 article-title: Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles publication-title: Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. – volume: 364 start-page: 298 year: 2008 ident: 10.1016/j.actbio.2018.04.006_b0670 article-title: Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.04.042 – year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0210 article-title: Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management publication-title: AAPS PharmSciTech. – volume: 14 start-page: 1 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0140 article-title: Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-012-1316-4 – volume: 122 start-page: 545 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0205 article-title: Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2014.07.030 – volume: 71 start-page: 1238 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0650 article-title: Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24741 – year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0005 – volume: 62 start-page: 1080 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0555 article-title: Imaging of cellular therapies publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.08.009 – volume: 114 start-page: 2848 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0085 article-title: Physical properties of PLGA films during polymer degradation publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.30813 – volume: 15 start-page: 3745 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0450 article-title: Design and synthesis of Janus micro- and nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/b505099e – volume: 31 start-page: 1967 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0215 article-title: One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle publication-title: Pharm. Res. doi: 10.1007/s11095-014-1299-1 – volume: 28 start-page: 363 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0630 article-title: (19)F MRI for quantitative in vivo cell tracking publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.04.002 – volume: 48 start-page: 3166 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0410 article-title: Light-triggered intramolecular cyclization in poly(lactic-co-glycolic acid)-based polymers for controlled degradation publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00455 – volume: 33 start-page: 8830 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0625 article-title: Labeling cells for in vivo tracking using (19)F MRI publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.08.048 – volume: 15 start-page: 1586 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0595 article-title: Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery publication-title: Biomacromolecules doi: 10.1021/bm500438x – volume: 33 start-page: 2373 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0035 article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date publication-title: Pharm. Res. doi: 10.1007/s11095-016-1958-5 – volume: 86 start-page: 4163 year: 2001 ident: 10.1016/j.actbio.2018.04.006_b0320 article-title: Dynamic pattern formation in a vesicle-generating microfluidic device publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.4163 – volume: 6 start-page: 34104 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0285 article-title: Droplet based microfluidic fabrication of designer microparticles for encapsulation applications publication-title: Biomicrofluidics doi: 10.1063/1.4738586 – year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0620 article-title: In vivo 19F MRI for cell tracking publication-title: J. Vis. Exp. doi: 10.3791/50802-v – volume: 2 start-page: 195 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0390 article-title: Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system publication-title: Biomatter doi: 10.4161/biom.22494 – year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0570 article-title: Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy publication-title: Nanomedicine – volume: 6 start-page: 2504 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0385 article-title: pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.260 – ident: 10.1016/j.actbio.2018.04.006_b0675 doi: 10.1081/DDC-100102197 – volume: 44 start-page: 990 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0350 article-title: PRINT: a novel platform toward shape and size specific nanoparticle theranostics publication-title: Acc. Chem. Res. doi: 10.1021/ar2000315 – volume: 44 start-page: 724 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0705 article-title: Generation of monodisperse particles by using microfluidics: control over size, shape, and composition publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200462226 – volume: 112 start-page: 2021 year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0265 article-title: Microfluidics: a boon for biological research publication-title: Curr. Sci. doi: 10.18520/cs/v112/i10/2021-2028 – volume: 8 start-page: 2996 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0395 article-title: Multifunctional particles for melanoma-targeted drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.04.042 – volume: 28 start-page: 4459 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0440 article-title: One-step fabrication of polymeric Janus nanoparticles for drug delivery publication-title: Langmuir doi: 10.1021/la2042185 – volume: 113 start-page: 60 year: 2017 ident: 10.1016/j.actbio.2018.04.006_b0645 article-title: In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.12.009 – volume: 77 start-page: 96 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0340 article-title: Generation of polymer nanocapsules via a membrane-extrusion emulsification approach publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.03.004 – start-page: 81 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0080 article-title: Synthetic biomaterials for regenerative medicine applications publication-title: Regen. Med. Appl. Organ Transplant. – volume: 11 start-page: 808 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0360 article-title: Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings publication-title: Nano Lett. doi: 10.1021/nl104117p – volume: 30 start-page: 257 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0475 article-title: Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.2013006475 – volume: 3 start-page: 2919 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0415 article-title: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments publication-title: ACS Nano doi: 10.1021/nn900215k – volume: 28 start-page: 869 year: 2007 ident: 10.1016/j.actbio.2018.04.006_b0150 article-title: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.09.047 – volume: 2 start-page: 112 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0485 article-title: Polymers in controlled drug delivery systems publication-title: Int. J. Pharma Sci. – volume: 6 start-page: 877 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0015 article-title: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S18905 – volume: 5 start-page: 1575 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0275 article-title: Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery publication-title: Small doi: 10.1002/smll.200801855 – volume: 46 start-page: 5121 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0435 article-title: Fabrication of asymmetric “Janus” particles via plasma polymerization publication-title: Chem. Commun. (Camb) doi: 10.1039/c0cc00474j – volume: 2 start-page: 424 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0130 article-title: Poloxamine-based nanomaterials for drug delivery publication-title: Front. Biosci. (Elite Ed) doi: 10.2741/e102 – start-page: 37 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0185 article-title: Synthesis and characterization of PLGA nanoparticles publication-title: J. Biomater. Sci. – volume: 31 start-page: 7070 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0615 article-title: Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.069 – volume: 5 start-page: 16 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0235 article-title: Different techniques for preparation of polymeri nanoparticles-a review publication-title: Asian J. Pharm. Clin. Res. – volume: 35 start-page: 1095 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0355 article-title: Imparting size, shape, and composition control of materials for nanomedicine publication-title: Chem. Soc. Rev. doi: 10.1039/b600913c – volume: 75 start-page: 1 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0120 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2009.09.001 – volume: 10 start-page: 102 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0195 article-title: Nano-emulsions publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2005.06.004 – volume: 25 start-page: 445103 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0560 article-title: A new magnetic resonance imaging contrast agent loaded into poly(lacide-co-glycolide) nanoparticles for long-term detection of tumors publication-title: Nanotechnology doi: 10.1088/0957-4484/25/44/445103 – volume: 5 start-page: 23181 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0445 article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery application publication-title: RSC Adv. doi: 10.1039/C4RA17153E – volume: 7 start-page: 185 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0100 article-title: Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00185 – volume: 6 start-page: 319 year: 2002 ident: 10.1016/j.actbio.2018.04.006_b0115 article-title: Biodegradable nanoparticles for drug delivery and targeting publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/S1359-0286(02)00117-1 – volume: 16 start-page: 5569 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0640 article-title: Nile Red loaded PLGA nanoparticles surface modified with Gd-DTPA for potential dual-modal imaging publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2016.11735 – volume: 9 start-page: 325 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0060 article-title: Current advances in research and clinical applications of PLGA-based nanotechnology publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/erm.09.15 – volume: 10 start-page: 307 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0430 article-title: Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method publication-title: Drug Discov. Ther. doi: 10.5582/ddt.2016.01230 – ident: 10.1016/j.actbio.2018.04.006_b0230 – volume: 118 start-page: 6836 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0545 article-title: Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity publication-title: Blood doi: 10.1182/blood-2011-07-367615 – volume: 2011 start-page: 727241 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0500 article-title: Targeted liposomal drug delivery to monocytes and macrophages publication-title: J. Drug Deliv. doi: 10.1155/2011/727241 – ident: 10.1016/j.actbio.2018.04.006_b0690 doi: 10.1021/la0502084 – volume: 475 start-page: 547 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0515 article-title: Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.08.067 – volume: 8 start-page: 127 year: 2008 ident: 10.1016/j.actbio.2018.04.006_b0180 article-title: Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700241 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0090 article-title: Stealth properties to improve therapeutic efficacy of drug nanocarriers publication-title: J. Drug Deliv. doi: 10.1155/2013/374252 – volume: 18 start-page: 308 year: 2008 ident: 10.1016/j.actbio.2018.04.006_b0580 article-title: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700456 – volume: 8 start-page: 6460 year: 2018 ident: 10.1016/j.actbio.2018.04.006_b0635 article-title: Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications publication-title: RCS Adv. – volume: 37 start-page: 335 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0175 article-title: Discussion about several potential drawbacks of PEGylated therapeutic proteins publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b13-00661 – volume: 65 start-page: 1626 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0310 article-title: Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.07.017 – volume: 6 start-page: 95 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0695 article-title: Review article polyox (polyethylene oxide) multifunctional polymer in novel drug delivery publication-title: System – volume: 7 start-page: 4125 year: 2016 ident: 10.1016/j.actbio.2018.04.006_b0525 article-title: Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.004125 – volume: 127 start-page: 10096 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0710 article-title: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051977c – year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0585 article-title: Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism publication-title: Mol. Pharm. doi: 10.1021/mp400717r – volume: 7 start-page: 3011 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0300 article-title: Drug Dissolution Chip (DDC): a microfluidic approach for drug release publication-title: Small doi: 10.1002/smll.201100520 – volume: 95 start-page: 593 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0135 article-title: Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions publication-title: Ann. Allergy Asthma Immunol. doi: 10.1016/S1081-1206(10)61024-1 – volume: 15 start-page: 3439 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0305 article-title: The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation publication-title: Lab Chip doi: 10.1039/C5LC00614G – volume: 31 start-page: 7166 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0295 article-title: Membrane-integrated glass capillary device for preparing small-sized water-in-oil-in-water emulsion droplets publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01514 – volume: 49 start-page: 6288 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0685 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200902672 – volume: 113 start-page: 1 year: 2005 ident: 10.1016/j.actbio.2018.04.006_b0330 article-title: Recent developments in manufacturing emulsions and particulate products using membranes publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2004.10.002 – volume: 172 start-page: 239 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0370 article-title: Multimodal delivery of irinotecan from microparticles with two distinct compartments publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.08.017 – volume: 9 start-page: 1855 year: 2014 ident: 10.1016/j.actbio.2018.04.006_b0520 article-title: Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer publication-title: Int. J. Nanomed. – volume: 18 start-page: 269 year: 1984 ident: 10.1016/j.actbio.2018.04.006_b0125 article-title: Rheological properties of poloxamer vehicles publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(84)90142-X – year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0380 article-title: Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00336 – volume: 28 start-page: 1 year: 2011 ident: 10.1016/j.actbio.2018.04.006_b0095 article-title: Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10 – volume: 509 start-page: 143 year: 2012 ident: 10.1016/j.actbio.2018.04.006_b0540 article-title: Targeting nanoparticles to dendritic cells for immunotherapy publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-391858-1.00008-3 – volume: 121 start-page: 441 year: 2015 ident: 10.1016/j.actbio.2018.04.006_b0590 article-title: Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance publication-title: J. Neurooncol. doi: 10.1007/s11060-014-1658-0 – volume: 37 start-page: 300 year: 2009 ident: 10.1016/j.actbio.2018.04.006_b0255 article-title: Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2009.02.018 – volume: 12 start-page: 6677 year: 2006 ident: 10.1016/j.actbio.2018.04.006_b0510 article-title: Vascular targeted nanoparticles for imaging and treatment of brain tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-0946 – volume: 151 start-page: 458 year: 2010 ident: 10.1016/j.actbio.2018.04.006_b0165 article-title: Minireview: Nanoparticles and the immune system publication-title: Endocrinology doi: 10.1210/en.2009-1082 – volume: 28 start-page: 1242 year: 2013 ident: 10.1016/j.actbio.2018.04.006_b0225 article-title: Preparation of PLGA ceftiofur hydrochlorate lungtargeted microsphere with spray drying process publication-title: J. Wuhan Univ. Technol. Sci. Ed. doi: 10.1007/s11595-013-0853-8 |
| SSID | ssj0038128 |
| Score | 2.6464198 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging.... Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 38 |
| SubjectTerms | Animals Biocompatibility Biocompatible Materials - chemistry Biodegradability Biodegradation Biomedical materials Drug delivery Drug delivery systems Glycolic acid Humans Imaging Materials Testing Medical imaging Microfluidics Microfluidics - instrumentation Microfluidics - methods Microparticles Nanoparticles Nanotechnology Organic chemistry Particle physics Particles Poly(lactic-co-glycolic acid) Polylactic acid Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Polylactide-co-glycolide Polymers Properties (attributes) Synthesis Theranostics Upconversion |
| Title | Customizing poly(lactic-co-glycolic acid) particles for biomedical applications |
| URI | https://dx.doi.org/10.1016/j.actbio.2018.04.006 https://www.ncbi.nlm.nih.gov/pubmed/29653217 https://www.proquest.com/docview/2087381328 https://www.proquest.com/docview/2025319013 |
| Volume | 73 |
| WOSCitedRecordID | wos000436222600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-7568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038128 issn: 1742-7061 databaseCode: AIEXJ dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYxwM8IO4UxhQkhECTUS5t7TxWVScYVYtEhvpmOY4zUkpS2gQ2fj3Hl6SRumnjgZco8iVxfL4cn2OfC0KvYZFT-bYDnIJsjQEhFKuoWljleenHoSS-3u_4OiHTKZ3Pw8_WVnWj0wmQPKfn5-Hqv5IayoDYynX2H8jdPBQK4B6IDlcgO1xvRPhRBfLcj-yPdjMvVCJputSeUFgU-Gx5IVQk4CMu1MDCo1VtGWfsNrUzvgkg0DrZbkuwQ1Fy3Y6X-muyhq9_-Z0l1nsmuSib4k_F5tv3zLiezZZnTXlk7ANOqvVi6442Wld6R3tSZRt7YmW3JDy6NZ2yXJSCakr6Jl_Oe3lJmWW9JGjxThPlZYelm92FBcCrhI9TxnhUB6d1L4mgPZ2x49PJhEXjefRm9ROr5GLqEN5mWtlD-4DAkHbQ_vDjeH5SL9kgtegkvM0Yax9LbQi4--KrZJirdBQtq0T30T2rZDhDQ9oH6JbMH6K7rdCTj9CsBRNHweTtLkgcBZJ3TgMRByDibCHitCHyGJ0ej6PRB2yTa2ABQm6JORUgC_sipbLnSxp7LiU8THpePOh5SRDSJI7V4kMT7qYBESAIu1y6PpEu1IRx8AR18iKXz5CTCsm9noiTgQ_KdRrTNBDcFT6ngQt93S4K6uliwkaeVwlQlqw2MVwwM8lMTTJzewwmuYtw02tlIq9c057UlGBWejRSIQMkXdPzoCYcsz_yBuopAVwEPu2iV0018F51oMZzWVSqja-WMNCiuuipIXgzVD8c9APQ95_foPcLdGf7Gx2gTrmu5Et0W_wqs836EO2ROT20kP0LExGu_g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customizing+poly%28lactic-co-glycolic+acid%29+particles+for+biomedical+applications&rft.jtitle=Acta+biomaterialia&rft.au=Swider%2C+Edyta&rft.au=Koshkina%2C+Olga&rft.au=Tel%2C+Jurjen&rft.au=Cruz%2C+Luis+J&rft.date=2018-06-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=73&rft.spage=38&rft_id=info:doi/10.1016%2Fj.actbio.2018.04.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |