Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke

•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environment international Ročník 145; s. 106143
Hlavní autori: Li, Lianfa, Girguis, Mariam, Lurmann, Frederick, Pavlovic, Nathan, McClure, Crystal, Franklin, Meredith, Wu, Jun, Oman, Luke D., Breton, Carrie, Gilliland, Frank, Habre, Rima
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Goddard Space Flight Center Elsevier Ltd 01.12.2020
Elsevier
Predmet:
ISSN:0160-4120, 1873-6750, 1873-6750
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.
AbstractList •California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.
Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g. wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use.
Estimating PM₂.₅ concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use.Using ensemble-based deep learning with big data fused from multiple sources we developed a PM₂.₅ prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM₂.₅ emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM₂.₅ was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model.Ensemble deep learning to predict PM₂.₅ achieved an overall mean training RMSE of 1.54 μg/m³ (R²: 0.94) and test RMSE of 2.29 μg/m³ (R²: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM₂.₅ sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m³). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM₂.₅. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers.Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM₂.₅ has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.
Introduction: Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Methods: Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Results: Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Conclusion: Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.
Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use.INTRODUCTIONEstimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use.Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008-2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model.METHODSUsing ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008-2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model.Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers.RESULTSEnsemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (<3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers.Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.CONCLUSIONOur method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.
ArticleNumber 106143
Audience PUBLIC
Author Wu, Jun
Franklin, Meredith
Pavlovic, Nathan
McClure, Crystal
Breton, Carrie
Girguis, Mariam
Habre, Rima
Li, Lianfa
Oman, Luke D.
Lurmann, Frederick
Gilliland, Frank
AuthorAffiliation 1. Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing, China
3. Sonoma Technology, Inc., Petaluma, CA, USA
5. Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, USA
4. Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA
AuthorAffiliation_xml – name: 3. Sonoma Technology, Inc., Petaluma, CA, USA
– name: 1. Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– name: 5. Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, USA
– name: 2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing, China
– name: 4. Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA
Author_xml – sequence: 1
  givenname: Lianfa
  surname: Li
  fullname: Li, Lianfa
  email: lianfali@usc.edu
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Mariam
  surname: Girguis
  fullname: Girguis, Mariam
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Frederick
  surname: Lurmann
  fullname: Lurmann, Frederick
  organization: Sonoma Technology, Inc., Petaluma, CA, USA
– sequence: 4
  givenname: Nathan
  orcidid: 0000-0003-2127-3940
  surname: Pavlovic
  fullname: Pavlovic, Nathan
  organization: Sonoma Technology, Inc., Petaluma, CA, USA
– sequence: 5
  givenname: Crystal
  orcidid: 0000-0001-7477-5528
  surname: McClure
  fullname: McClure, Crystal
  organization: Sonoma Technology, Inc., Petaluma, CA, USA
– sequence: 6
  givenname: Meredith
  surname: Franklin
  fullname: Franklin, Meredith
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 7
  givenname: Jun
  orcidid: 0000-0002-2693-7112
  surname: Wu
  fullname: Wu, Jun
  organization: Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA
– sequence: 8
  givenname: Luke D.
  orcidid: 0000-0002-5487-2598
  surname: Oman
  fullname: Oman, Luke D.
  organization: Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, USA
– sequence: 9
  givenname: Carrie
  surname: Breton
  fullname: Breton, Carrie
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 10
  givenname: Frank
  surname: Gilliland
  fullname: Gilliland, Frank
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 11
  givenname: Rima
  orcidid: 0000-0003-2103-1706
  surname: Habre
  fullname: Habre, Rima
  email: habre@usc.edu
  organization: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
BookMark eNqFUk1v1DAQjVAR3Rb-QQ85csni7yQckFBVoFIRHOBsOfZk68WxF9vZqv8e72aFVA70ZHnevKc3M--iOvPBQ1VdYbTGCIt32zX4vfV5TRA5lARm9EW1wl1LG9FydFatShtqGCbovLpIaYsQIqzjr6pzSvoOtVSsqnzjE0yDg2ZQCUxtAHa1AxW99Zt6DLGGlO2k8uH7_StZ8zrsIdbXytmCeqvqB5vv62l22aYwRw31YDe1UVnV1ms3mwPzwToz2gh1msIveF29HJVL8Ob0XlY_P938uP7S3H37fHv98a7RXKDcKIGBDwYoEUKrVlOkOsx51zJOFO2YIoZhjHQPQvCeMqw5YSNniKJ2xILRy-p20TVBbeUuljniowzKymMhxI1UMVvtQGI09JgahYdBsIFSpXtlaNupoeU9I7pofVi0dvMwgdHgc1TuiehTxNt7uQl72RYjHSZF4O1JIIbfc9mqnGzS4JzyEOYkCecEYdyVSZ5tZUz0xRXrSitbWnUMKUUY_zrCSB5yIrdyyYk85EQuOSm09__QtM3lyOHg3brnyFcL2aukZGGkI8wR6sQRPm0Kymn3FqJM2oLXYEoAdC67t__X_wPjF-Rz
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_154103
crossref_primary_10_1016_j_scs_2023_104653
crossref_primary_10_1016_j_scitotenv_2024_171122
crossref_primary_10_3390_rs15174246
crossref_primary_10_1109_TGRS_2023_3317905
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1016_j_uclim_2025_102566
crossref_primary_10_1016_j_envint_2022_107719
crossref_primary_10_1016_j_envpol_2022_119347
crossref_primary_10_3390_atmos13010071
crossref_primary_10_1016_j_rse_2022_112890
crossref_primary_10_1016_j_envpol_2025_125937
crossref_primary_10_1007_s00521_024_09637_7
crossref_primary_10_1007_s40808_025_02365_4
crossref_primary_10_1029_2022EF003468
crossref_primary_10_1016_j_jhydrol_2024_131949
crossref_primary_10_1016_j_scitotenv_2024_178206
crossref_primary_10_1016_j_jclepro_2025_144813
crossref_primary_10_3390_su15032609
crossref_primary_10_1146_annurev_biodatasci_110920_093120
crossref_primary_10_1111_all_15667
crossref_primary_10_1016_j_ufug_2025_128693
crossref_primary_10_1038_s41598_025_05332_2
crossref_primary_10_1080_02626667_2023_2248112
crossref_primary_10_1016_j_atmosenv_2023_119993
crossref_primary_10_3390_atmos13020255
crossref_primary_10_3389_fenvs_2023_1223160
crossref_primary_10_1016_j_isprsjprs_2025_04_019
crossref_primary_10_3390_rs13214341
crossref_primary_10_3390_atmos14020231
crossref_primary_10_1111_ppe_12838
crossref_primary_10_1038_s41598_025_88086_1
crossref_primary_10_1016_j_scitotenv_2022_160446
crossref_primary_10_3390_rs13183790
crossref_primary_10_1016_j_isprsjprs_2021_12_002
crossref_primary_10_1016_j_spasta_2021_100533
crossref_primary_10_1038_s41598_023_29845_w
crossref_primary_10_1016_j_jclepro_2022_134656
crossref_primary_10_1007_s40808_023_01831_1
crossref_primary_10_1016_j_apr_2025_102406
crossref_primary_10_3390_atmos15121469
crossref_primary_10_1016_j_scitotenv_2022_159548
crossref_primary_10_3390_rs14143392
crossref_primary_10_1088_2632_2153_adb67a
crossref_primary_10_1016_j_envint_2022_107373
crossref_primary_10_1021_acs_est_4c10194
crossref_primary_10_1016_j_envint_2024_108421
crossref_primary_10_1016_j_envint_2022_107691
crossref_primary_10_1016_j_atmosenv_2024_120374
crossref_primary_10_1038_s41370_022_00470_5
crossref_primary_10_1016_j_atmosenv_2024_120531
crossref_primary_10_1016_j_eti_2023_103272
crossref_primary_10_1109_TGRS_2021_3074569
crossref_primary_10_3390_s23218863
crossref_primary_10_1016_j_jclepro_2025_146384
crossref_primary_10_1016_j_apr_2021_101110
crossref_primary_10_3390_math8122178
crossref_primary_10_3390_rs15204973
crossref_primary_10_1071_WF22048
crossref_primary_10_59978_ar03020008
Cites_doi 10.5194/acp-12-9679-2012
10.1016/j.atmosenv.2013.10.063
10.1016/j.atmosenv.2018.11.028
10.1021/acs.est.5b03709
10.1016/j.atmosenv.2006.04.044
10.1016/j.atmosenv.2014.11.066
10.1038/s41370-017-0013-x
10.1371/annotation/21f6b02b-e533-46ca-9356-86a0eef8434e
10.1111/j.1467-9868.2005.00527.x
10.1007/s11869-020-00826-6
10.3390/atmos7100129
10.1289/ehp.1409277
10.5194/acp-18-15921-2018
10.1289/ehp.1104447
10.1016/j.atmosenv.2015.02.030
10.1021/acs.est.6b01438
10.1097/HJH.0000000000000342
10.1016/j.scitotenv.2015.09.133
10.1289/ehp.0800123
10.1016/j.envint.2018.12.025
10.1029/2005JD006996
10.1016/j.rse.2009.08.009
10.1021/es400039u
10.1016/j.atmosenv.2016.11.066
10.5194/acp-14-6049-2014
10.1016/j.jenvman.2011.03.015
10.1016/j.rse.2017.06.001
10.3109/10408444.2013.861796
10.1016/j.envres.2014.06.029
10.1016/j.atmosenv.2018.03.017
10.1016/j.atmosenv.2010.06.060
10.1016/S1352-2310(00)00330-7
10.1002/2014GL059576
10.1080/09603123.2016.1217315
10.1016/j.apr.2016.12.014
10.1016/j.rse.2013.08.032
10.5194/acp-14-6643-2014
10.1016/j.scitotenv.2018.11.218
10.1021/acs.est.5b00859
10.1021/acs.est.5b01413
10.5194/acp-14-2015-2014
10.1016/j.isprsjprs.2018.09.006
10.1007/s11356-019-04644-x
10.1175/JCLI-D-16-0609.1
10.1016/j.atmosenv.2011.08.066
10.1038/jes.2015.41
10.1016/j.rse.2018.09.001
10.1021/acs.est.5b05940
10.1016/j.envpol.2018.07.016
10.3389/fnins.2018.01000
10.1016/j.envint.2019.104909
10.1175/BAMS-D-14-00110.1
10.3390/rs8030262
10.1016/j.atmosenv.2014.12.010
10.5194/amt-12-3303-2019
10.5194/acp-14-10013-2014
10.1021/acs.est.7b01210
10.1021/acs.est.9b03799
10.1136/thoraxjnl-2013-204492
10.1016/j.rse.2019.111221
10.1186/s13040-017-0155-3
10.1080/02786820118957
10.1016/j.atmosenv.2006.03.016
10.1021/acs.est.5b06121
10.5194/amt-11-5741-2018
10.1080/10618600.2014.907095
10.1214/aos/1176350057
10.1016/j.envint.2019.04.057
10.1016/j.rse.2017.07.023
10.1016/j.rse.2019.111584
10.1007/s11356-014-3458-7
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright Determination: GOV_PERMITTED
Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright Determination: GOV_PERMITTED
– notice: Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
CYE
CYI
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.envint.2020.106143
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
EndPage 106143
ExternalDocumentID oai_doaj_org_article_10b913da1bb64b33ac9ad378ab75942c
PMC7643812
10_1016_j_envint_2020_106143
20205008643
S0160412020320985
GeographicLocations California
GeographicLocations_xml – name: California
GrantInformation 4UH3OD023287
P30ES007048
281945.02.80.01.01
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSH
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAYWO
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CYE
CYI
EFKBS
EFLBG
~HD
9DU
AAYXX
AGQPQ
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c560t-a61e5bde3266ca7c30a815587452a384a2d4110c9e6659341c524f540307f1643
IEDL.DBID DOA
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580632000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0160-4120
1873-6750
IngestDate Fri Oct 03 12:45:57 EDT 2025
Tue Sep 30 16:01:17 EDT 2025
Wed Oct 01 14:29:47 EDT 2025
Wed Oct 01 14:16:59 EDT 2025
Sat Nov 29 07:26:34 EST 2025
Tue Nov 18 21:01:38 EST 2025
Fri Nov 21 15:49:36 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wildfires
High spatiotemporal resolution
Air pollution exposure
PM2.5
Machine learning
California
Remote sensing
Air Quality
Air Pollution Exposure
Wildfire
Pm2.5
Remote Sensing
High Spatiotemporal Resolution
Machine Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-a61e5bde3266ca7c30a815587452a384a2d4110c9e6659341c524f540307f1643
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Crystal McClure: Resource, Data curation
Luke D. Oman: Resource, Data curation
Rima Habre: Project administration, Investigation, Conceptualization, Writing - Review & Editing
Frank Gilliland: Project administration, Writing - Review
Carrie Breton: Project administration, Writing - Review
Jun Wu: Resources, Data curation, Writing - Review & Editing
Lianfa Li: Conceptualization, Methodology, Formal Analysis, Validation, Writing - Original Draft and Revising
Mariam Girguis: Investigation, Data curation
Frederick Lurmann: Conceptualization, Resource, Data curation, Writing - Review & Editing
Nathan Pavlovic: Resource, Data curation, Writing - Review & Editing
Meredith Franklin: Conceptualization, Resource, Writing - Review & Editing
ORCID 0000-0003-2127-3940
0000-0003-2103-1706
0000-0002-2693-7112
0000-0001-7477-5528
0000-0002-5487-2598
OpenAccessLink https://doaj.org/article/10b913da1bb64b33ac9ad378ab75942c
PMID 32980736
PQID 2446994248
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_10b913da1bb64b33ac9ad378ab75942c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643812
proquest_miscellaneous_2552011859
proquest_miscellaneous_2446994248
crossref_primary_10_1016_j_envint_2020_106143
crossref_citationtrail_10_1016_j_envint_2020_106143
nasa_ntrs_20205008643
elsevier_sciencedirect_doi_10_1016_j_envint_2020_106143
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
PublicationTitle Environment international
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lv, Hu, Chang, Russell, Bai (b0300) 2016; 50
Goldstein, Kapelner, Bleich, Pitkin (b0140) 2015; 24
Livingston, Redemann, Shinozuka, Johnson, Russell, Zhang, Mattoo, Remer, Levy, Munchak, Ramachandran (b0285) 2014; 14
Zheng, Wang, Wang, Zhang, Wu, Zhang, Yu, Guan (b0455) 2019; 12
Stein, Draxler, Rolph, Stunder, Cohen, Ngan (b0350) 2015; 96
Beckerman, Jerrett, Serre, Martin, Lee, van Donkelaar, Ross, Su, Burnett (b0025) 2013; 47
Li, Zhang, Meng, Fang, Ge, Wang, Wang, Wu, Kan (b0260) 2018; 217
Li, Girguis, Lurmann, Wu, Urman, Rappaport, Ritz, Franklin, Breton, Gilliland, Habre (b0265) 2019; 128
Wang, Jia, Xia, Wu, Wei, Shang, Yang, Xue, Dou (b0395) 2019; 12
Finkenstadt, Held, Isham (b0110) 2007
Dennison, Brewer, Arnold, Moritz (b0065) 2014; 41
Biancofiore, Busilacchio, Verdecchia, Tomassetti, Aruffo, Bianco, Di Tommaso, Colangeli, Rosatelli, Di Carlo (b0035) 2017; 8
Fast, Allan, Bahreini, Craven, Emmons, Ferrare, Hayes, Hodzic, Holloway, Hostetler, Jimenez, Jonsson, Liu, Liu, Metcalf, Middlebrook, Nowak, Pekour, Perring, Russell, Sedlacek, Seinfeld, Setyan, Shilling, Shrivastava, Springston, Song, Subramanian, Taylor, Vinoj, Yang, Zaveri, Zhang (b0100) 2014; 14
NASA, 2018. MERRA-2 GMI In.
Li, Franklin, Girguis, Lurmann, Wu, Pavlovic, Breton, Gilliland, Habre (b0255) 2020; 237
Goodfellow, Bengio, Courville (b0145) 2016
WHO, 2013b. Review of evidence on health aspects of air pollution—REVIHAAP project: Final technical report. The WHO European Centre for Environment and Health, Bonn, Switzerland.
Carlstein (b0050) 1986; 14
He, Zhang, Ren, Sun (b0160) 2016
Allen, Adar, Avol, Cohen, Curl, Larson, Liu, Sheppard, Kaufman (b0010) 2012; 120
Kloog, Koutrakis, Coull, Lee, Schwartz (b0200) 2011; 45
Ichoku, Ellison (b0185) 2014; 14
Atkinson, Kang, Anderson, Mills, Walton (b0015) 2014; 69
Lee, Chatfield, Strawa (b0235) 2016; 50
Li, Carlson, Lacis (b0250) 2015; 102
Bai, Wu, Qin, Zhang, Shen, Zhou (b0020) 2016; 8
Xiao, Wang, Chang, Meng, Geng, Lyapustin, Liu (b0425) 2017; 199
Monn (b0320) 2001; 35
Thompson, Calkin (b0370) 2011; 92
Wei, Huang, Li, Xue, Peng, Sun, Cribb (b0405) 2019; 231
Larsen, Reich, Ruminski, Rappold (b0225) 2018; 28
Brauer, Freedman, Frostad, van Donkelaar, Martin, Dentener, van Dingenen, Estep, Amini, Apte, Balakrishnan, Barregard, Broday, Feigin, Ghosh, Hopke, Knibbs, Kokubo, Liu, Ma, Morawska, Sangrador, Shaddick, Anderson, Vos, Forouzanfar, Burnett, Cohen (b0040) 2016; 50
Girguis, M.S., Li, L.F., Lurmann, F., Wu, J., Urman, R., Rappaport, E., Breton, C., Gilliland, F., Stram, D., & Habre, R., 2020. Exposure measurement error in air pollution studies: the impact of shared, multiplicative measurement error on epidemiological health risk estimates. Air Qual. Atmos. Health, accepted.
Kloog (b0195) 2016; 26
Chicco (b0055) 2017; 10
EPA, 2014. Guidance for PM2.s Permit Modeling. In: United States Environmental Protection Agency.
Lyapustin, Korkin, Wang, Quayle, Laszlo (b0305) 2012; 12
Gupta, Christopher, Wang, Gehrig, Lee, Kumar (b0155) 2006; 40
Hu, Belle, Meng, Wildani, Waller, Strickland, Liu (b0170) 2017; 51
Knote, Tuccella, Curci, Emmons, Orlando, Madronich, Baro, Jimenez-Guerrero, Luecken, Hogrefe, Forkel, Werhahn, Hirtl, Perez, San Jose, Giordano, Brunner, Yahya, Zhang (b0205) 2015; 115
Lee, Li, Kim, Kokhanovsky (b0240) 2009
Chu, Liu, Li, Liu, Lu, Lu, Mao, Chen, Li, Ren, Liu, Tian, Zhu, Xiang (b0060) 2016; 7
Di, Kloog, Koutrakis, Lyapustin, Wang, Schwartz (b0075) 2016; 50
Lee (b0230) 2019; 53
Brokamp, Jandarov, Rao, LeMasters, Ryan (b0045) 2017; 151
Koelemeijer, Homan, Matthijsen (b0210) 2006; 40
van Donkelaar, Martin, Park (b0390) 2006; 111
Lyapustin, Wang, Korkin, Huang (b0315) 2018; 11
Hu, Waller, Lyapustin, Wang, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Puttaswamy, Liu (b0175) 2014; 140
Larsen, A., Yang, S., Reich, B.J., Rappold, A.G., 2020. A spatial causal analysis of wildland fire-contributed PM2. 5 using numerical model output. arXiv preprint arXiv:2003.06037.
Liu, Paciorek, Koutrakis (b0280) 2009; 117
Lee, Kloog, Chudnovsky, Lyapustin, Wang, Melly, Coull, Koutrakis, Schwartz (b0245) 2015; 26
Zhai, Li, Zou, Sang, Fang, Xu (b0450) 2018; 181
Su, Li, Kahn (b0360) 2018; 18
Lyapustin, Wang, Laszlo, Kahn, Korkin, Remer, Levy, Reid (b0310) 2011; 116
Xie, Wang, Zhang, Dong, Lv, Bai (b0430) 2015; 49
Randles, da Silva, Buchard, Colarco, Darmenov, Govindaraju, Smirnov, Holben, Ferrare, Hair, Shinozuka, Flynn (b0335) 2017; 30
Wang, Chen, Tao, Zhang, Su (b0400) 2010; 114
Friedman (b0115) 2001
WHO, 2013a. Health Effects of Particular Matter: Policy implications for countries in eastern Europe, Caucasus and central Asia.
Zou, Hastie (b0465) 2005; 67
He, Zhang, Ren, Sun (b0165) 2016
Western Regional Air Partnership, 2005. 2002 Fire Emission Inventory for the WRAP Region – Phase II, Project No. 178-6. pp. 1–97.
Tolocka, Solomon, Mitchell, Norris, Gemmill, Wiener, Vanderpool, Homolya, Rice (b0380) 2001; 34
Abatzoglou (b0005) 2011; 2011
Tai, Mickley, Jacob (b0365) 2010; 44
Liang, Zhang, Zhao, Ruan, Lian, Fan (b0270) 2014; 32
Fruin, Urman, Lurmann, McConnell, Gauderman, Rappaport, Franklin, Gilliland, Shafer, Gorski, Avol (b0120) 2014; 83
Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 4765–4774.
Kunzli, Jerrett, Garcia-Esteban, Basagana, Beckermann, Gilliland, Medina, Peters, Hodis, Mack (b0215) 2010; 5
Xing, Xu, Shi, Lian (b0435) 2016; 8
Feng, Li, Zhu, Hou, Jin, Wang (b0105) 2015; 107
NIST/SEMATECH, 2016. e-Handbook of Statistical Methods.
Huang, Xiao, Meng, Geng, Wang, Lyapustin, Gu, Liu (b0180) 2018; 242
Lu, Xu, Cheng, Dong, Guo, Jiang, Zheng (b0290) 2015; 136
Toth, Zhang, Campbell, Hyer, Reid, Shi, Westphal (b0385) 2014; 14
EPA (b0090) 2018
Ester, Kriegel, Sander, Xu (b0095) 1996
Just, Wright, Schwartz, Coull, Baccarelli, Tellez-Rojo, Moody, Wang, Lyapustin, Kloog (b0190) 2015; 49
Strode, Ziemke, Oman, Lamsal, Olsen, Liu (b0355) 2019; 199
Lippmann (b0275) 2014; 44
Shirmohammadi, Hasheminassab, Saffari, Schauer, Delfino, Sioutas (b0345) 2016; 541
Guo, Tang, Gong, Zhang (b0150) 2017; 198
Yang, Jin, Danielson, Homer, Gass, Bender, Case, Costello, Dewitz, Fry, Funk, Granneman, Liknes, Rigge, Xian (b0440) 2018; 146
Girguis, Li, Lurmann, Wu, Urman, Rappaport, Breton, Gilliland, Stram, Habre (b0130) 2019; 125
Zhu, Liu, Chen, Yao, Che, Cao (b0460) 2015; 22
Yuan, Zhang, Gao, Tian (b0445) 2019; 26
Thomson (b0375) 2010; 4
Reid, Brauer, Johnston, Jerrett, Balmes, Elliott (b0340) 2016; 124
EPA, 2017. Health and Environmental Effects of Particulate Matter (PM).
Fu, Guo, Cheung, Yung (b0125) 2019; 655
Bhandari, A., 2020. Feature Scaling for Machine Learning: Understanding the Difference Between Normalization vs. Standardization.
Di, Amini, Shi, Kloog, Silvern, Kelly, Sabath, Choirat, Koutrakis, Lyapustin, Wang, Mickley, Schwartz (b0070) 2019; 130
Girguis (10.1016/j.envint.2020.106143_b0130) 2019; 125
Randles (10.1016/j.envint.2020.106143_b0335) 2017; 30
Fast (10.1016/j.envint.2020.106143_b0100) 2014; 14
Lippmann (10.1016/j.envint.2020.106143_b0275) 2014; 44
Lv (10.1016/j.envint.2020.106143_b0300) 2016; 50
Allen (10.1016/j.envint.2020.106143_b0010) 2012; 120
Chu (10.1016/j.envint.2020.106143_b0060) 2016; 7
Liang (10.1016/j.envint.2020.106143_b0270) 2014; 32
10.1016/j.envint.2020.106143_b0325
Feng (10.1016/j.envint.2020.106143_b0105) 2015; 107
Monn (10.1016/j.envint.2020.106143_b0320) 2001; 35
Lee (10.1016/j.envint.2020.106143_b0235) 2016; 50
Lyapustin (10.1016/j.envint.2020.106143_b0310) 2011; 116
Thompson (10.1016/j.envint.2020.106143_b0370) 2011; 92
Li (10.1016/j.envint.2020.106143_b0250) 2015; 102
Shirmohammadi (10.1016/j.envint.2020.106143_b0345) 2016; 541
Atkinson (10.1016/j.envint.2020.106143_b0015) 2014; 69
He (10.1016/j.envint.2020.106143_b0160) 2016
Fruin (10.1016/j.envint.2020.106143_b0120) 2014; 83
Strode (10.1016/j.envint.2020.106143_b0355) 2019; 199
10.1016/j.envint.2020.106143_b0330
Xie (10.1016/j.envint.2020.106143_b0430) 2015; 49
Wang (10.1016/j.envint.2020.106143_b0400) 2010; 114
Friedman (10.1016/j.envint.2020.106143_b0115) 2001
Lee (10.1016/j.envint.2020.106143_b0230) 2019; 53
10.1016/j.envint.2020.106143_b0295
Zou (10.1016/j.envint.2020.106143_b0465) 2005; 67
Carlstein (10.1016/j.envint.2020.106143_b0050) 1986; 14
10.1016/j.envint.2020.106143_b0135
Just (10.1016/j.envint.2020.106143_b0190) 2015; 49
10.1016/j.envint.2020.106143_b0410
Gupta (10.1016/j.envint.2020.106143_b0155) 2006; 40
Li (10.1016/j.envint.2020.106143_b0255) 2020; 237
10.1016/j.envint.2020.106143_b0415
Reid (10.1016/j.envint.2020.106143_b0340) 2016; 124
Ester (10.1016/j.envint.2020.106143_b0095) 1996
Xiao (10.1016/j.envint.2020.106143_b0425) 2017; 199
Lyapustin (10.1016/j.envint.2020.106143_b0305) 2012; 12
Zhu (10.1016/j.envint.2020.106143_b0460) 2015; 22
Thomson (10.1016/j.envint.2020.106143_b0375) 2010; 4
Chicco (10.1016/j.envint.2020.106143_b0055) 2017; 10
Tai (10.1016/j.envint.2020.106143_b0365) 2010; 44
Wei (10.1016/j.envint.2020.106143_b0405) 2019; 231
Li (10.1016/j.envint.2020.106143_b0265) 2019; 128
Lu (10.1016/j.envint.2020.106143_b0290) 2015; 136
EPA (10.1016/j.envint.2020.106143_b0090) 2018
Knote (10.1016/j.envint.2020.106143_b0205) 2015; 115
Di (10.1016/j.envint.2020.106143_b0070) 2019; 130
Li (10.1016/j.envint.2020.106143_b0260) 2018; 217
Hu (10.1016/j.envint.2020.106143_b0170) 2017; 51
10.1016/j.envint.2020.106143_b0220
Abatzoglou (10.1016/j.envint.2020.106143_b0005) 2011; 2011
10.1016/j.envint.2020.106143_b0420
Liu (10.1016/j.envint.2020.106143_b0280) 2009; 117
Brokamp (10.1016/j.envint.2020.106143_b0045) 2017; 151
Koelemeijer (10.1016/j.envint.2020.106143_b0210) 2006; 40
Stein (10.1016/j.envint.2020.106143_b0350) 2015; 96
Dennison (10.1016/j.envint.2020.106143_b0065) 2014; 41
Beckerman (10.1016/j.envint.2020.106143_b0025) 2013; 47
Goodfellow (10.1016/j.envint.2020.106143_b0145) 2016
Goldstein (10.1016/j.envint.2020.106143_b0140) 2015; 24
Tolocka (10.1016/j.envint.2020.106143_b0380) 2001; 34
Yang (10.1016/j.envint.2020.106143_b0440) 2018; 146
Zhai (10.1016/j.envint.2020.106143_b0450) 2018; 181
Huang (10.1016/j.envint.2020.106143_b0180) 2018; 242
Yuan (10.1016/j.envint.2020.106143_b0445) 2019; 26
Hu (10.1016/j.envint.2020.106143_b0175) 2014; 140
Xing (10.1016/j.envint.2020.106143_b0435) 2016; 8
Brauer (10.1016/j.envint.2020.106143_b0040) 2016; 50
Lyapustin (10.1016/j.envint.2020.106143_b0315) 2018; 11
Bai (10.1016/j.envint.2020.106143_b0020) 2016; 8
Lee (10.1016/j.envint.2020.106143_b0240) 2009
Su (10.1016/j.envint.2020.106143_b0360) 2018; 18
Livingston (10.1016/j.envint.2020.106143_b0285) 2014; 14
10.1016/j.envint.2020.106143_b0030
Kloog (10.1016/j.envint.2020.106143_b0195) 2016; 26
Kunzli (10.1016/j.envint.2020.106143_b0215) 2010; 5
Guo (10.1016/j.envint.2020.106143_b0150) 2017; 198
Biancofiore (10.1016/j.envint.2020.106143_b0035) 2017; 8
Fu (10.1016/j.envint.2020.106143_b0125) 2019; 655
He (10.1016/j.envint.2020.106143_b0165) 2016
Wang (10.1016/j.envint.2020.106143_b0395) 2019; 12
Zheng (10.1016/j.envint.2020.106143_b0455) 2019; 12
Di (10.1016/j.envint.2020.106143_b0075) 2016; 50
Lee (10.1016/j.envint.2020.106143_b0245) 2015; 26
Larsen (10.1016/j.envint.2020.106143_b0225) 2018; 28
Toth (10.1016/j.envint.2020.106143_b0385) 2014; 14
van Donkelaar (10.1016/j.envint.2020.106143_b0390) 2006; 111
10.1016/j.envint.2020.106143_b0080
Ichoku (10.1016/j.envint.2020.106143_b0185) 2014; 14
Kloog (10.1016/j.envint.2020.106143_b0200) 2011; 45
Finkenstadt (10.1016/j.envint.2020.106143_b0110) 2007
10.1016/j.envint.2020.106143_b0085
References_xml – volume: 7
  year: 2016
  ident: b0060
  article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth
  publication-title: Atmosphere
– volume: 51
  start-page: 6936
  year: 2017
  end-page: 6944
  ident: b0170
  article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 1171
  year: 1986
  end-page: 1179
  ident: b0050
  article-title: The use of subseries values for estimating the variance of a general statistic from a stationary sequence
  publication-title: Ann. Statist.
– volume: 96
  start-page: 2059
  year: 2015
  end-page: 2077
  ident: b0350
  article-title: Noaa's hysplit atmospheric transport and dispersion modeling system
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 116
  year: 2011
  ident: b0310
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm
  publication-title: J. Geophys. Res.-Atmos.
– volume: 41
  start-page: 2928
  year: 2014
  end-page: 2933
  ident: b0065
  article-title: Large wildfire trends in the western United States, 1984–2011
  publication-title: Geophys. Res. Lett.
– year: 2009
  ident: b0240
  article-title: Atmospheric aerosol monitoring from satellite observations: a history of three decades
  publication-title: Atmospheric and Biological Environmental Monitoring
– volume: 26
  start-page: 377
  year: 2015
  end-page: 384
  ident: b0245
  article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the southeastern U.S. 2003–2011
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 541
  start-page: 1083
  year: 2016
  end-page: 1096
  ident: b0345
  article-title: Fine and ultrafine particulate organic carbon in the Los Angeles basin: trends in sources and composition
  publication-title: Sci. Total Environ.
– volume: 114
  start-page: 50
  year: 2010
  end-page: 63
  ident: b0400
  article-title: Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 652
  year: 2017
  end-page: 659
  ident: b0035
  article-title: Recursive neural network model for analysis and forecast of PM10 and PM2.5
  publication-title: Atmos. Pollut. Res.
– volume: 32
  start-page: 2130
  year: 2014
  end-page: 2141
  ident: b0270
  article-title: Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis
  publication-title: J. Hypertens.
– volume: 40
  start-page: 5880
  year: 2006
  end-page: 5892
  ident: b0155
  article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities
  publication-title: Atmos. Environ.
– reference: Western Regional Air Partnership, 2005. 2002 Fire Emission Inventory for the WRAP Region – Phase II, Project No. 178-6. pp. 1–97.
– volume: 49
  start-page: 8576
  year: 2015
  end-page: 8584
  ident: b0190
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City
  publication-title: Environ. Sci. Technol.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0160
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr)
– volume: 12
  start-page: 3303
  year: 2019
  end-page: 3315
  ident: b0395
  article-title: Relationship analysis of PM 2.5 and boundary layer height using an aerosol and turbulence detection lidar
  publication-title: Atmos. Meas. Tech.
– volume: 5
  year: 2010
  ident: b0215
  article-title: Ambient air pollution and the progression of atherosclerosis in adults
  publication-title: PLoS ONE
– volume: 26
  start-page: 13963
  year: 2019
  end-page: 13983
  ident: b0445
  article-title: Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: an updated systematic review based on cohort studies
  publication-title: Environ. Sci. Pollut. Res.
– reference: NASA, 2018. MERRA-2 GMI In.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0095
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD'96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 199
  start-page: 323
  year: 2019
  end-page: 333
  ident: b0355
  article-title: Global changes in the diurnal cycle of surface ozone
  publication-title: Atmos. Environ.
– reference: Bhandari, A., 2020. Feature Scaling for Machine Learning: Understanding the Difference Between Normalization vs. Standardization.
– reference: Girguis, M.S., Li, L.F., Lurmann, F., Wu, J., Urman, R., Rappaport, E., Breton, C., Gilliland, F., Stram, D., & Habre, R., 2020. Exposure measurement error in air pollution studies: the impact of shared, multiplicative measurement error on epidemiological health risk estimates. Air Qual. Atmos. Health, accepted.
– volume: 102
  start-page: 260
  year: 2015
  end-page: 273
  ident: b0250
  article-title: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States?
  publication-title: Atmos. Environ.
– volume: 140
  start-page: 220
  year: 2014
  end-page: 232
  ident: b0175
  article-title: Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 12774
  year: 2019
  end-page: 12783
  ident: b0230
  article-title: Benefits of high resolution PM2.5 prediction using satellite MAIAC AOD and land use regression for exposure assessment: California examples
  publication-title: Environ. Sci. Technol.
– volume: 83
  start-page: 211
  year: 2014
  end-page: 219
  ident: b0120
  article-title: Spatial variation in particulate matter components over a large urban area
  publication-title: Atmos. Environ.
– volume: 14
  start-page: 6643
  year: 2014
  end-page: 6667
  ident: b0185
  article-title: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 2015
  year: 2014
  end-page: 2038
  ident: b0285
  article-title: Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008
  publication-title: Atmos. Chem. Phys.
– year: 2007
  ident: b0110
  article-title: Statistical Methods for Spatio-Temporal Systems
– volume: 50
  start-page: 4712
  year: 2016
  end-page: 4721
  ident: b0075
  article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ Sci Technol
– year: 2018
  ident: b0090
  article-title: 2014 National Emissions Inventory, version 2 Technical Support Document
– volume: 128
  start-page: 310
  year: 2019
  end-page: 323
  ident: b0265
  article-title: Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions
  publication-title: Environ. Int.
– volume: 11
  start-page: 5741
  year: 2018
  end-page: 5765
  ident: b0315
  article-title: MODIS collection 6 MAIAC algorithm
  publication-title: Atmos. Meas. Tech.
– volume: 40
  start-page: 5304
  year: 2006
  end-page: 5315
  ident: b0210
  article-title: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe
  publication-title: Atmos. Environ.
– volume: 44
  start-page: 299
  year: 2014
  end-page: 347
  ident: b0275
  article-title: Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: Coherence and public health implications
  publication-title: Crit. Rev. Toxicol.
– volume: 107
  start-page: 118
  year: 2015
  end-page: 128
  ident: b0105
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 4752
  year: 2016
  end-page: 4759
  ident: b0300
  article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 572
  year: 2016
  end-page: 577
  ident: b0195
  article-title: Fine particulate matter (PM2.5) association with peripheral artery disease admissions in northeastern United States
  publication-title: Int. J. Environ. Health Res.
– volume: 181
  start-page: 145
  year: 2018
  end-page: 154
  ident: b0450
  article-title: An improved geographically weighted regression model for PM2.5 concentration estimation in large areas
  publication-title: Atmos. Environ.
– volume: 115
  start-page: 553
  year: 2015
  end-page: 568
  ident: b0205
  article-title: Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 6546
  year: 2016
  end-page: 6555
  ident: b0235
  article-title: Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California, United States
  publication-title: Environ. Sci. Technol.
– volume: 10
  year: 2017
  ident: b0055
  article-title: Ten quick tips for machine learning in computational biology
  publication-title: Biodata Min.
– reference: Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 4765–4774.
– volume: 8
  start-page: 262
  year: 2016
  ident: b0020
  article-title: A geographically and temporallyweighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD
  publication-title: Remote Sens.
– volume: 237
  year: 2020
  ident: b0255
  article-title: Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: b0405
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
– volume: 242
  start-page: 675
  year: 2018
  end-page: 683
  ident: b0180
  article-title: Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain
  publication-title: Environ. Pollut.
– volume: 92
  start-page: 1895
  year: 2011
  end-page: 1909
  ident: b0370
  article-title: Uncertainty and risk in wildland fire management: a review
  publication-title: J. Environ. Manage.
– volume: 67
  start-page: 768
  year: 2005
  ident: b0465
  article-title: Regularization and variable selection via the elastic net (vol B 67, pg 301, 2005)
  publication-title: J. Roy. Stat. Soc. Ser. B-Stat. Methodology
– volume: 14
  start-page: 10013
  year: 2014
  end-page: 10060
  ident: b0100
  article-title: Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns
  publication-title: Atmos. Chem. Phys.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0115
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 24
  start-page: 44
  year: 2015
  end-page: 65
  ident: b0140
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graphical Stat.
– volume: 8
  start-page: E69
  year: 2016
  end-page: E74
  ident: b0435
  article-title: The impact of PM2.5 on the human respiratory system
  publication-title: J. Thoracic Disease
– volume: 2011
  year: 2011
  ident: b0005
  article-title: Development of gridded surface meteorological datafor ecological applications and modelling
  publication-title: Int. J. Climatol.
– volume: 30
  start-page: 6823
  year: 2017
  end-page: 6850
  ident: b0335
  article-title: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation
  publication-title: J. Clim.
– volume: 136
  start-page: 196
  year: 2015
  end-page: 204
  ident: b0290
  article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2. 5 and PM10 pollution in the Chinese population
  publication-title: Environ. Res.
– volume: 199
  start-page: 437
  year: 2017
  end-page: 446
  ident: b0425
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 15921
  year: 2018
  end-page: 15935
  ident: b0360
  article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors
  publication-title: Atmos. Chem. Phys.
– reference: NIST/SEMATECH, 2016. e-Handbook of Statistical Methods.
– volume: 12
  year: 2019
  ident: b0455
  article-title: Gestational exposure to particulate matter 2.5 (PM2.5) leads to spatial memory dysfunction and neurodevelopmental impairment in hippocampus of mice offspring
  publication-title: Front. Neurosci.
– volume: 198
  start-page: 140
  year: 2017
  end-page: 149
  ident: b0150
  article-title: Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model
  publication-title: Remote Sens. Environ.
– volume: 217
  start-page: 573
  year: 2018
  end-page: 586
  ident: b0260
  article-title: Estimation of PM2. 5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth
  publication-title: Remote Sens. Environ.
– reference: EPA, 2017. Health and Environmental Effects of Particulate Matter (PM).
– volume: 49
  start-page: 12280
  year: 2015
  end-page: 12288
  ident: b0430
  article-title: Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD
  publication-title: Environ. Sci. Technol.
– volume: 146
  start-page: 108
  year: 2018
  end-page: 123
  ident: b0440
  article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 130
  year: 2019
  ident: b0070
  article-title: An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution
  publication-title: Environ. Int.
– volume: 44
  start-page: 3976
  year: 2010
  end-page: 3984
  ident: b0365
  article-title: Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: implications for the sensitivity of PM2. 5 to climate change
  publication-title: Atmos. Environ.
– start-page: 630
  year: 2016
  end-page: 645
  ident: b0165
  article-title: Identity Mappings in Deep Residual Networks
  publication-title: Computer Vision - Eccv 2016 Pt Iv 9908
– reference: WHO, 2013a. Health Effects of Particular Matter: Policy implications for countries in eastern Europe, Caucasus and central Asia.
– volume: 120
  start-page: 824
  year: 2012
  end-page: 830
  ident: b0010
  article-title: Modeling the residential infiltration of outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)
  publication-title: Environ. Health Perspect.
– volume: 124
  start-page: 1334
  year: 2016
  end-page: 1343
  ident: b0340
  article-title: Critical review of health impacts of wildfire smoke exposure
  publication-title: Environ. Health Perspect.
– volume: 28
  start-page: 319
  year: 2018
  end-page: 327
  ident: b0225
  article-title: Impacts of fire smoke plumes on regional air quality, 2006–2013
  publication-title: J. Exposure Sci. Environ. Epidemiol.
– volume: 151
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0045
  article-title: Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 6267
  year: 2011
  end-page: 6275
  ident: b0200
  article-title: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 79
  year: 2016
  end-page: 88
  ident: b0040
  article-title: Ambient air pollution exposure estimation for the global burden of disease 2013
  publication-title: Environ. Sci. Technol.
– volume: 125
  start-page: 97
  year: 2019
  end-page: 106
  ident: b0130
  article-title: Exposure measurement error in air pollution studies: a framework for assessing shared, multiplicative measurement error in ensemble learning estimates of nitrogen oxides
  publication-title: Environ. Int.
– year: 2016
  ident: b0145
  article-title: Deep Learning
– volume: 117
  start-page: 886
  year: 2009
  end-page: 892
  ident: b0280
  article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information
  publication-title: Environ. Health Perspect.
– volume: 111
  year: 2006
  ident: b0390
  article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
  publication-title: J. Geophys. Res.-Atmos.
– volume: 12
  start-page: 9679
  year: 2012
  end-page: 9686
  ident: b0305
  article-title: Discrimination of biomass burning smoke and clouds in MAIAC algorithm
  publication-title: Atmos. Chem. Phys.
– volume: 4
  year: 2010
  ident: b0375
  article-title: Neocortical layer 6, a review
  publication-title: Front. Neuroanat.
– volume: 34
  start-page: 88
  year: 2001
  end-page: 96
  ident: b0380
  article-title: East versus West in the US: chemical characteristics of PM2.5 during the winter of 1999
  publication-title: Aerosol Sci. Technol.
– reference: WHO, 2013b. Review of evidence on health aspects of air pollution—REVIHAAP project: Final technical report. The WHO European Centre for Environment and Health, Bonn, Switzerland.
– volume: 22
  start-page: 3383
  year: 2015
  end-page: 3396
  ident: b0460
  article-title: Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
– volume: 69
  start-page: 660
  year: 2014
  end-page: 665
  ident: b0015
  article-title: Epidemiological time series studies of PM2. 5 and daily mortality and hospital admissions: a systematic review and meta-analysis
  publication-title: Thorax
– reference: EPA, 2014. Guidance for PM2.s Permit Modeling. In: United States Environmental Protection Agency.
– reference: Larsen, A., Yang, S., Reich, B.J., Rappold, A.G., 2020. A spatial causal analysis of wildland fire-contributed PM2. 5 using numerical model output. arXiv preprint arXiv:2003.06037.
– volume: 14
  start-page: 6049
  year: 2014
  end-page: 6062
  ident: b0385
  article-title: Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States
  publication-title: Atmos. Chem. Phys.
– volume: 47
  start-page: 7233
  year: 2013
  end-page: 7241
  ident: b0025
  article-title: A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States
  publication-title: Environ. Sci. Technol.
– volume: 655
  start-page: 1240
  year: 2019
  end-page: 1248
  ident: b0125
  article-title: The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 1
  year: 2001
  end-page: 32
  ident: b0320
  article-title: Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone
  publication-title: Atmos. Environ.
– volume: 12
  start-page: 9679
  year: 2012
  ident: 10.1016/j.envint.2020.106143_b0305
  article-title: Discrimination of biomass burning smoke and clouds in MAIAC algorithm
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-9679-2012
– ident: 10.1016/j.envint.2020.106143_b0325
– volume: 83
  start-page: 211
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0120
  article-title: Spatial variation in particulate matter components over a large urban area
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.10.063
– volume: 199
  start-page: 323
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0355
  article-title: Global changes in the diurnal cycle of surface ozone
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.11.028
– volume: 50
  start-page: 79
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0040
  article-title: Ambient air pollution exposure estimation for the global burden of disease 2013
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03709
– volume: 40
  start-page: 5304
  year: 2006
  ident: 10.1016/j.envint.2020.106143_b0210
  article-title: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.04.044
– volume: 115
  start-page: 553
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0205
  article-title: Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.066
– volume: 28
  start-page: 319
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0225
  article-title: Impacts of fire smoke plumes on regional air quality, 2006–2013
  publication-title: J. Exposure Sci. Environ. Epidemiol.
  doi: 10.1038/s41370-017-0013-x
– volume: 5
  year: 2010
  ident: 10.1016/j.envint.2020.106143_b0215
  article-title: Ambient air pollution and the progression of atherosclerosis in adults
  publication-title: PLoS ONE
  doi: 10.1371/annotation/21f6b02b-e533-46ca-9356-86a0eef8434e
– volume: 2011
  year: 2011
  ident: 10.1016/j.envint.2020.106143_b0005
  article-title: Development of gridded surface meteorological datafor ecological applications and modelling
  publication-title: Int. J. Climatol.
– start-page: 630
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0165
  article-title: Identity Mappings in Deep Residual Networks
– volume: 67
  start-page: 768
  year: 2005
  ident: 10.1016/j.envint.2020.106143_b0465
  article-title: Regularization and variable selection via the elastic net (vol B 67, pg 301, 2005)
  publication-title: J. Roy. Stat. Soc. Ser. B-Stat. Methodology
  doi: 10.1111/j.1467-9868.2005.00527.x
– ident: 10.1016/j.envint.2020.106143_b0135
  doi: 10.1007/s11869-020-00826-6
– ident: 10.1016/j.envint.2020.106143_b0415
– volume: 7
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0060
  article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth
  publication-title: Atmosphere
  doi: 10.3390/atmos7100129
– ident: 10.1016/j.envint.2020.106143_b0085
– start-page: 226
  year: 1996
  ident: 10.1016/j.envint.2020.106143_b0095
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 124
  start-page: 1334
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0340
  article-title: Critical review of health impacts of wildfire smoke exposure
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1409277
– volume: 18
  start-page: 15921
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0360
  article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-15921-2018
– start-page: 770
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0160
  article-title: Deep residual learning for image recognition
– volume: 120
  start-page: 824
  year: 2012
  ident: 10.1016/j.envint.2020.106143_b0010
  article-title: Modeling the residential infiltration of outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104447
– volume: 107
  start-page: 118
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0105
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.030
– volume: 50
  start-page: 6546
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0235
  article-title: Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California, United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01438
– volume: 32
  start-page: 2130
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0270
  article-title: Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000000342
– volume: 541
  start-page: 1083
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0345
  article-title: Fine and ultrafine particulate organic carbon in the Los Angeles basin: trends in sources and composition
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.133
– volume: 117
  start-page: 886
  year: 2009
  ident: 10.1016/j.envint.2020.106143_b0280
  article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0800123
– volume: 125
  start-page: 97
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0130
  article-title: Exposure measurement error in air pollution studies: a framework for assessing shared, multiplicative measurement error in ensemble learning estimates of nitrogen oxides
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.12.025
– volume: 111
  year: 2006
  ident: 10.1016/j.envint.2020.106143_b0390
  article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2005JD006996
– volume: 114
  start-page: 50
  year: 2010
  ident: 10.1016/j.envint.2020.106143_b0400
  article-title: Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.009
– volume: 47
  start-page: 7233
  year: 2013
  ident: 10.1016/j.envint.2020.106143_b0025
  article-title: A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400039u
– year: 2016
  ident: 10.1016/j.envint.2020.106143_b0145
– ident: 10.1016/j.envint.2020.106143_b0410
– volume: 151
  start-page: 1
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0045
  article-title: Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.11.066
– ident: 10.1016/j.envint.2020.106143_b0080
– volume: 14
  start-page: 6049
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0385
  article-title: Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6049-2014
– year: 2009
  ident: 10.1016/j.envint.2020.106143_b0240
  article-title: Atmospheric aerosol monitoring from satellite observations: a history of three decades
– volume: 92
  start-page: 1895
  year: 2011
  ident: 10.1016/j.envint.2020.106143_b0370
  article-title: Uncertainty and risk in wildland fire management: a review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2011.03.015
– volume: 198
  start-page: 140
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0150
  article-title: Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.001
– volume: 44
  start-page: 299
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0275
  article-title: Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: Coherence and public health implications
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408444.2013.861796
– ident: 10.1016/j.envint.2020.106143_b0420
– volume: 136
  start-page: 196
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0290
  article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2. 5 and PM10 pollution in the Chinese population
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.06.029
– volume: 181
  start-page: 145
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0450
  article-title: An improved geographically weighted regression model for PM2.5 concentration estimation in large areas
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.017
– volume: 44
  start-page: 3976
  year: 2010
  ident: 10.1016/j.envint.2020.106143_b0365
  article-title: Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: implications for the sensitivity of PM2. 5 to climate change
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.06.060
– volume: 8
  start-page: E69
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0435
  article-title: The impact of PM2.5 on the human respiratory system
  publication-title: J. Thoracic Disease
– volume: 35
  start-page: 1
  year: 2001
  ident: 10.1016/j.envint.2020.106143_b0320
  article-title: Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00330-7
– volume: 41
  start-page: 2928
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0065
  article-title: Large wildfire trends in the western United States, 1984–2011
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059576
– volume: 26
  start-page: 572
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0195
  article-title: Fine particulate matter (PM2.5) association with peripheral artery disease admissions in northeastern United States
  publication-title: Int. J. Environ. Health Res.
  doi: 10.1080/09603123.2016.1217315
– volume: 8
  start-page: 652
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0035
  article-title: Recursive neural network model for analysis and forecast of PM10 and PM2.5
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2016.12.014
– volume: 140
  start-page: 220
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0175
  article-title: Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.032
– volume: 14
  start-page: 6643
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0185
  article-title: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6643-2014
– volume: 655
  start-page: 1240
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0125
  article-title: The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.218
– volume: 49
  start-page: 8576
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0190
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00859
– volume: 49
  start-page: 12280
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0430
  article-title: Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01413
– volume: 14
  start-page: 2015
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0285
  article-title: Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-2015-2014
– volume: 146
  start-page: 108
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0440
  article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.006
– volume: 26
  start-page: 13963
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0445
  article-title: Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: an updated systematic review based on cohort studies
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04644-x
– volume: 30
  start-page: 6823
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0335
  article-title: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0609.1
– volume: 45
  start-page: 6267
  year: 2011
  ident: 10.1016/j.envint.2020.106143_b0200
  article-title: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 26
  start-page: 377
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0245
  article-title: Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the southeastern U.S. 2003–2011
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2015.41
– volume: 217
  start-page: 573
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0260
  article-title: Estimation of PM2. 5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.001
– volume: 50
  start-page: 4752
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0300
  article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05940
– volume: 242
  start-page: 675
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0180
  article-title: Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.016
– ident: 10.1016/j.envint.2020.106143_b0295
– volume: 12
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0455
  article-title: Gestational exposure to particulate matter 2.5 (PM2.5) leads to spatial memory dysfunction and neurodevelopmental impairment in hippocampus of mice offspring
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.01000
– volume: 130
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0070
  article-title: An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104909
– ident: 10.1016/j.envint.2020.106143_b0220
– volume: 96
  start-page: 2059
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0350
  article-title: Noaa's hysplit atmospheric transport and dispersion modeling system
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-14-00110.1
– volume: 8
  start-page: 262
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0020
  article-title: A geographically and temporallyweighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD
  publication-title: Remote Sens.
  doi: 10.3390/rs8030262
– volume: 102
  start-page: 260
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0250
  article-title: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States?
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.12.010
– volume: 12
  start-page: 3303
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0395
  article-title: Relationship analysis of PM 2.5 and boundary layer height using an aerosol and turbulence detection lidar
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-3303-2019
– year: 2007
  ident: 10.1016/j.envint.2020.106143_b0110
– year: 2018
  ident: 10.1016/j.envint.2020.106143_b0090
– volume: 14
  start-page: 10013
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0100
  article-title: Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-10013-2014
– volume: 51
  start-page: 6936
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0170
  article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01210
– volume: 53
  start-page: 12774
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0230
  article-title: Benefits of high resolution PM2.5 prediction using satellite MAIAC AOD and land use regression for exposure assessment: California examples
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03799
– volume: 69
  start-page: 660
  year: 2014
  ident: 10.1016/j.envint.2020.106143_b0015
  article-title: Epidemiological time series studies of PM2. 5 and daily mortality and hospital admissions: a systematic review and meta-analysis
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2013-204492
– volume: 231
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0405
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111221
– volume: 10
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0055
  article-title: Ten quick tips for machine learning in computational biology
  publication-title: Biodata Min.
  doi: 10.1186/s13040-017-0155-3
– volume: 34
  start-page: 88
  year: 2001
  ident: 10.1016/j.envint.2020.106143_b0380
  article-title: East versus West in the US: chemical characteristics of PM2.5 during the winter of 1999
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820118957
– volume: 40
  start-page: 5880
  year: 2006
  ident: 10.1016/j.envint.2020.106143_b0155
  article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.03.016
– volume: 4
  year: 2010
  ident: 10.1016/j.envint.2020.106143_b0375
  article-title: Neocortical layer 6, a review
  publication-title: Front. Neuroanat.
– volume: 50
  start-page: 4712
  year: 2016
  ident: 10.1016/j.envint.2020.106143_b0075
  article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b06121
– start-page: 1189
  year: 2001
  ident: 10.1016/j.envint.2020.106143_b0115
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 11
  start-page: 5741
  year: 2018
  ident: 10.1016/j.envint.2020.106143_b0315
  article-title: MODIS collection 6 MAIAC algorithm
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-5741-2018
– volume: 24
  start-page: 44
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0140
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graphical Stat.
  doi: 10.1080/10618600.2014.907095
– ident: 10.1016/j.envint.2020.106143_b0330
– volume: 14
  start-page: 1171
  year: 1986
  ident: 10.1016/j.envint.2020.106143_b0050
  article-title: The use of subseries values for estimating the variance of a general statistic from a stationary sequence
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176350057
– volume: 128
  start-page: 310
  year: 2019
  ident: 10.1016/j.envint.2020.106143_b0265
  article-title: Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.04.057
– ident: 10.1016/j.envint.2020.106143_b0030
– volume: 199
  start-page: 437
  year: 2017
  ident: 10.1016/j.envint.2020.106143_b0425
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.023
– volume: 237
  year: 2020
  ident: 10.1016/j.envint.2020.106143_b0255
  article-title: Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111584
– volume: 22
  start-page: 3383
  year: 2015
  ident: 10.1016/j.envint.2020.106143_b0460
  article-title: Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3458-7
– volume: 116
  year: 2011
  ident: 10.1016/j.envint.2020.106143_b0310
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm
  publication-title: J. Geophys. Res.-Atmos.
SSID ssj0002485
Score 2.57762
Snippet •California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5...
Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies....
Estimating PM₂.₅ concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies....
Introduction: Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health...
SourceID doaj
pubmedcentral
proquest
crossref
nasa
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106143
SubjectTerms aerosols
air pollution
Air pollution exposure
air temperature
California
carbon monoxide
cloud cover
Computer Programming And Software
dust
Earth Resources And Remote Sensing
environment
Environment Pollution
Geosciences (General)
High spatiotemporal resolution
land cover
Machine learning
meteorology
PM2.5
prediction
relative humidity
Remote sensing
smoke
snowpack
spatial distribution
topography
traffic
uncertainty
Wildfires
Title Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke
URI https://dx.doi.org/10.1016/j.envint.2020.106143
https://ntrs.nasa.gov/citations/20205008643
https://www.proquest.com/docview/2446994248
https://www.proquest.com/docview/2552011859
https://pubmed.ncbi.nlm.nih.gov/PMC7643812
https://doaj.org/article/10b913da1bb64b33ac9ad378ab75942c
Volume 145
WOSCitedRecordID wos000580632000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: AIEXJ
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZg8ABCCMomyo_KSLwaJY5jJ48DdQIE0x4A9c262M4odOm0tPv7dxcnW_NCX3ise21i3_nuu-TuM2PvU5-D1D4TUksnlFQgoEprISGpEUF4ZTqegl_fzOlpsViUZztHfVFNWKQHjguHu7oq08xDWlVaVVkGrgSfmQIqk5dKOvK-iHqGZKr3wUTUFVm9E6FSmQxNc11lF7WQNVRHKWlIdx07O0Gp4-4fxaaDBloYQdBxAeVORDp5xp72UJIfxyk8Z_dCM2GPdwgGJ-xoftfHhqL9Rm4n7El8XMdjF9ILtpk3bbioVkFQWPPch3DJ-xMlzjkCW05sHIRu8ePZd_kh51T7ye9auzg90eVdfWJ8IcCr5TmnAlS-bNxqSzESZVa-RifL24v133DIfp7Mf3z6LPoDGYRDYLQRoNOQVz4g5NMOjMsSKBCPEGO-hKxQIL1COOHKoHVeYnx0uVQ1YkJ0JDXmZdkRLuW6CS8ZT4rSeajr2miPOaUBA0or9LVOgVbOTFk2aMS6nq2cDs1Y2aEs7Y-NerSkRxv1OGXi9leXka1jj_xHUvatLHFtdwNogba3QLvPAqfMDKZie9gS4Qj-1XLP5Q_JsizOrO3Gc8owafzdYGoWdzu9woEmrLcohNl7iRdVxT9k8pxQXZGXeGcjOx3Nc_xNs_zdcYsbTZxv8tX_WJjX7BFNKhb_vGEHm6tteMseums0xKsZu28WxYw9OP4yX3ydddv3BlyORww
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble-based+deep+learning+for+estimating+PM2.5+over+California+with+multisource+big+data+including+wildfire+smoke&rft.jtitle=Environment+international&rft.au=Li%2C+Lianfa&rft.au=Girguis%2C+Mariam&rft.au=Lurmann%2C+Frederick&rft.au=Pavlovic%2C+Nathan&rft.date=2020-12-01&rft.issn=0160-4120&rft.volume=145+p.106143-&rft_id=info:doi/10.1016%2Fj.envint.2020.106143&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon