Toward Achieving Rapid Estimation of Vitamin C in Citrus Peels by NIR Spectra Coupled with a Linear Algorithm
Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vi...
Uložené v:
| Vydané v: | Molecules (Basel, Switzerland) Ročník 28; číslo 4; s. 1681 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.02.2023
MDPI |
| Predmet: | |
| ISSN: | 1420-3049, 1420-3049 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm. |
|---|---|
| AbstractList | Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm. Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm. Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients ( ) of 0.949 and root mean square error (RMSE ) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm. Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (r[sub.P] ) of 0.949 and root mean square error (RMSE[sub.P] ) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R[sup.2] = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm. |
| Audience | Academic |
| Author | Wang, Jingru He, Hongju Lin, Mei Wang, Yuling Zhang, Weiqing Liu, Hongjie |
| AuthorAffiliation | 3 School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China 4 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China 1 Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China 2 School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| AuthorAffiliation_xml | – name: 3 School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China – name: 1 Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China – name: 4 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China – name: 2 School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China |
| Author_xml | – sequence: 1 givenname: Weiqing surname: Zhang fullname: Zhang, Weiqing – sequence: 2 givenname: Mei surname: Lin fullname: Lin, Mei – sequence: 3 givenname: Hongju orcidid: 0000-0001-7112-5909 surname: He fullname: He, Hongju – sequence: 4 givenname: Yuling surname: Wang fullname: Wang, Yuling – sequence: 5 givenname: Jingru surname: Wang fullname: Wang, Jingru – sequence: 6 givenname: Hongjie surname: Liu fullname: Liu, Hongjie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36838670$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvEzEUhUeoiD7gB7BBltiwSfFjYo83SFFUIFIEqBS2lh93EkeecbBnWvXf45BSmoKQJXt0fe5351jntDrqYw9V9ZLgc8YkftvFAHYMkGmDa8Ib8qQ6ITXFE4ZrefTg-7g6zXmDMSU1mT6rjhlvWMMFPqm6q3ijk0Mzu_Zw7fsVutRb79BFHnynBx97FFv03Q-68z2ao93mhzRm9AUgZGRu0afFJfq6BTskjeZx3AZw6MYPa6TR0vegE5qFVUyl0j2vnrY6ZHhxd55V395fXM0_TpafPyzms-XETjkeJtwYSRpCtNAgNa0dgBVMStvallkwZmqMcIRQLp0WjgHFBJjBTDqum7plZ9Viz3VRb9Q2FSvpVkXt1a9CTCul0-BtAEUdmPIabcHSGre2aQwrgzkIAEkwL6x3e9Z2NB04C30xGg6ghze9X6tVvFZSck5oUwBv7gAp_hghD6rz2UIIuoc4ZkVFg7GoGWdF-vqRdBPH1JenKioh-bQWFP9RrXQx4Ps2lrl2B1WzwqGEsHo39vwfqrIcdN6WILW-1A8aXj00eu_wd1iKgOwFNsWcE7T3EoLVLpDqr0CWHvGox5Ys7XJV_saH_3T-BEPh54M |
| CitedBy_id | crossref_primary_10_1016_j_lwt_2024_116518 crossref_primary_10_1016_j_jpba_2025_117124 crossref_primary_10_1016_j_lwt_2023_115249 crossref_primary_10_3390_foods13223667 crossref_primary_10_1016_j_jfca_2024_106350 crossref_primary_10_1016_j_jfca_2025_107604 crossref_primary_10_1007_s11947_024_03343_x crossref_primary_10_3390_antiox14060714 |
| Cites_doi | 10.1016/j.chemolab.2017.03.011 10.1533/9780857092618 10.1007/978-981-10-2675-1 10.22237/jmasm/1304224320 10.1016/j.jfca.2022.104641 10.1016/j.electacta.2013.12.127 10.1007/s11270-014-2058-y 10.1038/33308 10.1002/cem.3306 10.1016/j.chemolab.2012.07.010 10.1016/S0039-9140(02)00449-6 10.1016/S1474-6670(17)33867-3 10.1007/978-981-16-3360-7 10.1016/j.jcp.2015.04.015 10.1039/b515637h 10.1007/s10068-021-00984-y 10.1016/j.chemolab.2011.07.001 10.1002/cem.1349 10.1080/87559129.2019.1584814 10.1007/s42452-020-04005-1 10.1038/nature23548 10.1080/0020723032000143346 10.1016/j.chemolab.2012.01.002 10.1016/j.aca.2010.08.033 10.1155/2008/937651 10.1016/j.aca.2006.05.015 10.1016/j.aca.2010.03.048 10.1007/s00217-021-03857-0 10.1007/s11694-017-9646-7 10.1007/s12649-018-0241-x 10.1007/s00217-022-04023-w 10.1002/9781119636489 10.1118/1.2794176 10.1016/j.seppur.2005.07.005 10.1016/j.scienta.2017.02.024 10.1016/j.phymed.2017.08.011 10.1111/jfpe.13611 10.1016/j.aca.2018.10.055 10.1016/j.jfca.2022.105069 10.1080/10408398.2012.746638 10.1016/j.foodchem.2005.07.054 10.1016/j.microc.2022.107625 10.1016/j.foodchem.2016.10.012 10.1016/j.trac.2009.07.007 10.1140/epjti/s40485-015-0018-6 10.1016/j.trac.2012.09.006 10.1002/fsn3.660 10.1007/978-1-4419-1463-7 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/molecules28041681 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1420-3049 |
| ExternalDocumentID | oai_doaj_org_article_2deb683fceb240fc88b31a76e7ee9106 PMC9966128 A743211348 36838670 10_3390_molecules28041681 |
| Genre | Journal Article |
| GeographicLocations | China Asia |
| GeographicLocations_xml | – name: China – name: Asia |
| GrantInformation_xml | – fundername: Taizhou Science and Technology Project grantid: 22nya13 – fundername: Zhejiang Pioneer and Leading Goose R&D Program grantid: 2022C02012 |
| GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFFHD AFKRA AFPKN AFRAH AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF ALIPV BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c560t-6bb91811a7ae9a24deec7399cfcf3cebb5bb7d11269da7d3e201e3b039d6a84f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000940987400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-3049 |
| IngestDate | Tue Oct 14 19:08:25 EDT 2025 Tue Nov 04 02:06:38 EST 2025 Sun Nov 09 09:29:42 EST 2025 Sat Nov 29 14:51:42 EST 2025 Tue Nov 11 10:56:27 EST 2025 Tue Nov 04 18:14:44 EST 2025 Wed Feb 19 02:25:20 EST 2025 Tue Nov 18 21:08:09 EST 2025 Sat Nov 29 07:12:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | linear algorithm near-infrared (NIR) determination citrus peel vitamin C |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c560t-6bb91811a7ae9a24deec7399cfcf3cebb5bb7d11269da7d3e201e3b039d6a84f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0001-7112-5909 |
| OpenAccessLink | https://www.proquest.com/docview/2779654720?pq-origsite=%requestingapplication% |
| PMID | 36838670 |
| PQID | 2779654720 |
| PQPubID | 2032355 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2deb683fceb240fc88b31a76e7ee9106 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9966128 proquest_miscellaneous_2780074363 proquest_journals_2779654720 gale_infotracmisc_A743211348 gale_infotracacademiconefile_A743211348 pubmed_primary_36838670 crossref_primary_10_3390_molecules28041681 crossref_citationtrail_10_3390_molecules28041681 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Molecules (Basel, Switzerland) |
| PublicationTitleAlternate | Molecules |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Albergaria (ref_32) 2014; 225 Mamma (ref_4) 2008; 2 Li (ref_2) 2006; 48 Adusah (ref_55) 2011; 10 Li (ref_43) 2001; 34 Valentini (ref_31) 2021; 3 Soares (ref_52) 2013; 42 Gautam (ref_38) 2015; 2 Gatius (ref_42) 2017; 164 He (ref_48) 2015; 55 Glatting (ref_54) 2007; 34 Yusuf (ref_18) 2021; 247 Pisoschi (ref_22) 2008; 2008 ref_17 ref_16 Roy (ref_37) 2015; 295 Jiao (ref_39) 2020; 34 Elagib (ref_10) 2018; 6 Zhu (ref_50) 2021; 14 Pisoschi (ref_20) 2014; 121 He (ref_25) 2022; 111 Rehman (ref_6) 2006; 99 Podmore (ref_12) 1998; 392 Razavi (ref_33) 2018; 12 Zou (ref_49) 2010; 667 Suri (ref_15) 2021; 30 ref_28 ref_27 Rinnan (ref_35) 2009; 28 Antonelli (ref_21) 2002; 58 Mehmood (ref_51) 2012; 118 Oliveri (ref_40) 2019; 1058 Wang (ref_45) 2022; 15 Herbig (ref_24) 2017; 220 Shekhovtsova (ref_23) 2006; 573–574 Peng (ref_36) 2010; 683 (ref_7) 2019; 10 Gowen (ref_44) 2011; 25 Elessawy (ref_19) 2022; 181 Rafiq (ref_3) 2018; 17 Jiang (ref_47) 2021; 14 Miller (ref_13) 2017; 549 Bozkir (ref_14) 2021; 44 Nair (ref_5) 2018; 50 Kutsanedzie (ref_26) 2019; 35 Suomela (ref_30) 2022; 248 Kokalj (ref_34) 2011; 108 Mditshwa (ref_11) 2017; 218 ref_41 ref_1 Kasemsumran (ref_46) 2006; 131 ref_9 Dhillon (ref_8) 2004; 61 He (ref_29) 2023; 116 Zheng (ref_53) 2012; 112 |
| References_xml | – volume: 164 start-page: 76 year: 2017 ident: ref_42 article-title: Comparison of CCA and PLS to explore and model NIR data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.03.011 – ident: ref_1 doi: 10.1533/9780857092618 – ident: ref_9 doi: 10.1007/978-981-10-2675-1 – volume: 10 start-page: 362 year: 2011 ident: ref_55 article-title: Type I error inflation of the separate-variances welch t test with very small sample sizes when assumptions are met publication-title: J. Mod. Appl. Stat. Meth. doi: 10.22237/jmasm/1304224320 – volume: 111 start-page: 104641 year: 2022 ident: ref_25 article-title: Rapid determination of reducing sugar content in sweet potatoes using NIR spectra publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.104641 – volume: 121 start-page: 443 year: 2014 ident: ref_20 article-title: Electrochemical methods for ascorbic acid determination publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2013.12.127 – volume: 17 start-page: 351 year: 2018 ident: ref_3 article-title: Citrus peel as a source of functional ingredient: A review publication-title: J. Saudi Soc. Agr. Sci. – volume: 225 start-page: 2058 year: 2014 ident: ref_32 article-title: Multiple linear regression and artificial neural networks to predict time and efficiency of soil vapor extraction publication-title: Water Air Soil Poll. doi: 10.1007/s11270-014-2058-y – volume: 392 start-page: 559 year: 1998 ident: ref_12 article-title: Vitamin C exhibits pro-oxidant properties publication-title: Nature doi: 10.1038/33308 – volume: 34 start-page: e3306 year: 2020 ident: ref_39 article-title: Preprocessing methods for near-infrared spectrum calibration publication-title: J. Chemom. doi: 10.1002/cem.3306 – volume: 118 start-page: 62 year: 2012 ident: ref_51 article-title: A review of variable selection methods in Partial Least Squares Regression publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.07.010 – volume: 58 start-page: 961 year: 2002 ident: ref_21 article-title: Food analyses: A new calorimetric method for ascorbic acid (vitamin C) determination publication-title: Talanta doi: 10.1016/S0039-9140(02)00449-6 – volume: 34 start-page: 463 year: 2001 ident: ref_43 article-title: Latent variable selection in partial least squares modelling publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)33867-3 – ident: ref_27 doi: 10.1007/978-981-16-3360-7 – volume: 295 start-page: 307 year: 2015 ident: ref_37 article-title: On computing first and second order derivative spectra publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.015 – volume: 131 start-page: 529 year: 2006 ident: ref_46 article-title: Moving window cross validation: A new cross validation method for the selection of a rational number of components in a partial least squares calibration model publication-title: Analyst doi: 10.1039/b515637h – volume: 30 start-page: 1601 year: 2021 ident: ref_15 article-title: Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-021-00984-y – volume: 108 start-page: 154 year: 2011 ident: ref_34 article-title: Commonly applied smoothing of IR spectra showed unappropriate for the identification of plant leaf samples publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.07.001 – volume: 25 start-page: 375 year: 2011 ident: ref_44 article-title: Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients publication-title: J. Chemometr. doi: 10.1002/cem.1349 – ident: ref_41 – volume: 35 start-page: 536 year: 2019 ident: ref_26 article-title: Advances in nondestructive methods for meat quality and safety monitoring publication-title: Food Rev. Int. doi: 10.1080/87559129.2019.1584814 – ident: ref_17 – volume: 3 start-page: 70 year: 2021 ident: ref_31 article-title: Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul-Brazil publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-04005-1 – volume: 549 start-page: 462 year: 2017 ident: ref_13 article-title: Vitamin C regulates stem cells and cancer publication-title: Nature doi: 10.1038/nature23548 – volume: 61 start-page: 199 year: 2004 ident: ref_8 article-title: Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger publication-title: Int. J. Environ. Stud. doi: 10.1080/0020723032000143346 – volume: 112 start-page: 48 year: 2012 ident: ref_53 article-title: Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.01.002 – volume: 683 start-page: 63 year: 2010 ident: ref_36 article-title: Asymmetric least squares for multiple spectra baseline correction publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.08.033 – volume: 2008 start-page: 937651 year: 2008 ident: ref_22 article-title: Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry publication-title: J. Autom. Methods Manag. Chem. doi: 10.1155/2008/937651 – volume: 573–574 start-page: 125 year: 2006 ident: ref_23 article-title: Enzymatic methods in food analysis: Determination of ascorbic acid publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2006.05.015 – volume: 667 start-page: 14 year: 2010 ident: ref_49 article-title: Variables selection methods in near-infrared spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.03.048 – volume: 247 start-page: 3053 year: 2021 ident: ref_18 article-title: Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-021-03857-0 – volume: 12 start-page: 346 year: 2018 ident: ref_33 article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-017-9646-7 – volume: 10 start-page: 2165 year: 2019 ident: ref_7 article-title: Production and characterization of bacterial cellulose from citrus peels publication-title: Waste Biomass. Valor. doi: 10.1007/s12649-018-0241-x – volume: 15 start-page: 23 year: 2022 ident: ref_45 article-title: Nondestructive determination of IMP content in chilled chicken based on hyperspectral data combined with chemometrics publication-title: Int. J. Agr. Biol. Eng. – volume: 248 start-page: 2185 year: 2022 ident: ref_30 article-title: Non-destructive assessment of vitamin C in foods: A review of the main fndings and limitations of vibrational spectroscopic techniques publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-022-04023-w – ident: ref_28 doi: 10.1002/9781119636489 – volume: 14 start-page: 182 year: 2021 ident: ref_50 article-title: Mining hyperspectral data for non-destructive and rapid prediction of nitrite content in ham sausages publication-title: Int. J. Agr. Biol. Eng. – volume: 2 start-page: 83 year: 2008 ident: ref_4 article-title: Citrus peels: An excellent raw material for the bioconversion into value-added products publication-title: Tree Forest. Sci. Biotechnol. – volume: 34 start-page: 4285 year: 2007 ident: ref_54 article-title: Choosing the informative fit function: Comparison of the Akaike information criterion and the F-test publication-title: Med. Phys. doi: 10.1118/1.2794176 – volume: 48 start-page: 182 year: 2006 ident: ref_2 article-title: Extraction of phenolics from citrus peels I. Solvent extraction method publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2005.07.005 – volume: 218 start-page: 95 year: 2017 ident: ref_11 article-title: Postharvest factors affecting vitamin C content of citrus fruits: A review publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.02.024 – volume: 50 start-page: 231 year: 2018 ident: ref_5 article-title: Citrus peels prevent cancer publication-title: Phytomedicine doi: 10.1016/j.phymed.2017.08.011 – volume: 44 start-page: e13611 year: 2021 ident: ref_14 article-title: Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13611 – volume: 1058 start-page: 9 year: 2019 ident: ref_40 article-title: The Impact of Signal Pre-Processing on the Final Interpretation of Analytical Outcomes—A tutorial publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.10.055 – volume: 116 start-page: 105069 year: 2023 ident: ref_29 article-title: Rapid determination of chemical compositions in chicken flesh by mining hyperspectral data publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.105069 – volume: 55 start-page: 864 year: 2015 ident: ref_48 article-title: Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408398.2012.746638 – volume: 99 start-page: 450 year: 2006 ident: ref_6 article-title: Citrus peel extract—A natural source of antioxidant publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.07.054 – volume: 181 start-page: 107625 year: 2022 ident: ref_19 article-title: Green fast and simple UPLC-ESI-MRM/MS method for determination of trace water-soluble vitamins in honey: Greenness assessment using GAPI and analytical eco-scale publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107625 – volume: 220 start-page: 444 year: 2017 ident: ref_24 article-title: Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.10.012 – volume: 28 start-page: 1201 year: 2009 ident: ref_35 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC-Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 2 start-page: 8 year: 2015 ident: ref_38 article-title: Review of multidimensional data processing approaches for Raman and infrared spectroscopy publication-title: EPJ Techn. Instrum. doi: 10.1140/epjti/s40485-015-0018-6 – volume: 14 start-page: 243 year: 2021 ident: ref_47 article-title: Quick assessment of chicken spoilage based on hyperspectral NIR spectra combined with partial least squares regression publication-title: Int. J. Agr. Biol. Eng. – volume: 42 start-page: 84 year: 2013 ident: ref_52 article-title: The successive projections algorithm publication-title: TrAC-Trends Anal. Chem. doi: 10.1016/j.trac.2012.09.006 – volume: 6 start-page: 1214 year: 2018 ident: ref_10 article-title: Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.660 – ident: ref_16 doi: 10.1007/978-1-4419-1463-7 |
| SSID | ssj0021415 |
| Score | 2.4189918 |
| Snippet | Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1681 |
| SubjectTerms | Algorithms Analysis Antioxidants Ascorbic Acid Chromatography Citrus Citrus fruits citrus peel Composition determination Ethanol Health aspects Least-Squares Analysis linear algorithm Mean square errors Measurement Methods Near infrared spectroscopy near-infrared (NIR) Normal distribution Nutritional aspects Spectroscopy, Near-Infrared - methods Spectrum analysis Vitamin C Vitamins |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KKLSX0neVpmULhUJBRNLK-zi6JqGFYkJIQ25iH6NGYEsmdgr595lZycYi0F560WEfaHdmducbaR6Mffaq9BMrIBVS-pQQceq00enE1KJQobYuho9d_lTzub66Mmd7pb7IJ6xPD9wT7rgI4KQWtUcTsMxqr7UTuVUSFACquphsO1Nma0wNplaOeqn_hynQqD9e9qVmYV1Quh2p85EWisn6H17Jezpp7C-5p4BOn7NnA3Lk037FL9gjaF-yJ7NtwbZXbHkRXWD51F83QN8J-LldNYGf4CnuAxR5V_PLZmOXTctnnB4x5oKfAWpI7u74_Mc5p4r0-H4-625XCwicvtRyy9FoxUPBp4vf3Q22LF-zX6cnF7Pv6VBNIfWIajapdM6gOkfaWTC2KAOAVwhPfO1rgdR1E-dUoIgiE6wKAhAagHCZMEFaXdbiDTtouxbeMW4AURGUIrMSyUk_wEORlQC6ECF3Lk9YtqVu5YdU41TxYlGhyUEMqR4wJGFfd1NWfZ6Nvw3-RizbDaQU2bEBBacaBKf6l-Ak7AsxvKKDjIvzdohHwC1SSqxqitgKrWNR6oQdjUYiW_24eysy1XABrKtCKUN1nYssYZ923TSTnNpa6G5pjI4IToqEve0lbLclgUvXUuFsNZK90Z7HPW1zHdODkwWLqOPwfxDpPXtaIKrr3dSP2AEKJXxgj_2fTbO--RjP3D2uizQj priority: 102 providerName: Directory of Open Access Journals |
| Title | Toward Achieving Rapid Estimation of Vitamin C in Citrus Peels by NIR Spectra Coupled with a Linear Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36838670 https://www.proquest.com/docview/2779654720 https://www.proquest.com/docview/2780074363 https://pubmed.ncbi.nlm.nih.gov/PMC9966128 https://doaj.org/article/2deb683fceb240fc88b31a76e7ee9106 |
| Volume | 28 |
| WOSCitedRecordID | wos000940987400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdrO9he9t3VWxc0GAwGponlSPLTSEPKClsIoSvZk9HHuTEkdtqkg_33u7OdrKbQl70YEkmg4053P53ug7FPTsWubwSEQkoXEiIOrU502E8yESmfGVulj11-V-Oxns2SSeNwWzdhlVudWClqXzrykZ9ESiXUKDfqfl1dh9Q1il5XmxYae-yAKpWhnB-cjsaT6e7K1UP7VL9lCrzcnyzrlrOwjqjsjtS9ljWqivbfV813bFM7bvKOITp7_r8kvGDPGgjKB7XMvGSPoHjFngy3nd9es-VFFUvLB26eAzkc-NSscs9HqA7qTEdeZvwy35hlXvAhp0-VvMEngKaW2z98fD7l1NoeCeDD8na1AM_J5csNx9svni4-WFzh3jbz5Rv282x0MfwWNm0ZQofwaBNKaxPEBT2jDCQmij2AU4hzXOYy4cDavrXKU2pS4o3yAhBjgLBdkXhpdJyJQ7ZflAUcMZ4AwiuIRddI5Ae9pPuoGwPoSPietb2AdbfsSV1Ts5xaZyxSvLsQR9N7HA3Yl92SVV2w46HJp8Tz3USqtV39Ud5cpc3RTSMPVmqRIWkIfzKntRVIvAQFgGBLBuwzSUxKGgE350yT2IAkUm2tdIAgDaVTxDpgx62ZyFbXHt7KTdpoknX6T2gC9nE3TCspOq6A8pbm6AoKShGwt7WI7kgSuHUtFa5WLeFt0dweKfJ5VWecrsIIX949vK337GmEwK-OZD9m-yhu8IE9dr83-fqmw_bUTFVf3WkOZ6fye-CvyfmPya-_9T5HKw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhzReuF8CA4wEQkKKlthp4jwgVMqmVeuqaoxpPAVfTtZIbVLaDrQ_xW_kOJeyaNLe9sBLH2K78ok_n_PZORdC3uoo0F3JweVhqF3LiF0lYuF245SzyKRSleFjJ8NoNBKnp_F4g_xpYmGsW2WjE0tFbQpt78h3WBTFtlAu8z7Nf7q2apT9utqU0KhgcQAXv_HItvw4-ILr-46xvd3j_r5bVxVwNVr3lRsqFaNZ82UkIZYsMAA6QjOtU51yDUp1lYqMjayJjYwMBzSRwJXHYxNKEaQc__cW2QwQ7F6HbI4Hh-Pv6yOej_aw-nbKeeztzKoSt7BkNs1PKPyW9SuLBFw1BZdsYdtP85Lh27v3v72y--RuTbFpr9oTD8gG5A_JVr-pbPeIzI5LX2Ha05MM7IUKPZLzzNBdVHdVJCctUnqSreQsy2mf2p8yOIWOAakEVRd0NDiiX22Q6kLSfnE-n4Kh9kqbSoqne5SZ9qZn-C5Wk9lj8u1GpH1COnmRwzNCY0D6CAH3ZIjrbz0FDPMCAMG48ZXyHeI1cEh0nZPdlgaZJng2swhKriDIIR_WQ-ZVQpLrOn-2GFt3tLnEywfF4iypVVPCDKhQ8BRFQ3qXaiEUR-FDiACQTIYOeW8RmliNh5PTsg7cQBFt7rCkhySU-T4PhEO2Wz1xWXW7ucFpUmvKZfIPpA55s262I633Xw7Fue0jSqobcoc8rbbEWiSOUxdhhKOj1mZpydxuybNJmUfdHvWRnj2_flqvydb-8eEwGQ5GBy_IHYYkt_La3yYdhB68JLf1r1W2XLyqlQElP256M_0FTFSiyA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoAL74ehwCKBkCpZsb2Od31AKKSNiFpFUSlVbmZfbiwldkhSUP8av44ZP9JalXrrgYsP3l1rx_525tv1PAj5oHmou5JZl0WRdpERu0rEwu3GKQu4SaUqw8dODvloJCaTeLxF_jaxMOhW2ejEUlGbQuMZeSfgPMZCuYHXSWu3iPHe4Mvil4sVpPBPa1NOo4LIgT3_A9u31efhHnzrj0Ew2D_uf3PrCgOuBku_diOlYjBxvuTSxjIIjbWag8nWqU6Ztkp1leIGo2xiI7lhFsylZcpjsYmkCFMGz71FbmNKQVQKfHKx2fPBMlZ_URmLvc68KnZrVwEm_ImE37KDZbmAq0bhklVse2xeMoGDh__zy3tEHtTEm_aqlfKYbNn8CbnXb-rdPSXz49KDmPb0NLN4zEKP5CIzdB-UYBXfSYuUnmRrOc9y2qd4KUNW6NgCwaDqnI6GR_Q7hq4uJe0XZ4uZNRQPuqmksOcHmWlvdgrvYj2dPyM_bkTa52Q7L3L7ktDYAqm0IfNkBFhA_wETeKG1ImDGV8p3iNdAI9F1pnYsGDJLYMeGaEquoMkhu5shiypNyXWdvyLeNh0xw3h5o1ieJrXCSgJjVSRYCqIB6Uu1EIqB8JHl1gLFjBzyCdGaoB6EyWlZh3OAiJhRLOkBNQ18n4XCITutnvBZdbu5wWxS689VcgFYh7zfNONI9AnMbXGGfURJgCPmkBfV8tiIxGDqIuIwmrcWTkvmdkueTcvs6ngAAKTt1fXTekfuwgpKDoejg9fkfgDMt3Ll3yHbgDz7htzRv9fZavm21AqU_LzplfQPbBOp9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Achieving+Rapid+Estimation+of+Vitamin+C+in+Citrus+Peels+by+NIR+Spectra+Coupled+with+a+Linear+Algorithm&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Weiqing&rft.au=Lin%2C+Mei&rft.au=He%2C+Hongju&rft.au=Wang%2C+Yuling&rft.date=2023-02-01&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=4&rft.spage=1681&rft_id=info:doi/10.3390%2Fmolecules28041681&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28041681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |