Customizing poly(lactic-co-glycolic acid) particles for biomedical applications

[Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta biomaterialia Ročník 73; s. 38 - 51
Hlavní autoři: Swider, Edyta, Koshkina, Olga, Tel, Jurjen, Cruz, Luis J., de Vries, I. Jolanda M., Srinivas, Mangala
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.06.2018
Elsevier BV
Témata:
ISSN:1742-7061, 1878-7568, 1878-7568
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
AbstractList Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
[Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Statement of Significance Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications.Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications.Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.STATEMENT OF SIGNIFICANCENanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Author Tel, Jurjen
Cruz, Luis J.
de Vries, I. Jolanda M.
Koshkina, Olga
Swider, Edyta
Srinivas, Mangala
Author_xml – sequence: 1
  givenname: Edyta
  surname: Swider
  fullname: Swider, Edyta
  organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
– sequence: 2
  givenname: Olga
  surname: Koshkina
  fullname: Koshkina, Olga
  organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
– sequence: 3
  givenname: Jurjen
  surname: Tel
  fullname: Tel, Jurjen
  organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
– sequence: 4
  givenname: Luis J.
  surname: Cruz
  fullname: Cruz, Luis J.
  organization: Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
– sequence: 5
  givenname: I. Jolanda M.
  surname: de Vries
  fullname: de Vries, I. Jolanda M.
  organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
– sequence: 6
  givenname: Mangala
  surname: Srinivas
  fullname: Srinivas, Mangala
  email: Mangala.Srinivas@radboudumc.nl
  organization: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29653217$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVIyF_7BqUYupku7F5JtiR3EShD2gQC2bRrIcty0KCxHMkOTJ6-N5m0iyySlQT3O0dX55yRwzGOjpBPFCoKVHzbVMbOnY8VA6oqqCsAcUBOqZKqlI1Qh3iXNSslCHpCznLeAHBFmTomJ6wVDWdUnpLb9ZLnuPWPfrwrphh2q4C23pY2lndhZ2PwtjDW91-LySQcBJeLIaYCX9663lsTCjNNSJnZxzF_IEeDCdl9fDnPyZ-fl7_XV-XN7a_r9Y-b0jYC5tIoy0TN7KBczZzqKChp2r6mnahpz1vVdx2XgqvewMClpawB44BJBzhpO35OVnvfKcX7xeVZb322LgQzurhkzYA1nLZAOaJfXqGbuKQRt0NKScyEM4XU5xdq6fBjekp-a9JO_4sKgXoP2BRzTm74j1DQT43ojd43op8a0VBrbARl31_JrJ-fs5qT8eE98cVe7DDKB--Szta70WLwydlZ99G_bfAXRh-oag
CitedBy_id crossref_primary_10_1007_s12247_021_09600_2
crossref_primary_10_3390_pharmaceutics14030474
crossref_primary_10_3390_polym13203471
crossref_primary_10_1134_S107042721908010X
crossref_primary_10_3389_fphar_2025_1670397
crossref_primary_10_1016_j_lwt_2025_117747
crossref_primary_10_3390_polym15143025
crossref_primary_10_3762_bjnano_14_29
crossref_primary_10_1007_s10924_025_03587_4
crossref_primary_10_3390_molecules25030735
crossref_primary_10_1088_2053_1591_ac3f5e
crossref_primary_10_1039_D4NJ02783C
crossref_primary_10_1016_j_biomaterials_2020_120307
crossref_primary_10_1016_j_bioactmat_2022_10_016
crossref_primary_10_1002_mabi_202300312
crossref_primary_10_1016_j_lfs_2021_119344
crossref_primary_10_1186_s11671_019_3241_2
crossref_primary_10_1007_s40005_019_00446_y
crossref_primary_10_3390_ijms232214427
crossref_primary_10_1371_journal_pone_0251821
crossref_primary_10_3389_fbioe_2025_1629816
crossref_primary_10_52711_0974_360X_2022_00018
crossref_primary_10_3390_ijms24054333
crossref_primary_10_2478_acph_2020_0011
crossref_primary_10_1016_j_ijpharm_2021_120926
crossref_primary_10_1080_09506608_2022_2069451
crossref_primary_10_1007_s11051_020_04798_7
crossref_primary_10_1016_j_jddst_2022_103918
crossref_primary_10_3390_nu11123053
crossref_primary_10_3390_pharmaceutics13020246
crossref_primary_10_3390_nano12030354
crossref_primary_10_3390_pharmaceutics16020273
crossref_primary_10_1016_j_mtcomm_2023_106176
crossref_primary_10_1016_j_addr_2022_114482
crossref_primary_10_1016_j_jvssci_2023_100126
crossref_primary_10_2174_1381612826666200116153912
crossref_primary_10_1002_nano_202300191
crossref_primary_10_1208_s12249_024_02760_7
crossref_primary_10_3390_ijms23042034
crossref_primary_10_3390_pharmaceutics13020235
crossref_primary_10_1002_advs_202004213
crossref_primary_10_1016_j_matdes_2020_108768
crossref_primary_10_1080_10717544_2019_1686085
crossref_primary_10_1016_j_ijpharm_2021_120340
crossref_primary_10_1007_s11426_022_1243_5
crossref_primary_10_1016_j_addr_2020_05_005
crossref_primary_10_1016_j_asems_2024_100092
crossref_primary_10_1016_j_ijpharm_2019_05_072
crossref_primary_10_1002_wnan_1990
crossref_primary_10_3390_app11094305
crossref_primary_10_1002_bit_28870
crossref_primary_10_1186_s12943_023_01797_9
crossref_primary_10_1007_s00604_022_05441_z
crossref_primary_10_1111_raq_12518
crossref_primary_10_1016_j_addr_2020_11_008
crossref_primary_10_1016_j_ijpharm_2021_120578
crossref_primary_10_1002_adhm_202401832
crossref_primary_10_3390_polym16020206
crossref_primary_10_1016_j_sajb_2025_02_031
crossref_primary_10_3390_ma12162521
crossref_primary_10_1016_j_powtec_2020_10_056
crossref_primary_10_2147_IJN_S463119
crossref_primary_10_1002_adfm_202004307
crossref_primary_10_1007_s11814_020_0696_x
crossref_primary_10_1016_j_mtcomm_2020_100951
crossref_primary_10_3390_ijms25136826
crossref_primary_10_3390_ph16060802
crossref_primary_10_3390_polym16091253
crossref_primary_10_1002_smll_201904673
crossref_primary_10_1016_j_ccr_2020_213467
crossref_primary_10_1080_09205063_2019_1659712
crossref_primary_10_1016_j_ijbiomac_2022_08_148
crossref_primary_10_1002_adma_202507743
crossref_primary_10_3390_ma13081807
crossref_primary_10_1038_s41598_024_53548_5
crossref_primary_10_3389_fcimb_2022_926363
crossref_primary_10_3390_nano10010161
crossref_primary_10_1002_pol_20200706
crossref_primary_10_1002_adma_202401763
crossref_primary_10_1016_j_jcis_2020_05_067
crossref_primary_10_1080_03639045_2024_2332889
crossref_primary_10_3390_pharmaceutics14010080
crossref_primary_10_1016_j_omtn_2023_102086
crossref_primary_10_1016_j_xphs_2020_11_031
crossref_primary_10_1002_smll_202400977
crossref_primary_10_1016_j_apmt_2024_102278
crossref_primary_10_1016_j_ijbiomac_2022_06_211
crossref_primary_10_3390_molecules25081879
crossref_primary_10_1016_j_heliyon_2024_e38392
crossref_primary_10_1016_j_molstruc_2021_131459
crossref_primary_10_1080_02652048_2023_2178538
crossref_primary_10_3390_pharmaceutics15051499
crossref_primary_10_3389_fmed_2021_712367
crossref_primary_10_1016_j_colsurfa_2024_134894
crossref_primary_10_1155_2022_6090846
crossref_primary_10_1007_s11095_024_03682_6
crossref_primary_10_3390_pharmaceutics13101590
crossref_primary_10_1089_ten_teb_2024_0364
crossref_primary_10_3389_fchem_2020_00286
crossref_primary_10_1186_s12951_020_00620_7
crossref_primary_10_3390_ijms24032945
crossref_primary_10_3390_ijms25031396
crossref_primary_10_1007_s13346_025_01945_2
crossref_primary_10_1016_j_mtchem_2024_102506
crossref_primary_10_3390_pharmaceutics15061594
crossref_primary_10_1016_j_jddst_2022_103743
crossref_primary_10_1002_jor_25491
crossref_primary_10_1002_anbr_202100070
crossref_primary_10_3390_molecules26123611
crossref_primary_10_1016_j_bbrc_2020_02_171
crossref_primary_10_1080_17425247_2023_2223941
crossref_primary_10_1016_j_ijpharm_2021_120655
crossref_primary_10_3390_ijms20010204
crossref_primary_10_1039_D1RA05871A
crossref_primary_10_1016_j_mee_2020_111360
crossref_primary_10_3390_pharmaceutics15020479
crossref_primary_10_1016_j_carbpol_2020_116968
crossref_primary_10_1039_D2QM00039C
crossref_primary_10_3390_pharmaceutics13111769
crossref_primary_10_3390_app12020935
crossref_primary_10_1021_acsabm_5c00387
crossref_primary_10_1016_j_ceramint_2021_01_229
crossref_primary_10_2217_nnm_2022_0287
crossref_primary_10_1007_s10856_023_06765_9
crossref_primary_10_1016_j_lfs_2020_118361
crossref_primary_10_3390_pharmaceutics13081313
crossref_primary_10_1021_acsbiomaterials_9b00790
crossref_primary_10_1016_j_mtcomm_2022_103661
crossref_primary_10_3390_polym12112751
crossref_primary_10_1016_j_jconrel_2020_10_003
crossref_primary_10_1016_j_mtcomm_2023_105364
crossref_primary_10_1016_j_colsurfb_2022_112932
crossref_primary_10_3390_ijms26062633
crossref_primary_10_1039_D4RA09032B
crossref_primary_10_1016_j_eurpolymj_2023_112040
crossref_primary_10_2174_0929867331666230823094737
crossref_primary_10_1016_j_arr_2022_101658
crossref_primary_10_1039_D3NR04577C
crossref_primary_10_1080_00914037_2024_2355188
crossref_primary_10_3389_fbioe_2020_00048
crossref_primary_10_3389_fbioe_2021_748151
crossref_primary_10_1007_s12668_024_01677_6
crossref_primary_10_1007_s10904_020_01746_9
crossref_primary_10_1016_j_jcis_2019_12_083
crossref_primary_10_1002_app_53559
crossref_primary_10_1007_s10856_020_06380_y
crossref_primary_10_1080_00914037_2021_1985495
crossref_primary_10_1002_advs_202100067
crossref_primary_10_1016_j_polymer_2021_124269
crossref_primary_10_1016_j_jddst_2024_106130
crossref_primary_10_1016_j_addr_2020_07_012
crossref_primary_10_1016_j_jclepro_2021_126063
crossref_primary_10_1016_j_ejpb_2024_114366
crossref_primary_10_1007_s10965_021_02562_6
crossref_primary_10_1002_psc_70020
crossref_primary_10_1016_j_mtla_2019_100395
crossref_primary_10_1016_j_cis_2021_102582
crossref_primary_10_1016_j_jhazmat_2021_125454
crossref_primary_10_1002_btm2_10441
crossref_primary_10_1088_1742_6596_2891_2_022020
crossref_primary_10_3390_nano10040656
crossref_primary_10_1016_j_ijpharm_2024_123988
crossref_primary_10_2174_0113816128275385231027054743
crossref_primary_10_3389_fbioe_2020_00381
crossref_primary_10_1016_j_biotri_2021_100184
crossref_primary_10_34248_bsengineering_1510380
crossref_primary_10_1007_s11705_025_2585_7
crossref_primary_10_1016_j_molliq_2020_114429
crossref_primary_10_1016_j_ijbiomac_2023_123159
crossref_primary_10_1208_s12249_019_1613_7
crossref_primary_10_3390_polym13091413
crossref_primary_10_1002_jcp_29298
crossref_primary_10_1016_j_matchemphys_2024_130309
crossref_primary_10_1016_j_jphotobiol_2019_111619
crossref_primary_10_1002_tox_23103
crossref_primary_10_1080_10717544_2022_2100010
crossref_primary_10_3390_pharmaceutics14030614
crossref_primary_10_3390_ijms25116147
crossref_primary_10_1002_marc_201900560
crossref_primary_10_1016_j_addr_2023_114721
crossref_primary_10_3390_molecules24091825
crossref_primary_10_1016_j_chroma_2025_466061
crossref_primary_10_1039_D5BM00374A
crossref_primary_10_1016_j_jmmm_2021_168853
crossref_primary_10_1080_10717544_2021_1902021
crossref_primary_10_1007_s13204_023_02853_y
crossref_primary_10_2147_IJN_S358606
crossref_primary_10_1016_j_ejps_2022_106189
crossref_primary_10_1002_adtp_201900190
crossref_primary_10_3390_pharmaceutics11060280
crossref_primary_10_1016_j_bioactmat_2022_02_014
crossref_primary_10_3390_pharmaceutics12050472
crossref_primary_10_1016_j_heares_2020_107981
crossref_primary_10_1039_D2NR02293A
crossref_primary_10_1002_adma_202505714
crossref_primary_10_2147_IJN_S290466
crossref_primary_10_1016_j_nantod_2021_101370
crossref_primary_10_3390_polym14132593
crossref_primary_10_1016_j_ijpharm_2020_119309
crossref_primary_10_3390_pharmaceutics12010016
Cites_doi 10.1016/j.jconrel.2012.01.043
10.1016/j.addr.2013.05.009
10.1039/C4RA17153E
10.1016/j.biomaterials.2005.10.027
10.1039/C6LC00249H
10.1186/1477-3155-8-18
10.1016/j.ejpb.2006.06.009
10.1126/scitranslmed.3003651
10.1002/btm2.10003
10.1016/S0378-5173(02)00356-3
10.1038/s41598-017-05184-5
10.1080/10717544.2017.1381200
10.1038/nmat1645
10.1002/app.29199
10.1021/acsnano.6b04695
10.4049/jimmunol.1300787
10.1016/0278-6915(93)90092-D
10.1016/0378-5173(92)90249-2
10.3390/polym4021278
10.1016/S0168-3659(98)00116-3
10.1080/17425247.2016.1193151
10.1155/2015/794601
10.1016/j.trac.2015.06.014
10.1021/la903890h
10.1016/j.biomaterials.2011.07.032
10.1039/C5NR01084E
10.3389/fbioe.2016.00047
10.1021/mp5002747
10.1088/0957-4484/24/45/455302
10.1039/C6RA15401H
10.1111/cbdd.12318
10.1002/jps.23163
10.1007/s11095-010-0152-4
10.1016/S0939-6411(97)00056-8
10.1016/j.addr.2010.10.008
10.1016/0378-5173(92)90248-Z
10.1038/nmat3776
10.1021/ja102595j
10.3390/ijms15033640
10.3109/1061186X.2013.878944
10.1021/ja8014428
10.1021/nl801736q
10.1016/j.ijpharm.2005.10.010
10.1016/S0142-9612(00)00115-0
10.1021/ja306866w
10.2217/nnm.15.76
10.1016/j.jconrel.2013.09.013
10.1016/j.colsurfb.2017.07.038
10.1016/j.jconrel.2015.09.001
10.3390/polym3031377
10.1016/j.biomaterials.2011.03.031
10.1039/c2lc21164e
10.1016/j.ijpharm.2008.04.042
10.1007/s11051-012-1316-4
10.1016/j.colsurfb.2014.07.030
10.1002/mrm.24741
10.1016/j.addr.2010.08.009
10.1002/app.30813
10.1039/b505099e
10.1007/s11095-014-1299-1
10.1016/j.tibtech.2010.04.002
10.1021/acs.macromol.5b00455
10.1016/j.biomaterials.2012.08.048
10.1021/bm500438x
10.1007/s11095-016-1958-5
10.1103/PhysRevLett.86.4163
10.1063/1.4738586
10.3791/50802-v
10.4161/biom.22494
10.3762/bjnano.6.260
10.1081/DDC-100102197
10.1021/ar2000315
10.1002/anie.200462226
10.18520/cs/v112/i10/2021-2028
10.1016/j.actbio.2012.04.042
10.1021/la2042185
10.1016/j.ejpb.2016.12.009
10.1016/j.matlet.2012.03.004
10.1021/nl104117p
10.1615/CritRevTherDrugCarrierSyst.2013006475
10.1021/nn900215k
10.1016/j.biomaterials.2006.09.047
10.2147/IJN.S18905
10.1002/smll.200801855
10.1039/c0cc00474j
10.2741/e102
10.1016/j.biomaterials.2010.05.069
10.1039/b600913c
10.1016/j.colsurfb.2009.09.001
10.1016/j.cocis.2005.06.004
10.1088/0957-4484/25/44/445103
10.3389/fphar.2016.00185
10.1016/S1359-0286(02)00117-1
10.1166/jnn.2016.11735
10.1586/erm.09.15
10.5582/ddt.2016.01230
10.1182/blood-2011-07-367615
10.1155/2011/727241
10.1021/la0502084
10.1016/j.ijpharm.2014.08.067
10.1002/mabi.200700241
10.1155/2013/374252
10.1002/adfm.200700456
10.1248/bpb.b13-00661
10.1016/j.addr.2013.07.017
10.1364/BOE.7.004125
10.1021/ja051977c
10.1021/mp400717r
10.1002/smll.201100520
10.1016/S1081-1206(10)61024-1
10.1039/C5LC00614G
10.1021/acs.langmuir.5b01514
10.1002/anie.200902672
10.1016/j.cis.2004.10.002
10.1016/j.jconrel.2013.08.017
10.1016/0378-5173(84)90142-X
10.1021/acs.biomac.5b00336
10.1615/CritRevTherDrugCarrierSyst.v28.i1.10
10.1016/B978-0-12-391858-1.00008-3
10.1007/s11060-014-1658-0
10.1016/j.ejps.2009.02.018
10.1158/1078-0432.CCR-06-0946
10.1210/en.2009-1082
10.1007/s11595-013-0853-8
ContentType Journal Article
Copyright 2018 Acta Materialia Inc.
Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2018 Acta Materialia Inc.
– notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jun 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2018.04.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 51
ExternalDocumentID 29653217
10_1016_j_actbio_2018_04_006
S174270611830196X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c560t-a8c2642cf8e42e8b1087a9d41b641d398dbb37638da0f37c1250ae027e0dbb9b3
ISICitedReferencesCount 251
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436222600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-7061
1878-7568
IngestDate Wed Oct 01 14:25:30 EDT 2025
Wed Aug 13 06:37:42 EDT 2025
Wed Feb 19 02:35:36 EST 2025
Sat Nov 29 07:02:11 EST 2025
Tue Nov 18 21:52:54 EST 2025
Fri Feb 23 02:39:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Drug delivery
Theranostics
Imaging
Poly(lactic-co-glycolic acid)
Particles
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c560t-a8c2642cf8e42e8b1087a9d41b641d398dbb37638da0f37c1250ae027e0dbb9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.actbio.2018.04.006
PMID 29653217
PQID 2087381328
PQPubID 2045286
PageCount 14
ParticipantIDs proquest_miscellaneous_2025319013
proquest_journals_2087381328
pubmed_primary_29653217
crossref_primary_10_1016_j_actbio_2018_04_006
crossref_citationtrail_10_1016_j_actbio_2018_04_006
elsevier_sciencedirect_doi_10_1016_j_actbio_2018_04_006
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M. Teresa Lopez-Franco, G. Mendoza, V. Sebastian, D.S. Kohane, M. Arruebo, Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species, (n.d.).
Perry, Herlihy, Napier, Desimone (b0350) 2011; 44
Wadajkar, Bhavsar, Ko, Koppolu, Cui, Tang, Nguyen (b0395) 2012; 8
Li, Rothstein, Little, Edenborn, Meyer (b0065) 2012; 134
Srinivas, Tel, Schreibelt, Bonetto, Cruz, Amiri, Heerschap, Figdor, de Vries (b0610) 2015; 10
Kumari, Yadav, Yadav (b0120) 2010; 75
Ding, Anton, Vandamme, Serra (b0325) 2016; 13
González-Béjar, Francés-Soriano, Pérez-Prieto (b0420) 2016; 4
Badilescu, Packirisamy (b0290) 2012; 4
Ibrahim, Bindschaedler, Doelker, Buri, Gurny (b0240) 1992; 87
Perugini, Simeoni, Scalia, Genta, Modena, Conti, Pavanetto (b0250) 2002; 246
Jiang, Yu, Carbone, Nelson, Kan, Lo (b0515) 2014; 475
Locatelli, Franchini (b0140) 2012; 14
Joseph, Bunjes (b0335) 2012; 101
Srinivas, Cruz, Bonetto, Heerschap, Figdor, de Vries (b0615) 2010; 31
Houchin, Topp (b0085) 2009; 114
Tacken, Zeelenberg, Cruz, van Hout-Kuijer, van de Glind, Fokkink, Lambeck, Figdor (b0545) 2011; 118
Amann, Gandal, Lin, Liang, Siegel (b0660) 2010; 27
Das, Duan, Sahoo (b0570) 2014
Xu, Nie, Seo, Lewis, Kumacheva, Stone, Garstecki, Weibel, Gitlin, Whitesides (b0705) 2005; 44
Webster (b0005) 2012
Windbergs, Weitz (b0300) 2011; 7
Perro, Reculusa, Ravaine, Bourgeat-Lami, Duguet (b0450) 2005; 15
Makadia, Siegel (b0075) 2011; 3
Hu, Zhou, Liu, Liu, Liu, Tang, Li, Zhang, Sheng, Zhao, Wu, Chen (b0260) 2015
K. Miladi, D. Ibraheem, M. Iqbal, S. Sfar, H. Fessi, A. Elaissari, R. Avicenne, Particles from preformed polymers as carriers for drug delivery, (2014) 28–57.
Vladisavljević, Williams (b0330) 2005; 113
Mir, Ahmed, ur Rehman (b0550) 2017; 159
Acharya, Sahoo (b0575) 2011; 63
Mariano, Alberti, Cutrin, Geninatti Crich, Aime (b0605) 2014; 11
Dinarvand, Sepehri, Manoochehri, Rouhani, Atyabi (b0015) 2011; 6
Jain, Das, Swarnakar, Jain (b0095) 2011; 28
Li, Feng, Fan, Zha, Guo, Zhang, Chen, Pang, Wang, Jiang, Yang, Wen (b0145) 2011; 32
Li, Dong, Tang, Ma, Cao, Chen, Eisen, Langer, Chu, Cheon, Tseng (b0455) 2015; 5
Danhier, Ansorena, Silva, Coco, Le Breton, Préat (b0020) 2012; 161
Hosseininasab, Pashaei-Asl, Khandaghi, Nasrabadi, Nejati-Koshki, Akbarzadeh, Joo, Hanifehpour, Davaran (b0155) 2014; 84
Allemann, Gurny, Doelker (b0245) 1992; 87
Liang, Chen, Chen, Kulkarni, Chiu, Chen, Sung (b0505) 2006; 27
S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine) – poly (ethylene glycol) – folate conjugate, (2005) 8852–8857.
Chen, Zhao, Luo, Zheng, Tian, Gong, Gao, Pan, Liu, Ma, Cui, Ma, Cai (b0530) 2016; 10
Li, Li, Niu, Fan, Yan, Kenyon, Darr, Lin, Hyeon (b0460) 2016; 6
Bobo, Robinson, Islam, Thurecht, Corrie (b0035) 2016; 33
Wang, Ng, Chen, Shuter, Yi, Ding, Wang, Feng (b0580) 2008; 18
Xu, Yu, Liang, Liu, Tian, Deng, Zhu (b0340) 2012; 77
Tel, Sittig, Blom, Cruz, Schreibelt, Figdor, de Vries (b0535) 2013; 191
Granot, Nkansah, Bennewitz, Tang, Markakis, Shapiro (b0650) 2014; 71
Knop, Hoogenboom, Fischer, Schubert (b0685) 2010; 49
Koshkina, Westmeier, Lang, Bantz, Hahlbrock, Würth, Resch-Genger, Braun, Thiermann, Weise, Eravci, Mohr, Schlaad, Stauber, Docter, Bertin, Maskos (b0170) 2016; 1–14
Zhang, Zhou, Guo, Ao, Zheng, Wang (b0600) 2013; 8
Solans, Izquierdo, Nolla, Azemar, Garciacelma (b0195) 2005; 10
Kosinski, Brugnano, Seal, Knight, Panitch (b0390) 2012; 2
Lalani, Patil, Kolate, Lalani, Misra (b0210) 2014
Xie, Smith (b0025) 2010; 8
Kelly, DeSimone (b0720) 2008; 130
Song, Cai, Zheng, He, Cui, Gong, Hou, Xiong, Lei, Wei (b0255) 2009; 37
Anselmo, Mitragotri (b0030) 2016; 1
Matsumoto, Murao, Matsumoto, Watanabe, Murakami (b0430) 2016; 10
Blanco, Alonso (b0490) 1997; 43
Wang, Strohm, Sun, Wang, Zheng, Wang, Kolios (b0525) 2016; 7
Alvarez-Lorenzo, Rey-Rico, Sosnik, Taboada, Concheiro (b0130) 2010; 2
Ernsting, Murakami, Roy, Li (b0465) 2013; 172
Gentile, Chiono, Carmagnola, Hatton (b0050) 2014; 15
Han, Thurecht, Whittaker, Smith (b0100) 2016; 7
Srinivas, Boehm-Sturm, Aswendt, Pracht, Figdor, de Vries, Hoehn (b0620) 2013
Park, Yang, Lee, Haam, Choi, Yoo (b0415) 2009; 3
Euliss, DuPont, Gratton, DeSimone (b0355) 2006; 35
Xu, Hashimoto, Dang, Hoare, Kohane, Whitesides, Langer, Anderson (b0275) 2009; 5
Wischke, Schwendeman (b0670) 2008; 364
Hauser, Langer, Schonhoff (b0385) 2015; 6
Kelly, Jefferies, Cryan (b0500) 2011; 2011
Rahmani, Park, Dishman, Lahann (b0370) 2013; 172
Govender (b0200) 1999; 57
Li, Li, Tong (b0640) 2016; 16
Wan, Maltesen, Andersen, Bjerregaard, Foged, Rantanen, Yang (b0215) 2014; 31
Enlow, Luft, Napier, DeSimone (b0360) 2011; 11
Owens, Peppas (b0105) 2006; 307
Shah, Chaudhary, Mehta (b0695) 2014; 6
Astete, Sabliov (b0185) 2012
Choi, Cao, Naeem, Noh, Hasan, Choi, Yoo (b0205) 2014; 122
Musyanovych, Schmitz-Wienke, Mailänder, Walther, Landfester (b0180) 2008; 8
Rigaux, Roullin, Cadiou, Portefaix, Van Gulick, Bœuf, Andry, Hoeffel, Vander Elst, Laurent, Muller, Molinari, Chuburu (b0560) 2014; 25
Hao (b0225) 2013; 28
Hrkach, Von Hoff, Mukkaram Ali, Andrianova, Auer, Campbell, De Witt, Figa, Figueiredo, Horhota, Low, McDonnell, Peeke, Retnarajan, Sabnis, Schnipper, Song, Song, Summa, Tompsett, Troiano, Van Geen Hoven, Wright, LoRusso, Kantoff, Bander, Sweeney, Farokhzad, Langer, Zale (b0655) 2012; 4
Thorsen, Roberts, Arnold, Quake (b0320) 2001; 86
Salehi, Davaran, Rashidi, Entezami (b0400) 2009; 111
S. Takada, Y. Uda, H. Toguchi, Y. Ogawa, Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers., PDA J. Pharm. Sci. Technol. 49 (n.d.) 180–184.
Nagavarma, Yadav, Ayaz, Vasudha, Shivakumar (b0235) 2012; 5
Coors, Seybold, Merk, Mahler (b0135) 2005; 95
Chen, Muir, Such, Postma, McLean, Caruso (b0435) 2010; 46
Wu, Williams, Li, Wang, Li, Zhu (b0480) 2017; 24
Swider, Staal, van Riessen, Jacobs, White, Fokkink, Janssen, van Dinther, Figdor, de Vries, Koshkina, Srinivas (b0635) 2018; 8
Liu, Zhu, Qin, Dong, Du (b0595) 2014; 15
Rolland, Maynor, Euliss, Exner, Denison, DeSimone (b0710) 2005; 127
Matthaiou, Barar, Sandaltzopoulos, Li, Coukos, Omidi (b0520) 2014; 9
J.M. Barichello, M. Morishita, K. Takayama, T. Nagai, Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method, 25(4) (1999) 471–476.
Miller, Drabik (b0125) 1984; 18
Siegel, Kahn, Metzger, Winey, Werner, Dan (b0495) 2006; 64
Olejniczak, Chan, Almutairi (b0410) 2015; 48
Sharma, Parmar, Kori, Sandhir (b0045) 2015; 80
Zhao (b0315) 2013; 65
Kim, Matsunaga (b0365) 2017
Shembekar, Chaipan, Utharala, Merten (b0665) 2016; 16
Fomina, McFearin, Sermsakdi, Edigin, Almutairi (b0405) 2010; 132
Guo, Zhang, Ye, Zhang, Ding, Hao, Zhao, Zhang, Zhang (b0220) 2014; 22
Salmaso, Caliceti (b0090) 2013; 2013
Pagels, Prud’homme (b0070) 2015; 219
Merkel, Herlihy, Nunes, Orgel, Rolland, DeSimone (b0715) 2010; 26
Putnam (b0010) 2006; 5
Menale, Piccolo, Favicchia, Aruta, Baldi, Nicolucci, Barba, Mita, Crispi, Diano (b0565) 2014
Cheng, Teply, Sherifi, Sung, Luther, Gu, Levy-Nissenbaum, Radovic-Moreno, Langer, Farokhzad (b0150) 2007; 28
Duncanson, Lin, Abate, Seiffert, Shah, Weitz (b0270) 2012; 12
Zolnik, González-Fernández, Sadrieh, Dobrovolskaia (b0165) 2010; 151
Wang, Zhao, Wu, Hu, Nan, Nie, Chen (b0160) 2011; 32
Zhang, Liu, Wan (b0175) 2014; 37
Collins, Neild, deMello, Liu, Ai (b0305) 2015; 15
Mosafer, Abnous, Tafaghodi, Mokhtarzadeh, Ramezani (b0645) 2017; 113
Strohbehn, Coman, Han, Ragheb, Fahmy, Huttner, Hyder, Piepmeier, Saltzman, Zhou (b0590) 2015; 121
Avila, Erbetta, Alves, Resende, Fernando, Freitas, De Sousa (b0055) 2012; 2012
Lü, Wang, Marin-Muller, Wang, Lin, Yao, Chen (b0060) 2009; 9
Stolzoff, Ekladious, Colby, Colson, Porter, Grinstaff (b0380) 2015
Mahesh, Vaidya (b0265) 2017; 112
Mura, Nicolas, Couvreur (b0375) 2013; 12
Kong, Wu, To, Wai Kwok Yeung, Cheung Shum, Wang (b0285) 2012; 6
Karnik, Gu, Basto, Cannizzaro, Dean, Kyei-Manu, Langer, Farokhzad (b0280) 2008; 8
Reddy, Bhojani, McConville, Moody, Moffat, Hall, Kim, Koo, Woolliscroft, Sugai, Johnson, Philbert, Kopelman, Rehemtulla, Ross (b0510) 2006; 12
Jain (b0190) 2000; 21
Samavedi, Poindexter, Van Dyke, Goldstein (b0080) 2014
Srinivas, Heerschap, Ahrens, Figdor, de Vries (b0630) 2010; 28
Dong, Li, Tang, Ma, Cao (b0445) 2015; 5
Srinivas, Boehm-Sturm, Figdor, de Vries, Hoehn (b0625) 2012; 33
Gajdová, Jakubovsky, Války (b0700) 1993; 31
Xu, Zhang, Machado, Lecommandoux, Sandre, Gu, Colin (b0470) 2017; 7
Shaik, Korsapati, Panati (b0485) 2012; 2
Akamatsu, Kanasugi, Nakao, Weitz (b0295) 2015; 31
Liang, Wang, Wu, Dong, Deng, Wang, Sullivan, Liu, Wu, Tao, Yang, Zhu (b0345) 2013; 24
Sah, Sah (b0040) 2015; 2015
Srinivas, Aarntzen, Bulte, Oyen, Heerschap, de Vries, Figdor (b0555) 2010; 62
Vladisavljević, Khalid, Neves, Kuroiwa, Nakajima, Uemura, Ichikawa, Kobayashi (b0310) 2013; 65
Alshamsan (b0680) 2014; 22
Cruz, Tacken, Zeelenberg, Srinivas, Bonetto, Weigelin, Eich, de Vries, Figdor (b0585) 2014
Xie, She, Wang, Sharma, Smith (b0440) 2012; 28
Cruz, Tacken, Rueda, Domingo, Albericio, Figdor (b0540) 2012; 509
Hines, Kaplan (b0475) 2013; 30
Hans, Lowman (b0115) 2002; 6
Li (10.1016/j.actbio.2018.04.006_b0460) 2016; 6
Olejniczak (10.1016/j.actbio.2018.04.006_b0410) 2015; 48
Vladisavljević (10.1016/j.actbio.2018.04.006_b0310) 2013; 65
Srinivas (10.1016/j.actbio.2018.04.006_b0620) 2013
Mahesh (10.1016/j.actbio.2018.04.006_b0265) 2017; 112
Srinivas (10.1016/j.actbio.2018.04.006_b0625) 2012; 33
Thorsen (10.1016/j.actbio.2018.04.006_b0320) 2001; 86
Salehi (10.1016/j.actbio.2018.04.006_b0400) 2009; 111
Xu (10.1016/j.actbio.2018.04.006_b0340) 2012; 77
Alshamsan (10.1016/j.actbio.2018.04.006_b0680) 2014; 22
Gentile (10.1016/j.actbio.2018.04.006_b0050) 2014; 15
Rolland (10.1016/j.actbio.2018.04.006_b0710) 2005; 127
Enlow (10.1016/j.actbio.2018.04.006_b0360) 2011; 11
Locatelli (10.1016/j.actbio.2018.04.006_b0140) 2012; 14
Cruz (10.1016/j.actbio.2018.04.006_b0585) 2014
Amann (10.1016/j.actbio.2018.04.006_b0660) 2010; 27
Akamatsu (10.1016/j.actbio.2018.04.006_b0295) 2015; 31
Hrkach (10.1016/j.actbio.2018.04.006_b0655) 2012; 4
Hauser (10.1016/j.actbio.2018.04.006_b0385) 2015; 6
Sharma (10.1016/j.actbio.2018.04.006_b0045) 2015; 80
Choi (10.1016/j.actbio.2018.04.006_b0205) 2014; 122
Hans (10.1016/j.actbio.2018.04.006_b0115) 2002; 6
Miller (10.1016/j.actbio.2018.04.006_b0125) 1984; 18
Anselmo (10.1016/j.actbio.2018.04.006_b0030) 2016; 1
Jain (10.1016/j.actbio.2018.04.006_b0190) 2000; 21
Li (10.1016/j.actbio.2018.04.006_b0455) 2015; 5
Avila (10.1016/j.actbio.2018.04.006_b0055) 2012; 2012
Stolzoff (10.1016/j.actbio.2018.04.006_b0380) 2015
Kong (10.1016/j.actbio.2018.04.006_b0285) 2012; 6
Rigaux (10.1016/j.actbio.2018.04.006_b0560) 2014; 25
Li (10.1016/j.actbio.2018.04.006_b0640) 2016; 16
Shembekar (10.1016/j.actbio.2018.04.006_b0665) 2016; 16
Wang (10.1016/j.actbio.2018.04.006_b0525) 2016; 7
Pagels (10.1016/j.actbio.2018.04.006_b0070) 2015; 219
Kim (10.1016/j.actbio.2018.04.006_b0365) 2017
Nagavarma (10.1016/j.actbio.2018.04.006_b0235) 2012; 5
Acharya (10.1016/j.actbio.2018.04.006_b0575) 2011; 63
Samavedi (10.1016/j.actbio.2018.04.006_b0080) 2014
Chen (10.1016/j.actbio.2018.04.006_b0435) 2010; 46
Fomina (10.1016/j.actbio.2018.04.006_b0405) 2010; 132
Matthaiou (10.1016/j.actbio.2018.04.006_b0520) 2014; 9
Cruz (10.1016/j.actbio.2018.04.006_b0540) 2012; 509
Blanco (10.1016/j.actbio.2018.04.006_b0490) 1997; 43
10.1016/j.actbio.2018.04.006_b0675
Bobo (10.1016/j.actbio.2018.04.006_b0035) 2016; 33
González-Béjar (10.1016/j.actbio.2018.04.006_b0420) 2016; 4
Kelly (10.1016/j.actbio.2018.04.006_b0720) 2008; 130
Karnik (10.1016/j.actbio.2018.04.006_b0280) 2008; 8
Govender (10.1016/j.actbio.2018.04.006_b0200) 1999; 57
Perro (10.1016/j.actbio.2018.04.006_b0450) 2005; 15
Zhang (10.1016/j.actbio.2018.04.006_b0600) 2013; 8
Zolnik (10.1016/j.actbio.2018.04.006_b0165) 2010; 151
Kumari (10.1016/j.actbio.2018.04.006_b0120) 2010; 75
Alvarez-Lorenzo (10.1016/j.actbio.2018.04.006_b0130) 2010; 2
Ernsting (10.1016/j.actbio.2018.04.006_b0465) 2013; 172
Menale (10.1016/j.actbio.2018.04.006_b0565) 2014
Xu (10.1016/j.actbio.2018.04.006_b0470) 2017; 7
Badilescu (10.1016/j.actbio.2018.04.006_b0290) 2012; 4
Webster (10.1016/j.actbio.2018.04.006_b0005) 2012
Dinarvand (10.1016/j.actbio.2018.04.006_b0015) 2011; 6
Tacken (10.1016/j.actbio.2018.04.006_b0545) 2011; 118
Srinivas (10.1016/j.actbio.2018.04.006_b0610) 2015; 10
Park (10.1016/j.actbio.2018.04.006_b0415) 2009; 3
Astete (10.1016/j.actbio.2018.04.006_b0185) 2012
Xu (10.1016/j.actbio.2018.04.006_b0705) 2005; 44
Jain (10.1016/j.actbio.2018.04.006_b0095) 2011; 28
10.1016/j.actbio.2018.04.006_b0425
Gajdová (10.1016/j.actbio.2018.04.006_b0700) 1993; 31
Wang (10.1016/j.actbio.2018.04.006_b0160) 2011; 32
Ding (10.1016/j.actbio.2018.04.006_b0325) 2016; 13
Liang (10.1016/j.actbio.2018.04.006_b0505) 2006; 27
Windbergs (10.1016/j.actbio.2018.04.006_b0300) 2011; 7
Putnam (10.1016/j.actbio.2018.04.006_b0010) 2006; 5
Shah (10.1016/j.actbio.2018.04.006_b0695) 2014; 6
Joseph (10.1016/j.actbio.2018.04.006_b0335) 2012; 101
Mura (10.1016/j.actbio.2018.04.006_b0375) 2013; 12
Danhier (10.1016/j.actbio.2018.04.006_b0020) 2012; 161
Xu (10.1016/j.actbio.2018.04.006_b0275) 2009; 5
Shaik (10.1016/j.actbio.2018.04.006_b0485) 2012; 2
Hao (10.1016/j.actbio.2018.04.006_b0225) 2013; 28
Zhao (10.1016/j.actbio.2018.04.006_b0315) 2013; 65
Allemann (10.1016/j.actbio.2018.04.006_b0245) 1992; 87
Musyanovych (10.1016/j.actbio.2018.04.006_b0180) 2008; 8
Owens (10.1016/j.actbio.2018.04.006_b0105) 2006; 307
Song (10.1016/j.actbio.2018.04.006_b0255) 2009; 37
Liang (10.1016/j.actbio.2018.04.006_b0345) 2013; 24
Knop (10.1016/j.actbio.2018.04.006_b0685) 2010; 49
Zhang (10.1016/j.actbio.2018.04.006_b0175) 2014; 37
Wadajkar (10.1016/j.actbio.2018.04.006_b0395) 2012; 8
Wischke (10.1016/j.actbio.2018.04.006_b0670) 2008; 364
Perry (10.1016/j.actbio.2018.04.006_b0350) 2011; 44
Srinivas (10.1016/j.actbio.2018.04.006_b0615) 2010; 31
Mir (10.1016/j.actbio.2018.04.006_b0550) 2017; 159
Duncanson (10.1016/j.actbio.2018.04.006_b0270) 2012; 12
Euliss (10.1016/j.actbio.2018.04.006_b0355) 2006; 35
Tel (10.1016/j.actbio.2018.04.006_b0535) 2013; 191
10.1016/j.actbio.2018.04.006_b0690
Hines (10.1016/j.actbio.2018.04.006_b0475) 2013; 30
Collins (10.1016/j.actbio.2018.04.006_b0305) 2015; 15
Kelly (10.1016/j.actbio.2018.04.006_b0500) 2011; 2011
Perugini (10.1016/j.actbio.2018.04.006_b0250) 2002; 246
Vladisavljević (10.1016/j.actbio.2018.04.006_b0330) 2005; 113
Mariano (10.1016/j.actbio.2018.04.006_b0605) 2014; 11
Ibrahim (10.1016/j.actbio.2018.04.006_b0240) 1992; 87
Wu (10.1016/j.actbio.2018.04.006_b0480) 2017; 24
Swider (10.1016/j.actbio.2018.04.006_b0635) 2018; 8
Srinivas (10.1016/j.actbio.2018.04.006_b0555) 2010; 62
Strohbehn (10.1016/j.actbio.2018.04.006_b0590) 2015; 121
Hu (10.1016/j.actbio.2018.04.006_b0260) 2015
Cheng (10.1016/j.actbio.2018.04.006_b0150) 2007; 28
Guo (10.1016/j.actbio.2018.04.006_b0220) 2014; 22
Dong (10.1016/j.actbio.2018.04.006_b0445) 2015; 5
Jiang (10.1016/j.actbio.2018.04.006_b0515) 2014; 475
Xie (10.1016/j.actbio.2018.04.006_b0025) 2010; 8
Liu (10.1016/j.actbio.2018.04.006_b0595) 2014; 15
Koshkina (10.1016/j.actbio.2018.04.006_b0170) 2016; 1–14
Chen (10.1016/j.actbio.2018.04.006_b0530) 2016; 10
Wang (10.1016/j.actbio.2018.04.006_b0580) 2008; 18
Merkel (10.1016/j.actbio.2018.04.006_b0715) 2010; 26
Salmaso (10.1016/j.actbio.2018.04.006_b0090) 2013; 2013
10.1016/j.actbio.2018.04.006_b0110
Li (10.1016/j.actbio.2018.04.006_b0145) 2011; 32
Solans (10.1016/j.actbio.2018.04.006_b0195) 2005; 10
Rahmani (10.1016/j.actbio.2018.04.006_b0370) 2013; 172
Li (10.1016/j.actbio.2018.04.006_b0065) 2012; 134
Han (10.1016/j.actbio.2018.04.006_b0100) 2016; 7
Mosafer (10.1016/j.actbio.2018.04.006_b0645) 2017; 113
10.1016/j.actbio.2018.04.006_b0230
Kosinski (10.1016/j.actbio.2018.04.006_b0390) 2012; 2
Matsumoto (10.1016/j.actbio.2018.04.006_b0430) 2016; 10
Makadia (10.1016/j.actbio.2018.04.006_b0075) 2011; 3
Xie (10.1016/j.actbio.2018.04.006_b0440) 2012; 28
Lü (10.1016/j.actbio.2018.04.006_b0060) 2009; 9
Coors (10.1016/j.actbio.2018.04.006_b0135) 2005; 95
Srinivas (10.1016/j.actbio.2018.04.006_b0630) 2010; 28
Hosseininasab (10.1016/j.actbio.2018.04.006_b0155) 2014; 84
Granot (10.1016/j.actbio.2018.04.006_b0650) 2014; 71
Lalani (10.1016/j.actbio.2018.04.006_b0210) 2014
Das (10.1016/j.actbio.2018.04.006_b0570) 2014
Sah (10.1016/j.actbio.2018.04.006_b0040) 2015; 2015
Wan (10.1016/j.actbio.2018.04.006_b0215) 2014; 31
Houchin (10.1016/j.actbio.2018.04.006_b0085) 2009; 114
Reddy (10.1016/j.actbio.2018.04.006_b0510) 2006; 12
Siegel (10.1016/j.actbio.2018.04.006_b0495) 2006; 64
References_xml – volume: 31
  start-page: 183
  year: 1993
  end-page: 190
  ident: b0700
  article-title: Delayed effects of neonatal exposure to Tween 80 on female reproductive organs in rats
  publication-title: Food Chem. Toxicol.
– volume: 475
  start-page: 547
  year: 2014
  end-page: 557
  ident: b0515
  article-title: Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications
  publication-title: Int. J. Pharm.
– volume: 28
  start-page: 4459
  year: 2012
  end-page: 4463
  ident: b0440
  article-title: One-step fabrication of polymeric Janus nanoparticles for drug delivery
  publication-title: Langmuir
– volume: 22
  start-page: 421
  year: 2014
  end-page: 427
  ident: b0220
  article-title: Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol
  publication-title: J. Drug Target.
– volume: 31
  start-page: 1967
  year: 2014
  end-page: 1977
  ident: b0215
  article-title: One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle
  publication-title: Pharm. Res.
– volume: 2
  start-page: 195
  year: 2012
  end-page: 201
  ident: b0390
  article-title: Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system
  publication-title: Biomatter
– volume: 64
  start-page: 287
  year: 2006
  end-page: 293
  ident: b0495
  article-title: Effect of drug type on the degradation rate of PLGA matrices
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 8
  start-page: 127
  year: 2008
  end-page: 139
  ident: b0180
  article-title: Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions
  publication-title: Macromol. Biosci.
– volume: 101
  start-page: 2479
  year: 2012
  end-page: 2489
  ident: b0335
  article-title: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification
  publication-title: J. Pharm. Sci.
– volume: 31
  start-page: 7070
  year: 2010
  end-page: 7077
  ident: b0615
  article-title: Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging
  publication-title: Biomaterials
– volume: 9
  start-page: 325
  year: 2009
  end-page: 341
  ident: b0060
  article-title: Current advances in research and clinical applications of PLGA-based nanotechnology
  publication-title: Expert Rev. Mol. Diagn.
– volume: 2
  start-page: 112
  year: 2012
  end-page: 116
  ident: b0485
  article-title: Polymers in controlled drug delivery systems
  publication-title: Int. J. Pharma Sci.
– volume: 87
  start-page: 247
  year: 1992
  end-page: 253
  ident: b0245
  article-title: Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size
  publication-title: Int. J. Pharm.
– volume: 24
  start-page: 455302
  year: 2013
  ident: b0345
  article-title: Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity
  publication-title: Nanotechnology
– volume: 10
  start-page: 10049
  year: 2016
  end-page: 10057
  ident: b0530
  article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy
  publication-title: ACS Nano
– volume: 77
  start-page: 96
  year: 2012
  end-page: 99
  ident: b0340
  article-title: Generation of polymer nanocapsules via a membrane-extrusion emulsification approach
  publication-title: Mater. Lett.
– volume: 32
  start-page: 4943
  year: 2011
  end-page: 4950
  ident: b0145
  article-title: Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides
  publication-title: Biomaterials
– volume: 27
  start-page: 2051
  year: 2006
  end-page: 2059
  ident: b0505
  article-title: Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer
  publication-title: Biomaterials
– volume: 10
  start-page: 2339
  year: 2015
  end-page: 2348
  ident: b0610
  article-title: PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI
  publication-title: Nanomedicine
– volume: 5
  start-page: 16
  year: 2012
  end-page: 23
  ident: b0235
  article-title: Different techniques for preparation of polymeri nanoparticles-a review
  publication-title: Asian J. Pharm. Clin. Res.
– year: 2014
  ident: b0570
  article-title: Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy
  publication-title: Nanomedicine
– volume: 6
  start-page: 319
  year: 2002
  end-page: 327
  ident: b0115
  article-title: Biodegradable nanoparticles for drug delivery and targeting
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 15
  start-page: 1586
  year: 2014
  end-page: 1592
  ident: b0595
  article-title: Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery
  publication-title: Biomacromolecules
– volume: 112
  start-page: 2021
  year: 2017
  ident: b0265
  article-title: Microfluidics: a boon for biological research
  publication-title: Curr. Sci.
– volume: 6
  start-page: 2504
  year: 2015
  end-page: 2512
  ident: b0385
  article-title: pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles
  publication-title: Beilstein J. Nanotechnol.
– volume: 6
  start-page: 99034
  year: 2016
  end-page: 99043
  ident: b0460
  article-title: Electrospraying magnetic-fluorescent bifunctional Janus PLGA microspheres with dual rare earth ions fluorescent-labeling drugs
  publication-title: RSC Adv.
– volume: 14
  start-page: 1
  year: 2012
  end-page: 17
  ident: b0140
  article-title: Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system
  publication-title: J. Nanoparticle Res.
– volume: 7
  start-page: 3011
  year: 2011
  end-page: 3015
  ident: b0300
  article-title: Drug Dissolution Chip (DDC): a microfluidic approach for drug release
  publication-title: Small
– volume: 134
  start-page: 16352
  year: 2012
  end-page: 16359
  ident: b0065
  article-title: The effect of monomer order on the hydrolysis of biodegradable poly(lactic-
  publication-title: J. Am. Chem. Soc.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 19
  ident: b0090
  article-title: Stealth properties to improve therapeutic efficacy of drug nanocarriers
  publication-title: J. Drug Deliv.
– volume: 12
  start-page: 6677
  year: 2006
  end-page: 6686
  ident: b0510
  article-title: Vascular targeted nanoparticles for imaging and treatment of brain tumors
  publication-title: Clin. Cancer Res.
– volume: 7
  start-page: 4125
  year: 2016
  ident: b0525
  article-title: Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods
  publication-title: Biomed. Opt. Express
– volume: 8
  start-page: 2996
  year: 2012
  end-page: 3004
  ident: b0395
  article-title: Multifunctional particles for melanoma-targeted drug delivery
  publication-title: Acta Biomater.
– volume: 127
  start-page: 10096
  year: 2005
  end-page: 10100
  ident: b0710
  article-title: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 2848
  year: 2009
  end-page: 2854
  ident: b0085
  article-title: Physical properties of PLGA films during polymer degradation
  publication-title: J. Appl. Polym. Sci.
– volume: 1–14
  year: 2016
  ident: b0170
  article-title: Tuning the surface of nanoparticles: impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake
  publication-title: Macromol. Biosci.
– volume: 8
  start-page: 2906
  year: 2008
  end-page: 2912
  ident: b0280
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
– volume: 121
  start-page: 441
  year: 2015
  end-page: 449
  ident: b0590
  article-title: Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
  publication-title: J. Neurooncol.
– volume: 71
  start-page: 1238
  year: 2014
  end-page: 1250
  ident: b0650
  article-title: Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 1314
  year: 2016
  end-page: 1331
  ident: b0665
  article-title: Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics
  publication-title: Lab Chip
– volume: 44
  start-page: 990
  year: 2011
  end-page: 998
  ident: b0350
  article-title: PRINT: a novel platform toward shape and size specific nanoparticle theranostics
  publication-title: Acc. Chem. Res.
– volume: 32
  start-page: 8281
  year: 2011
  end-page: 8290
  ident: b0160
  article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles
  publication-title: Biomaterials
– volume: 219
  start-page: 519
  year: 2015
  end-page: 535
  ident: b0070
  article-title: Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics
  publication-title: J. Control. Release
– volume: 9
  start-page: 1855
  year: 2014
  end-page: 1870
  ident: b0520
  article-title: Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer
  publication-title: Int. J. Nanomed.
– volume: 6
  start-page: 34104
  year: 2012
  ident: b0285
  article-title: Droplet based microfluidic fabrication of designer microparticles for encapsulation applications
  publication-title: Biomicrofluidics
– volume: 49
  start-page: 6288
  year: 2010
  end-page: 6308
  ident: b0685
  article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: b0375
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
– volume: 191
  start-page: 5005
  year: 2013
  end-page: 5012
  ident: b0535
  article-title: Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion
  publication-title: J. Immunol.
– volume: 11
  start-page: 808
  year: 2011
  end-page: 813
  ident: b0360
  article-title: Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings
  publication-title: Nano Lett.
– start-page: 8607
  year: 2015
  end-page: 8618
  ident: b0260
  article-title: Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells
  publication-title: Nanoscale
– reference: M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M. Teresa Lopez-Franco, G. Mendoza, V. Sebastian, D.S. Kohane, M. Arruebo, Light-emitting photon-upconversion nanoparticles in the generation of transdermal reactive-oxygen species, (n.d.).
– reference: K. Miladi, D. Ibraheem, M. Iqbal, S. Sfar, H. Fessi, A. Elaissari, R. Avicenne, Particles from preformed polymers as carriers for drug delivery, (2014) 28–57.
– reference: S. Takada, Y. Uda, H. Toguchi, Y. Ogawa, Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers., PDA J. Pharm. Sci. Technol. 49 (n.d.) 180–184.
– volume: 161
  start-page: 505
  year: 2012
  end-page: 522
  ident: b0020
  article-title: PLGA-based nanoparticles: an overview of biomedical applications
  publication-title: J. Control. Release
– volume: 130
  start-page: 5438
  year: 2008
  end-page: 5439
  ident: b0720
  article-title: Shape-specific, monodisperse nano-molding of protein particles
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 424
  year: 2010
  end-page: 440
  ident: b0130
  article-title: Poloxamine-based nanomaterials for drug delivery
  publication-title: Front. Biosci. (Elite Ed)
– volume: 113
  start-page: 1
  year: 2005
  end-page: 20
  ident: b0330
  article-title: Recent developments in manufacturing emulsions and particulate products using membranes
  publication-title: Adv. Colloid Interface Sci.
– volume: 26
  start-page: 13086
  year: 2010
  end-page: 13096
  ident: b0715
  article-title: Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles
  publication-title: Langmuir
– volume: 25
  start-page: 445103
  year: 2014
  ident: b0560
  article-title: A new magnetic resonance imaging contrast agent loaded into poly(lacide-co-glycolide) nanoparticles for long-term detection of tumors
  publication-title: Nanotechnology
– start-page: 81
  year: 2014
  end-page: 99
  ident: b0080
  article-title: Synthetic biomaterials for regenerative medicine applications
  publication-title: Regen. Med. Appl. Organ Transplant.
– volume: 2012
  start-page: 208
  year: 2012
  end-page: 225
  ident: b0055
  article-title: Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer
  publication-title: J. Biomater. Nanobiotechnol.
– volume: 63
  start-page: 170
  year: 2011
  end-page: 183
  ident: b0575
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
– volume: 151
  start-page: 458
  year: 2010
  end-page: 465
  ident: b0165
  article-title: Minireview: Nanoparticles and the immune system
  publication-title: Endocrinology
– volume: 7
  start-page: 4794
  year: 2017
  ident: b0470
  article-title: Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor
  publication-title: Sci. Rep.
– volume: 5
  start-page: 23181
  year: 2015
  end-page: 23188
  ident: b0445
  article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery application
  publication-title: RSC Adv.
– volume: 27
  start-page: 1730
  year: 2010
  end-page: 1737
  ident: b0660
  article-title: In vitro–in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia
  publication-title: Pharm. Res.
– volume: 4
  year: 2012
  ident: b0655
  article-title: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile
  publication-title: Sci. Transl. Med.
– volume: 46
  start-page: 5121
  year: 2010
  end-page: 5123
  ident: b0435
  article-title: Fabrication of asymmetric “Janus” particles via plasma polymerization
  publication-title: Chem. Commun. (Camb)
– volume: 57
  start-page: 171
  year: 1999
  end-page: 185
  ident: b0200
  article-title: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug
  publication-title: J. Control. Release
– year: 2014
  ident: b0585
  article-title: Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism
  publication-title: Mol. Pharm.
– year: 2014
  ident: b0210
  article-title: Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management
  publication-title: AAPS PharmSciTech.
– volume: 8
  start-page: 6460
  year: 2018
  end-page: 6470
  ident: b0635
  article-title: Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications
  publication-title: RCS Adv.
– reference: J.M. Barichello, M. Morishita, K. Takayama, T. Nagai, Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method, 25(4) (1999) 471–476.
– volume: 3
  start-page: 1377
  year: 2011
  end-page: 1397
  ident: b0075
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers (Basel)
– reference: S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine) – poly (ethylene glycol) – folate conjugate, (2005) 8852–8857.
– volume: 35
  start-page: 1095
  year: 2006
  end-page: 1104
  ident: b0355
  article-title: Imparting size, shape, and composition control of materials for nanomedicine
  publication-title: Chem. Soc. Rev.
– volume: 2011
  start-page: 727241
  year: 2011
  ident: b0500
  article-title: Targeted liposomal drug delivery to monocytes and macrophages
  publication-title: J. Drug Deliv.
– volume: 7
  start-page: 185
  year: 2016
  ident: b0100
  article-title: Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading
  publication-title: Front. Pharmacol.
– volume: 364
  start-page: 298
  year: 2008
  end-page: 327
  ident: b0670
  article-title: Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles
  publication-title: Int. J. Pharm.
– volume: 5
  start-page: 439
  year: 2006
  end-page: 451
  ident: b0010
  article-title: Polymers for gene delivery across length scales
  publication-title: Nat. Mater.
– volume: 37
  start-page: 300
  year: 2009
  end-page: 305
  ident: b0255
  article-title: Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles
  publication-title: Eur. J. Pharm. Sci.
– volume: 246
  start-page: 37
  year: 2002
  end-page: 45
  ident: b0250
  article-title: Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate
  publication-title: Int. J. Pharm.
– volume: 86
  start-page: 4163
  year: 2001
  end-page: 4166
  ident: b0320
  article-title: Dynamic pattern formation in a vesicle-generating microfluidic device
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 30
  year: 2015
  end-page: 40
  ident: b0045
  article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications
  publication-title: TrAC Trends Anal. Chem.
– volume: 28
  start-page: 363
  year: 2010
  end-page: 370
  ident: b0630
  article-title: (19)F MRI for quantitative in vivo cell tracking
  publication-title: Trends Biotechnol.
– volume: 18
  start-page: 269
  year: 1984
  end-page: 276
  ident: b0125
  article-title: Rheological properties of poloxamer vehicles
  publication-title: Int. J. Pharm.
– volume: 37
  start-page: 335
  year: 2014
  end-page: 339
  ident: b0175
  article-title: Discussion about several potential drawbacks of PEGylated therapeutic proteins
  publication-title: Biol. Pharm. Bull.
– volume: 65
  start-page: 1420
  year: 2013
  end-page: 1446
  ident: b0315
  article-title: Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 23181
  year: 2015
  end-page: 23188
  ident: b0455
  article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications
  publication-title: RSC Adv.
– volume: 132
  start-page: 9540
  year: 2010
  end-page: 9542
  ident: b0405
  article-title: UV and near-IR triggered release from polymeric nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 307
  start-page: 93
  year: 2006
  end-page: 102
  ident: b0105
  article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles
  publication-title: Int. J. Pharm.
– volume: 87
  start-page: 239
  year: 1992
  end-page: 246
  ident: b0240
  article-title: Aqueous nanodispersions prepared by a salting-out process
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 1447
  year: 2016
  end-page: 1460
  ident: b0325
  article-title: Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview
  publication-title: Expert Opin. Drug Deliv.
– volume: 48
  start-page: 3166
  year: 2015
  end-page: 3172
  ident: b0410
  article-title: Light-triggered intramolecular cyclization in poly(lactic-
  publication-title: Macromolecules
– volume: 122
  start-page: 545
  year: 2014
  end-page: 551
  ident: b0205
  article-title: Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition
  publication-title: Colloids Surf. B. Biointerfaces
– year: 2017
  ident: b0365
  article-title: Thermo-responsive polymers and their application as smart biomaterials
  publication-title: J. Mater. Chem. B
– year: 2014
  ident: b0565
  article-title: Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells
  publication-title: Pharm. Res.
– volume: 33
  start-page: 2373
  year: 2016
  end-page: 2387
  ident: b0035
  article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date
  publication-title: Pharm. Res.
– volume: 1
  start-page: 10
  year: 2016
  end-page: 29
  ident: b0030
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
– volume: 62
  start-page: 1080
  year: 2010
  end-page: 1093
  ident: b0555
  article-title: Imaging of cellular therapies
  publication-title: Adv. Drug Deliv. Rev.
– volume: 43
  start-page: 287
  year: 1997
  end-page: 294
  ident: b0490
  article-title: Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 172
  start-page: 782
  year: 2013
  end-page: 794
  ident: b0465
  article-title: Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles
  publication-title: J. Control. Release
– volume: 4
  start-page: 1278
  year: 2012
  end-page: 1310
  ident: b0290
  article-title: Microfluidics-nano-integration for synthesis and sensing
  publication-title: Polymers (Basel)
– year: 2012
  ident: b0005
  article-title: Nanomedicine: Technologies and Applications
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 22
  ident: b0040
  article-title: Recent trends in preparation of poly(lactide-
  publication-title: J. Nanomater.
– volume: 6
  start-page: 95
  year: 2014
  end-page: 101
  ident: b0695
  article-title: Review article polyox (polyethylene oxide) multifunctional polymer in novel drug delivery
  publication-title: System
– year: 2015
  ident: b0380
  article-title: Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability
  publication-title: Biomacromolecules
– volume: 10
  start-page: 102
  year: 2005
  end-page: 110
  ident: b0195
  article-title: Nano-emulsions
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 28
  start-page: 869
  year: 2007
  end-page: 876
  ident: b0150
  article-title: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery
  publication-title: Biomaterials
– volume: 65
  start-page: 1626
  year: 2013
  end-page: 1663
  ident: b0310
  article-title: Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 111
  start-page: 1905
  year: 2009
  end-page: 1910
  ident: b0400
  article-title: Thermosensitive nanoparticles prepared from poly(
  publication-title: J. Appl. Polym. Sci.
– volume: 21
  start-page: 2475
  year: 2000
  end-page: 2490
  ident: b0190
  article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices
  publication-title: Biomaterials
– year: 2013
  ident: b0620
  article-title: In vivo 19F MRI for cell tracking
  publication-title: J. Vis. Exp.
– volume: 12
  start-page: 2135
  year: 2012
  end-page: 2145
  ident: b0270
  article-title: Microfluidic synthesis of advanced microparticles for encapsulation and controlled release
  publication-title: Lab Chip
– volume: 18
  start-page: 308
  year: 2008
  end-page: 318
  ident: b0580
  article-title: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 877
  year: 2011
  end-page: 895
  ident: b0015
  article-title: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents
  publication-title: Int. J. Nanomed.
– volume: 75
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0120
  article-title: Biodegradable polymeric nanoparticles based drug delivery systems
  publication-title: Colloids Surf. B. Biointerfaces
– volume: 10
  start-page: 307
  year: 2016
  end-page: 313
  ident: b0430
  article-title: Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method
  publication-title: Drug Discov. Ther.
– volume: 30
  start-page: 257
  year: 2013
  end-page: 276
  ident: b0475
  article-title: Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
– volume: 95
  start-page: 593
  year: 2005
  end-page: 599
  ident: b0135
  article-title: Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions
  publication-title: Ann. Allergy Asthma Immunol.
– start-page: 37
  year: 2012
  end-page: 41
  ident: b0185
  article-title: Synthesis and characterization of PLGA nanoparticles
  publication-title: J. Biomater. Sci.
– volume: 159
  start-page: 217
  year: 2017
  end-page: 231
  ident: b0550
  article-title: Recent applications of PLGA based nanostructures in drug delivery
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 31
  start-page: 7166
  year: 2015
  end-page: 7172
  ident: b0295
  article-title: Membrane-integrated glass capillary device for preparing small-sized water-in-oil-in-water emulsion droplets
  publication-title: Langmuir
– volume: 15
  start-page: 3640
  year: 2014
  end-page: 3659
  ident: b0050
  article-title: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 18
  year: 2010
  ident: b0025
  article-title: Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system
  publication-title: J. Nanobiotechnol.
– volume: 84
  start-page: 307
  year: 2014
  end-page: 315
  ident: b0155
  article-title: Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery
  publication-title: Chem. Biol. Drug Des.
– volume: 172
  start-page: 239
  year: 2013
  end-page: 245
  ident: b0370
  article-title: Multimodal delivery of irinotecan from microparticles with two distinct compartments
  publication-title: J. Control. Release
– volume: 11
  start-page: 4100
  year: 2014
  end-page: 4106
  ident: b0605
  article-title: Design of PLGA based nanoparticles for imaging guided applications
  publication-title: Mol. Pharm.
– volume: 24
  start-page: 1513
  year: 2017
  end-page: 1525
  ident: b0480
  article-title: Insulin-loaded PLGA microspheres for glucose-responsive release
  publication-title: Drug Deliv.
– volume: 8
  start-page: 3745
  year: 2013
  end-page: 3756
  ident: b0600
  article-title: Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus
  publication-title: Int. J. Nanomed.
– volume: 22
  start-page: 219
  year: 2014
  end-page: 222
  ident: b0680
  article-title: Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles
  publication-title: Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc.
– volume: 15
  start-page: 3439
  year: 2015
  end-page: 3459
  ident: b0305
  article-title: The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation
  publication-title: Lab Chip
– volume: 509
  start-page: 143
  year: 2012
  end-page: 163
  ident: b0540
  article-title: Targeting nanoparticles to dendritic cells for immunotherapy
  publication-title: Methods Enzymol.
– volume: 113
  start-page: 60
  year: 2017
  end-page: 74
  ident: b0645
  article-title: In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 3
  start-page: 2919
  year: 2009
  end-page: 2926
  ident: b0415
  article-title: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments
  publication-title: ACS Nano
– volume: 16
  start-page: 5569
  year: 2016
  end-page: 5576
  ident: b0640
  article-title: Nile Red loaded PLGA nanoparticles surface modified with Gd-DTPA for potential dual-modal imaging
  publication-title: J. Nanosci. Nanotechnol.
– volume: 118
  start-page: 6836
  year: 2011
  end-page: 6844
  ident: b0545
  article-title: Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity
  publication-title: Blood
– volume: 44
  start-page: 724
  year: 2005
  end-page: 728
  ident: b0705
  article-title: Generation of monodisperse particles by using microfluidics: control over size, shape, and composition
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 47
  year: 2016
  ident: b0420
  article-title: Upconversion nanoparticles for bioimaging and regenerative medicine
  publication-title: Front. Bioeng. Biotechnol.
– volume: 15
  start-page: 3745
  year: 2005
  ident: b0450
  article-title: Design and synthesis of Janus micro- and nanoparticles
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 1
  year: 2011
  end-page: 45
  ident: b0095
  article-title: Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
– volume: 5
  start-page: 1575
  year: 2009
  end-page: 1581
  ident: b0275
  article-title: Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery
  publication-title: Small
– volume: 33
  start-page: 8830
  year: 2012
  end-page: 8840
  ident: b0625
  article-title: Labeling cells for in vivo tracking using (19)F MRI
  publication-title: Biomaterials
– volume: 28
  start-page: 1242
  year: 2013
  end-page: 1245
  ident: b0225
  article-title: Preparation of PLGA ceftiofur hydrochlorate lungtargeted microsphere with spray drying process
  publication-title: J. Wuhan Univ. Technol. Sci. Ed.
– volume: 161
  start-page: 505
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0020
  article-title: PLGA-based nanoparticles: an overview of biomedical applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.01.043
– volume: 65
  start-page: 1420
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0315
  article-title: Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.05.009
– volume: 5
  start-page: 23181
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0455
  article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications
  publication-title: RSC Adv.
  doi: 10.1039/C4RA17153E
– volume: 27
  start-page: 2051
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0505
  article-title: Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.027
– volume: 16
  start-page: 1314
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0665
  article-title: Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics
  publication-title: Lab Chip
  doi: 10.1039/C6LC00249H
– volume: 8
  start-page: 18
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0025
  article-title: Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-8-18
– year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0365
  article-title: Thermo-responsive polymers and their application as smart biomaterials
  publication-title: J. Mater. Chem. B
– volume: 64
  start-page: 287
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0495
  article-title: Effect of drug type on the degradation rate of PLGA matrices
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2006.06.009
– volume: 4
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0655
  article-title: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3003651
– volume: 1
  start-page: 10
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0030
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10003
– volume: 246
  start-page: 37
  year: 2002
  ident: 10.1016/j.actbio.2018.04.006_b0250
  article-title: Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00356-3
– volume: 7
  start-page: 4794
  year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0470
  article-title: Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05184-5
– volume: 24
  start-page: 1513
  year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0480
  article-title: Insulin-loaded PLGA microspheres for glucose-responsive release
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2017.1381200
– volume: 5
  start-page: 439
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0010
  article-title: Polymers for gene delivery across length scales
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1645
– volume: 111
  start-page: 1905
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0400
  article-title: Thermosensitive nanoparticles prepared from poly(N-isopropylacrylamide-acrylamide-vinilpyrrolidone) and its blend with poly(lactide-co-glycolide) for efficient drug delivery system
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29199
– volume: 10
  start-page: 10049
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0530
  article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04695
– volume: 191
  start-page: 5005
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0535
  article-title: Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300787
– volume: 31
  start-page: 183
  year: 1993
  ident: 10.1016/j.actbio.2018.04.006_b0700
  article-title: Delayed effects of neonatal exposure to Tween 80 on female reproductive organs in rats
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/0278-6915(93)90092-D
– volume: 87
  start-page: 247
  year: 1992
  ident: 10.1016/j.actbio.2018.04.006_b0245
  article-title: Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(92)90249-2
– ident: 10.1016/j.actbio.2018.04.006_b0425
– volume: 1–14
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0170
  article-title: Tuning the surface of nanoparticles: impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake
  publication-title: Macromol. Biosci.
– volume: 4
  start-page: 1278
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0290
  article-title: Microfluidics-nano-integration for synthesis and sensing
  publication-title: Polymers (Basel)
  doi: 10.3390/polym4021278
– volume: 2012
  start-page: 208
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0055
  article-title: Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer
  publication-title: J. Biomater. Nanobiotechnol.
– volume: 57
  start-page: 171
  year: 1999
  ident: 10.1016/j.actbio.2018.04.006_b0200
  article-title: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(98)00116-3
– ident: 10.1016/j.actbio.2018.04.006_b0110
– volume: 13
  start-page: 1447
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0325
  article-title: Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1193151
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0040
  article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent
  publication-title: J. Nanomater.
  doi: 10.1155/2015/794601
– volume: 80
  start-page: 30
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0045
  article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.06.014
– volume: 26
  start-page: 13086
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0715
  article-title: Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles
  publication-title: Langmuir
  doi: 10.1021/la903890h
– volume: 32
  start-page: 8281
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0160
  article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.032
– start-page: 8607
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0260
  article-title: Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells
  publication-title: Nanoscale
  doi: 10.1039/C5NR01084E
– volume: 4
  start-page: 47
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0420
  article-title: Upconversion nanoparticles for bioimaging and regenerative medicine
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00047
– volume: 11
  start-page: 4100
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0605
  article-title: Design of PLGA based nanoparticles for imaging guided applications
  publication-title: Mol. Pharm.
  doi: 10.1021/mp5002747
– volume: 24
  start-page: 455302
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0345
  article-title: Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/45/455302
– volume: 6
  start-page: 99034
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0460
  article-title: Electrospraying magnetic-fluorescent bifunctional Janus PLGA microspheres with dual rare earth ions fluorescent-labeling drugs
  publication-title: RSC Adv.
  doi: 10.1039/C6RA15401H
– volume: 84
  start-page: 307
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0155
  article-title: Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.12318
– year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0565
  article-title: Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells
  publication-title: Pharm. Res.
– volume: 101
  start-page: 2479
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0335
  article-title: Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.23163
– volume: 27
  start-page: 1730
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0660
  article-title: In vitro–in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0152-4
– volume: 43
  start-page: 287
  year: 1997
  ident: 10.1016/j.actbio.2018.04.006_b0490
  article-title: Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(97)00056-8
– volume: 63
  start-page: 170
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0575
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.10.008
– volume: 87
  start-page: 239
  year: 1992
  ident: 10.1016/j.actbio.2018.04.006_b0240
  article-title: Aqueous nanodispersions prepared by a salting-out process
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(92)90248-Z
– volume: 12
  start-page: 991
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0375
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 132
  start-page: 9540
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0405
  article-title: UV and near-IR triggered release from polymeric nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102595j
– volume: 15
  start-page: 3640
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0050
  article-title: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15033640
– volume: 22
  start-page: 421
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0220
  article-title: Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2013.878944
– volume: 8
  start-page: 3745
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0600
  article-title: Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus
  publication-title: Int. J. Nanomed.
– volume: 130
  start-page: 5438
  year: 2008
  ident: 10.1016/j.actbio.2018.04.006_b0720
  article-title: Shape-specific, monodisperse nano-molding of protein particles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8014428
– volume: 8
  start-page: 2906
  year: 2008
  ident: 10.1016/j.actbio.2018.04.006_b0280
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl801736q
– volume: 307
  start-page: 93
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0105
  article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2005.10.010
– volume: 21
  start-page: 2475
  year: 2000
  ident: 10.1016/j.actbio.2018.04.006_b0190
  article-title: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00115-0
– volume: 134
  start-page: 16352
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0065
  article-title: The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306866w
– volume: 10
  start-page: 2339
  issue: 15
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0610
  article-title: PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI
  publication-title: Nanomedicine
  doi: 10.2217/nnm.15.76
– volume: 172
  start-page: 782
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0465
  article-title: Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.09.013
– volume: 159
  start-page: 217
  year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0550
  article-title: Recent applications of PLGA based nanostructures in drug delivery
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.07.038
– volume: 219
  start-page: 519
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0070
  article-title: Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.09.001
– volume: 3
  start-page: 1377
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0075
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers (Basel)
  doi: 10.3390/polym3031377
– volume: 32
  start-page: 4943
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0145
  article-title: Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.031
– volume: 12
  start-page: 2135
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0270
  article-title: Microfluidic synthesis of advanced microparticles for encapsulation and controlled release
  publication-title: Lab Chip
  doi: 10.1039/c2lc21164e
– volume: 22
  start-page: 219
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0680
  article-title: Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles
  publication-title: Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc.
– volume: 364
  start-page: 298
  year: 2008
  ident: 10.1016/j.actbio.2018.04.006_b0670
  article-title: Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.04.042
– year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0210
  article-title: Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management
  publication-title: AAPS PharmSciTech.
– volume: 14
  start-page: 1
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0140
  article-title: Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-012-1316-4
– volume: 122
  start-page: 545
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0205
  article-title: Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition
  publication-title: Colloids Surf. B. Biointerfaces
  doi: 10.1016/j.colsurfb.2014.07.030
– volume: 71
  start-page: 1238
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0650
  article-title: Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24741
– year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0005
– volume: 62
  start-page: 1080
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0555
  article-title: Imaging of cellular therapies
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.08.009
– volume: 114
  start-page: 2848
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0085
  article-title: Physical properties of PLGA films during polymer degradation
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.30813
– volume: 15
  start-page: 3745
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0450
  article-title: Design and synthesis of Janus micro- and nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/b505099e
– volume: 31
  start-page: 1967
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0215
  article-title: One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1299-1
– volume: 28
  start-page: 363
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0630
  article-title: (19)F MRI for quantitative in vivo cell tracking
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.04.002
– volume: 48
  start-page: 3166
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0410
  article-title: Light-triggered intramolecular cyclization in poly(lactic-co-glycolic acid)-based polymers for controlled degradation
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00455
– volume: 33
  start-page: 8830
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0625
  article-title: Labeling cells for in vivo tracking using (19)F MRI
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.08.048
– volume: 15
  start-page: 1586
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0595
  article-title: Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery
  publication-title: Biomacromolecules
  doi: 10.1021/bm500438x
– volume: 33
  start-page: 2373
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0035
  article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-016-1958-5
– volume: 86
  start-page: 4163
  year: 2001
  ident: 10.1016/j.actbio.2018.04.006_b0320
  article-title: Dynamic pattern formation in a vesicle-generating microfluidic device
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4163
– volume: 6
  start-page: 34104
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0285
  article-title: Droplet based microfluidic fabrication of designer microparticles for encapsulation applications
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4738586
– year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0620
  article-title: In vivo 19F MRI for cell tracking
  publication-title: J. Vis. Exp.
  doi: 10.3791/50802-v
– volume: 2
  start-page: 195
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0390
  article-title: Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system
  publication-title: Biomatter
  doi: 10.4161/biom.22494
– year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0570
  article-title: Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy
  publication-title: Nanomedicine
– volume: 6
  start-page: 2504
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0385
  article-title: pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.260
– ident: 10.1016/j.actbio.2018.04.006_b0675
  doi: 10.1081/DDC-100102197
– volume: 44
  start-page: 990
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0350
  article-title: PRINT: a novel platform toward shape and size specific nanoparticle theranostics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar2000315
– volume: 44
  start-page: 724
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0705
  article-title: Generation of monodisperse particles by using microfluidics: control over size, shape, and composition
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200462226
– volume: 112
  start-page: 2021
  year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0265
  article-title: Microfluidics: a boon for biological research
  publication-title: Curr. Sci.
  doi: 10.18520/cs/v112/i10/2021-2028
– volume: 8
  start-page: 2996
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0395
  article-title: Multifunctional particles for melanoma-targeted drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.04.042
– volume: 28
  start-page: 4459
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0440
  article-title: One-step fabrication of polymeric Janus nanoparticles for drug delivery
  publication-title: Langmuir
  doi: 10.1021/la2042185
– volume: 113
  start-page: 60
  year: 2017
  ident: 10.1016/j.actbio.2018.04.006_b0645
  article-title: In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2016.12.009
– volume: 77
  start-page: 96
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0340
  article-title: Generation of polymer nanocapsules via a membrane-extrusion emulsification approach
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.03.004
– start-page: 81
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0080
  article-title: Synthetic biomaterials for regenerative medicine applications
  publication-title: Regen. Med. Appl. Organ Transplant.
– volume: 11
  start-page: 808
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0360
  article-title: Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings
  publication-title: Nano Lett.
  doi: 10.1021/nl104117p
– volume: 30
  start-page: 257
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0475
  article-title: Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.2013006475
– volume: 3
  start-page: 2919
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0415
  article-title: Multifunctional nanoparticles for combined doxorubicin and photothermal treatments
  publication-title: ACS Nano
  doi: 10.1021/nn900215k
– volume: 28
  start-page: 869
  year: 2007
  ident: 10.1016/j.actbio.2018.04.006_b0150
  article-title: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.09.047
– volume: 2
  start-page: 112
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0485
  article-title: Polymers in controlled drug delivery systems
  publication-title: Int. J. Pharma Sci.
– volume: 6
  start-page: 877
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0015
  article-title: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S18905
– volume: 5
  start-page: 1575
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0275
  article-title: Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery
  publication-title: Small
  doi: 10.1002/smll.200801855
– volume: 46
  start-page: 5121
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0435
  article-title: Fabrication of asymmetric “Janus” particles via plasma polymerization
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/c0cc00474j
– volume: 2
  start-page: 424
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0130
  article-title: Poloxamine-based nanomaterials for drug delivery
  publication-title: Front. Biosci. (Elite Ed)
  doi: 10.2741/e102
– start-page: 37
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0185
  article-title: Synthesis and characterization of PLGA nanoparticles
  publication-title: J. Biomater. Sci.
– volume: 31
  start-page: 7070
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0615
  article-title: Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.069
– volume: 5
  start-page: 16
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0235
  article-title: Different techniques for preparation of polymeri nanoparticles-a review
  publication-title: Asian J. Pharm. Clin. Res.
– volume: 35
  start-page: 1095
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0355
  article-title: Imparting size, shape, and composition control of materials for nanomedicine
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b600913c
– volume: 75
  start-page: 1
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0120
  article-title: Biodegradable polymeric nanoparticles based drug delivery systems
  publication-title: Colloids Surf. B. Biointerfaces
  doi: 10.1016/j.colsurfb.2009.09.001
– volume: 10
  start-page: 102
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0195
  article-title: Nano-emulsions
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2005.06.004
– volume: 25
  start-page: 445103
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0560
  article-title: A new magnetic resonance imaging contrast agent loaded into poly(lacide-co-glycolide) nanoparticles for long-term detection of tumors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/44/445103
– volume: 5
  start-page: 23181
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0445
  article-title: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery application
  publication-title: RSC Adv.
  doi: 10.1039/C4RA17153E
– volume: 7
  start-page: 185
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0100
  article-title: Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00185
– volume: 6
  start-page: 319
  year: 2002
  ident: 10.1016/j.actbio.2018.04.006_b0115
  article-title: Biodegradable nanoparticles for drug delivery and targeting
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/S1359-0286(02)00117-1
– volume: 16
  start-page: 5569
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0640
  article-title: Nile Red loaded PLGA nanoparticles surface modified with Gd-DTPA for potential dual-modal imaging
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2016.11735
– volume: 9
  start-page: 325
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0060
  article-title: Current advances in research and clinical applications of PLGA-based nanotechnology
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/erm.09.15
– volume: 10
  start-page: 307
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0430
  article-title: Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method
  publication-title: Drug Discov. Ther.
  doi: 10.5582/ddt.2016.01230
– ident: 10.1016/j.actbio.2018.04.006_b0230
– volume: 118
  start-page: 6836
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0545
  article-title: Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity
  publication-title: Blood
  doi: 10.1182/blood-2011-07-367615
– volume: 2011
  start-page: 727241
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0500
  article-title: Targeted liposomal drug delivery to monocytes and macrophages
  publication-title: J. Drug Deliv.
  doi: 10.1155/2011/727241
– ident: 10.1016/j.actbio.2018.04.006_b0690
  doi: 10.1021/la0502084
– volume: 475
  start-page: 547
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0515
  article-title: Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.08.067
– volume: 8
  start-page: 127
  year: 2008
  ident: 10.1016/j.actbio.2018.04.006_b0180
  article-title: Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700241
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0090
  article-title: Stealth properties to improve therapeutic efficacy of drug nanocarriers
  publication-title: J. Drug Deliv.
  doi: 10.1155/2013/374252
– volume: 18
  start-page: 308
  year: 2008
  ident: 10.1016/j.actbio.2018.04.006_b0580
  article-title: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700456
– volume: 8
  start-page: 6460
  year: 2018
  ident: 10.1016/j.actbio.2018.04.006_b0635
  article-title: Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications
  publication-title: RCS Adv.
– volume: 37
  start-page: 335
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0175
  article-title: Discussion about several potential drawbacks of PEGylated therapeutic proteins
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b13-00661
– volume: 65
  start-page: 1626
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0310
  article-title: Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.07.017
– volume: 6
  start-page: 95
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0695
  article-title: Review article polyox (polyethylene oxide) multifunctional polymer in novel drug delivery
  publication-title: System
– volume: 7
  start-page: 4125
  year: 2016
  ident: 10.1016/j.actbio.2018.04.006_b0525
  article-title: Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.004125
– volume: 127
  start-page: 10096
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0710
  article-title: Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051977c
– year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0585
  article-title: Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400717r
– volume: 7
  start-page: 3011
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0300
  article-title: Drug Dissolution Chip (DDC): a microfluidic approach for drug release
  publication-title: Small
  doi: 10.1002/smll.201100520
– volume: 95
  start-page: 593
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0135
  article-title: Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions
  publication-title: Ann. Allergy Asthma Immunol.
  doi: 10.1016/S1081-1206(10)61024-1
– volume: 15
  start-page: 3439
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0305
  article-title: The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation
  publication-title: Lab Chip
  doi: 10.1039/C5LC00614G
– volume: 31
  start-page: 7166
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0295
  article-title: Membrane-integrated glass capillary device for preparing small-sized water-in-oil-in-water emulsion droplets
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01514
– volume: 49
  start-page: 6288
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0685
  article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200902672
– volume: 113
  start-page: 1
  year: 2005
  ident: 10.1016/j.actbio.2018.04.006_b0330
  article-title: Recent developments in manufacturing emulsions and particulate products using membranes
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2004.10.002
– volume: 172
  start-page: 239
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0370
  article-title: Multimodal delivery of irinotecan from microparticles with two distinct compartments
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.08.017
– volume: 9
  start-page: 1855
  year: 2014
  ident: 10.1016/j.actbio.2018.04.006_b0520
  article-title: Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer
  publication-title: Int. J. Nanomed.
– volume: 18
  start-page: 269
  year: 1984
  ident: 10.1016/j.actbio.2018.04.006_b0125
  article-title: Rheological properties of poloxamer vehicles
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(84)90142-X
– year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0380
  article-title: Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00336
– volume: 28
  start-page: 1
  year: 2011
  ident: 10.1016/j.actbio.2018.04.006_b0095
  article-title: Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10
– volume: 509
  start-page: 143
  year: 2012
  ident: 10.1016/j.actbio.2018.04.006_b0540
  article-title: Targeting nanoparticles to dendritic cells for immunotherapy
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-391858-1.00008-3
– volume: 121
  start-page: 441
  year: 2015
  ident: 10.1016/j.actbio.2018.04.006_b0590
  article-title: Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-014-1658-0
– volume: 37
  start-page: 300
  year: 2009
  ident: 10.1016/j.actbio.2018.04.006_b0255
  article-title: Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2009.02.018
– volume: 12
  start-page: 6677
  year: 2006
  ident: 10.1016/j.actbio.2018.04.006_b0510
  article-title: Vascular targeted nanoparticles for imaging and treatment of brain tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-0946
– volume: 151
  start-page: 458
  year: 2010
  ident: 10.1016/j.actbio.2018.04.006_b0165
  article-title: Minireview: Nanoparticles and the immune system
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1082
– volume: 28
  start-page: 1242
  year: 2013
  ident: 10.1016/j.actbio.2018.04.006_b0225
  article-title: Preparation of PLGA ceftiofur hydrochlorate lungtargeted microsphere with spray drying process
  publication-title: J. Wuhan Univ. Technol. Sci. Ed.
  doi: 10.1007/s11595-013-0853-8
SSID ssj0038128
Score 2.6464684
SecondaryResourceType review_article
Snippet [Display omitted] Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging....
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 38
SubjectTerms Animals
Biocompatibility
Biocompatible Materials - chemistry
Biodegradability
Biodegradation
Biomedical materials
Drug delivery
Drug delivery systems
Glycolic acid
Humans
Imaging
Materials Testing
Medical imaging
Microfluidics
Microfluidics - instrumentation
Microfluidics - methods
Microparticles
Nanoparticles
Nanotechnology
Organic chemistry
Particle physics
Particles
Poly(lactic-co-glycolic acid)
Polylactic acid
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Polylactide-co-glycolide
Polymers
Properties (attributes)
Synthesis
Theranostics
Upconversion
Title Customizing poly(lactic-co-glycolic acid) particles for biomedical applications
URI https://dx.doi.org/10.1016/j.actbio.2018.04.006
https://www.ncbi.nlm.nih.gov/pubmed/29653217
https://www.proquest.com/docview/2087381328
https://www.proquest.com/docview/2025319013
Volume 73
WOSCitedRecordID wos000436222600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038128
  issn: 1742-7061
  databaseCode: AIEXJ
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHxDeFMQWJA6gycr5q-1hVQ1CmDYmCeoscJxkpJamaBDb-ep7txI0oY-zAJYpsx7Lzfnl-z3nvZ4ReMJ7RQIwZBvcnw0FCMizAMMaxTGgislBKzaX3-YgeH7PFgn9o93QrfZwALQp2dsbX_1XUUAbCVqmzVxC37RQK4B6EDlcQO1z_SfDTBuy5b_lPnWZeqoOk2UpnQmFZ4tPVuVRMwCMh1cD4aN1Fxpm4TZ2MbwgEen-2-xbsRNZCtxO1nk1u9frHH3nSZs8k57Utfl9WX77mJvXsZHVqy-cmPmDWbJbbdLTpptE72kdNXo1mr_t7Ei7bxk61ahQcbkyJoVnv9Cz1e4rSULq0S66hnN1R5mZfYQnAqmFaKgyPaVpa8gfu7N_WNBtp2AWxLSPTS6R6iUgQaZ72PY-GnA3Q3uTd4WLWreBgxOgzee0supRLHRe4O5qLTJqLXBZtuszvoNutz-FMjKTvomtpcQ_d6jFR3kcnPdQ4CjUvdzHjKMy8cixiHECMs0WM00fMA_TpzeF8-ha3Z21gCTZvjQWTYBp7MmNp4KUsdgmjgieBG48DN_E5S-JYrUUsESTzqQS7mIiUeDQlUMNj_yEaFGWRPkZORt1MZDwmXIZBlo5jkbIQ-kxU0n7MwyHyu9cVyZaIXp2Hsor-JqwhwvaptSFiuaQ97SQRtcakMRIjgNclT-53gova77qCekYBF77Hhui5rQZVrP6viSItG9XGUysaOFVD9MgI3A7V4-PQB_f_yRWn8RTd3H5g-2hQb5r0Gbohv9d5tTlA1-mCHbTw_QWPdrgB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customizing+poly%28lactic-co-glycolic+acid%29+particles+for+biomedical+applications&rft.jtitle=Acta+biomaterialia&rft.au=Swider%2C+Edyta&rft.au=Koshkina%2C+Olga&rft.au=Tel%2C+Jurjen&rft.au=Cruz%2C+Luis+J.&rft.date=2018-06-01&rft.issn=1742-7061&rft.volume=73&rft.spage=38&rft.epage=51&rft_id=info:doi/10.1016%2Fj.actbio.2018.04.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2018_04_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon