Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke

•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance...

Full description

Saved in:
Bibliographic Details
Published in:Environment international Vol. 145; p. 106143
Main Authors: Li, Lianfa, Girguis, Mariam, Lurmann, Frederick, Pavlovic, Nathan, McClure, Crystal, Franklin, Meredith, Wu, Jun, Oman, Luke D., Breton, Carrie, Gilliland, Frank, Habre, Rima
Format: Journal Article
Language:English
Published: Goddard Space Flight Center Elsevier Ltd 01.12.2020
Elsevier
Subjects:
ISSN:0160-4120, 1873-6750, 1873-6750
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first