Toward Achieving Rapid Estimation of Vitamin C in Citrus Peels by NIR Spectra Coupled with a Linear Algorithm

Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecules (Basel, Switzerland) Ročník 28; číslo 4; s. 1681
Hlavní autoři: Zhang, Weiqing, Lin, Mei, He, Hongju, Wang, Yuling, Wang, Jingru, Liu, Hongjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.02.2023
MDPI
Témata:
ISSN:1420-3049, 1420-3049
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.
AbstractList Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.
Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.
Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912-1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients ( ) of 0.949 and root mean square error (RMSE ) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.
Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm range were acquired, preprocessed, and then related to measured vitamin C values using the linear partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed a better performance in predicting vitamin C. To accelerate the predictive process, wavelength selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR) algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation coefficients (r[sub.P] ) of 0.949 and root mean square error (RMSE[sub.P] ) of 14.814 mg/100 mg in prediction set, comparable to the NC-PLS model in predicting vitamin C. External validation was implemented using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model, obtaining a good correlation (R[sup.2] = 0.9558) between predicted and measured vitamin C contents. In conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels using NIR spectra coupled with MLR algorithm.
Audience Academic
Author Wang, Jingru
He, Hongju
Lin, Mei
Wang, Yuling
Zhang, Weiqing
Liu, Hongjie
AuthorAffiliation 3 School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
4 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
1 Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
2 School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
AuthorAffiliation_xml – name: 3 School of Life Science & Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
– name: 1 Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
– name: 4 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
– name: 2 School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
Author_xml – sequence: 1
  givenname: Weiqing
  surname: Zhang
  fullname: Zhang, Weiqing
– sequence: 2
  givenname: Mei
  surname: Lin
  fullname: Lin, Mei
– sequence: 3
  givenname: Hongju
  orcidid: 0000-0001-7112-5909
  surname: He
  fullname: He, Hongju
– sequence: 4
  givenname: Yuling
  surname: Wang
  fullname: Wang, Yuling
– sequence: 5
  givenname: Jingru
  surname: Wang
  fullname: Wang, Jingru
– sequence: 6
  givenname: Hongjie
  surname: Liu
  fullname: Liu, Hongjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36838670$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiD7gB7BBltiwSfFjYo83SFFUIFIEqBS2lh93EkeecbBnWvXf45BSmoKQJXt0fe5351jntDrqYw9V9ZLgc8YkftvFAHYMkGmDa8Ib8qQ6ITXFE4ZrefTg-7g6zXmDMSU1mT6rjhlvWMMFPqm6q3ijk0Mzu_Zw7fsVutRb79BFHnynBx97FFv03Q-68z2ao93mhzRm9AUgZGRu0afFJfq6BTskjeZx3AZw6MYPa6TR0vegE5qFVUyl0j2vnrY6ZHhxd55V395fXM0_TpafPyzms-XETjkeJtwYSRpCtNAgNa0dgBVMStvallkwZmqMcIRQLp0WjgHFBJjBTDqum7plZ9Viz3VRb9Q2FSvpVkXt1a9CTCul0-BtAEUdmPIabcHSGre2aQwrgzkIAEkwL6x3e9Z2NB04C30xGg6ghze9X6tVvFZSck5oUwBv7gAp_hghD6rz2UIIuoc4ZkVFg7GoGWdF-vqRdBPH1JenKioh-bQWFP9RrXQx4Ps2lrl2B1WzwqGEsHo39vwfqrIcdN6WILW-1A8aXj00eu_wd1iKgOwFNsWcE7T3EoLVLpDqr0CWHvGox5Ys7XJV_saH_3T-BEPh54M
CitedBy_id crossref_primary_10_1016_j_lwt_2024_116518
crossref_primary_10_1016_j_jpba_2025_117124
crossref_primary_10_1016_j_lwt_2023_115249
crossref_primary_10_3390_foods13223667
crossref_primary_10_1016_j_jfca_2024_106350
crossref_primary_10_1016_j_jfca_2025_107604
crossref_primary_10_1007_s11947_024_03343_x
crossref_primary_10_3390_antiox14060714
Cites_doi 10.1016/j.chemolab.2017.03.011
10.1533/9780857092618
10.1007/978-981-10-2675-1
10.22237/jmasm/1304224320
10.1016/j.jfca.2022.104641
10.1016/j.electacta.2013.12.127
10.1007/s11270-014-2058-y
10.1038/33308
10.1002/cem.3306
10.1016/j.chemolab.2012.07.010
10.1016/S0039-9140(02)00449-6
10.1016/S1474-6670(17)33867-3
10.1007/978-981-16-3360-7
10.1016/j.jcp.2015.04.015
10.1039/b515637h
10.1007/s10068-021-00984-y
10.1016/j.chemolab.2011.07.001
10.1002/cem.1349
10.1080/87559129.2019.1584814
10.1007/s42452-020-04005-1
10.1038/nature23548
10.1080/0020723032000143346
10.1016/j.chemolab.2012.01.002
10.1016/j.aca.2010.08.033
10.1155/2008/937651
10.1016/j.aca.2006.05.015
10.1016/j.aca.2010.03.048
10.1007/s00217-021-03857-0
10.1007/s11694-017-9646-7
10.1007/s12649-018-0241-x
10.1007/s00217-022-04023-w
10.1002/9781119636489
10.1118/1.2794176
10.1016/j.seppur.2005.07.005
10.1016/j.scienta.2017.02.024
10.1016/j.phymed.2017.08.011
10.1111/jfpe.13611
10.1016/j.aca.2018.10.055
10.1016/j.jfca.2022.105069
10.1080/10408398.2012.746638
10.1016/j.foodchem.2005.07.054
10.1016/j.microc.2022.107625
10.1016/j.foodchem.2016.10.012
10.1016/j.trac.2009.07.007
10.1140/epjti/s40485-015-0018-6
10.1016/j.trac.2012.09.006
10.1002/fsn3.660
10.1007/978-1-4419-1463-7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules28041681
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_2deb683fceb240fc88b31a76e7ee9106
PMC9966128
A743211348
36838670
10_3390_molecules28041681
Genre Journal Article
GeographicLocations China
Asia
GeographicLocations_xml – name: China
– name: Asia
GrantInformation_xml – fundername: Taizhou Science and Technology Project
  grantid: 22nya13
– fundername: Zhejiang Pioneer and Leading Goose R&D Program
  grantid: 2022C02012
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
ALIPV
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c560t-6bb91811a7ae9a24deec7399cfcf3cebb5bb7d11269da7d3e201e3b039d6a84f3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000940987400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-3049
IngestDate Tue Oct 14 19:08:25 EDT 2025
Tue Nov 04 02:06:38 EST 2025
Sun Nov 09 09:29:42 EST 2025
Sat Nov 29 14:51:42 EST 2025
Tue Nov 11 10:56:27 EST 2025
Tue Nov 04 18:14:44 EST 2025
Wed Feb 19 02:25:20 EST 2025
Tue Nov 18 21:08:09 EST 2025
Sat Nov 29 07:12:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords linear algorithm
near-infrared (NIR)
determination
citrus peel
vitamin C
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-6bb91811a7ae9a24deec7399cfcf3cebb5bb7d11269da7d3e201e3b039d6a84f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7112-5909
OpenAccessLink https://doaj.org/article/2deb683fceb240fc88b31a76e7ee9106
PMID 36838670
PQID 2779654720
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_2deb683fceb240fc88b31a76e7ee9106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9966128
proquest_miscellaneous_2780074363
proquest_journals_2779654720
gale_infotracmisc_A743211348
gale_infotracacademiconefile_A743211348
pubmed_primary_36838670
crossref_primary_10_3390_molecules28041681
crossref_citationtrail_10_3390_molecules28041681
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Albergaria (ref_32) 2014; 225
Mamma (ref_4) 2008; 2
Li (ref_2) 2006; 48
Adusah (ref_55) 2011; 10
Li (ref_43) 2001; 34
Valentini (ref_31) 2021; 3
Soares (ref_52) 2013; 42
Gautam (ref_38) 2015; 2
Gatius (ref_42) 2017; 164
He (ref_48) 2015; 55
Glatting (ref_54) 2007; 34
Yusuf (ref_18) 2021; 247
Pisoschi (ref_22) 2008; 2008
ref_17
ref_16
Roy (ref_37) 2015; 295
Jiao (ref_39) 2020; 34
Elagib (ref_10) 2018; 6
Zhu (ref_50) 2021; 14
Pisoschi (ref_20) 2014; 121
He (ref_25) 2022; 111
Rehman (ref_6) 2006; 99
Podmore (ref_12) 1998; 392
Razavi (ref_33) 2018; 12
Zou (ref_49) 2010; 667
Suri (ref_15) 2021; 30
ref_28
ref_27
Rinnan (ref_35) 2009; 28
Antonelli (ref_21) 2002; 58
Mehmood (ref_51) 2012; 118
Oliveri (ref_40) 2019; 1058
Wang (ref_45) 2022; 15
Herbig (ref_24) 2017; 220
Shekhovtsova (ref_23) 2006; 573–574
Peng (ref_36) 2010; 683
(ref_7) 2019; 10
Gowen (ref_44) 2011; 25
Elessawy (ref_19) 2022; 181
Rafiq (ref_3) 2018; 17
Jiang (ref_47) 2021; 14
Miller (ref_13) 2017; 549
Bozkir (ref_14) 2021; 44
Nair (ref_5) 2018; 50
Kutsanedzie (ref_26) 2019; 35
Suomela (ref_30) 2022; 248
Kokalj (ref_34) 2011; 108
Mditshwa (ref_11) 2017; 218
ref_41
ref_1
Kasemsumran (ref_46) 2006; 131
ref_9
Dhillon (ref_8) 2004; 61
He (ref_29) 2023; 116
Zheng (ref_53) 2012; 112
References_xml – volume: 164
  start-page: 76
  year: 2017
  ident: ref_42
  article-title: Comparison of CCA and PLS to explore and model NIR data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.03.011
– ident: ref_1
  doi: 10.1533/9780857092618
– ident: ref_9
  doi: 10.1007/978-981-10-2675-1
– volume: 10
  start-page: 362
  year: 2011
  ident: ref_55
  article-title: Type I error inflation of the separate-variances welch t test with very small sample sizes when assumptions are met
  publication-title: J. Mod. Appl. Stat. Meth.
  doi: 10.22237/jmasm/1304224320
– volume: 111
  start-page: 104641
  year: 2022
  ident: ref_25
  article-title: Rapid determination of reducing sugar content in sweet potatoes using NIR spectra
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.104641
– volume: 121
  start-page: 443
  year: 2014
  ident: ref_20
  article-title: Electrochemical methods for ascorbic acid determination
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2013.12.127
– volume: 17
  start-page: 351
  year: 2018
  ident: ref_3
  article-title: Citrus peel as a source of functional ingredient: A review
  publication-title: J. Saudi Soc. Agr. Sci.
– volume: 225
  start-page: 2058
  year: 2014
  ident: ref_32
  article-title: Multiple linear regression and artificial neural networks to predict time and efficiency of soil vapor extraction
  publication-title: Water Air Soil Poll.
  doi: 10.1007/s11270-014-2058-y
– volume: 392
  start-page: 559
  year: 1998
  ident: ref_12
  article-title: Vitamin C exhibits pro-oxidant properties
  publication-title: Nature
  doi: 10.1038/33308
– volume: 34
  start-page: e3306
  year: 2020
  ident: ref_39
  article-title: Preprocessing methods for near-infrared spectrum calibration
  publication-title: J. Chemom.
  doi: 10.1002/cem.3306
– volume: 118
  start-page: 62
  year: 2012
  ident: ref_51
  article-title: A review of variable selection methods in Partial Least Squares Regression
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.07.010
– volume: 58
  start-page: 961
  year: 2002
  ident: ref_21
  article-title: Food analyses: A new calorimetric method for ascorbic acid (vitamin C) determination
  publication-title: Talanta
  doi: 10.1016/S0039-9140(02)00449-6
– volume: 34
  start-page: 463
  year: 2001
  ident: ref_43
  article-title: Latent variable selection in partial least squares modelling
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)33867-3
– ident: ref_27
  doi: 10.1007/978-981-16-3360-7
– volume: 295
  start-page: 307
  year: 2015
  ident: ref_37
  article-title: On computing first and second order derivative spectra
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.015
– volume: 131
  start-page: 529
  year: 2006
  ident: ref_46
  article-title: Moving window cross validation: A new cross validation method for the selection of a rational number of components in a partial least squares calibration model
  publication-title: Analyst
  doi: 10.1039/b515637h
– volume: 30
  start-page: 1601
  year: 2021
  ident: ref_15
  article-title: Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-021-00984-y
– volume: 108
  start-page: 154
  year: 2011
  ident: ref_34
  article-title: Commonly applied smoothing of IR spectra showed unappropriate for the identification of plant leaf samples
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.07.001
– volume: 25
  start-page: 375
  year: 2011
  ident: ref_44
  article-title: Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients
  publication-title: J. Chemometr.
  doi: 10.1002/cem.1349
– ident: ref_41
– volume: 35
  start-page: 536
  year: 2019
  ident: ref_26
  article-title: Advances in nondestructive methods for meat quality and safety monitoring
  publication-title: Food Rev. Int.
  doi: 10.1080/87559129.2019.1584814
– ident: ref_17
– volume: 3
  start-page: 70
  year: 2021
  ident: ref_31
  article-title: Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul-Brazil
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-04005-1
– volume: 549
  start-page: 462
  year: 2017
  ident: ref_13
  article-title: Vitamin C regulates stem cells and cancer
  publication-title: Nature
  doi: 10.1038/nature23548
– volume: 61
  start-page: 199
  year: 2004
  ident: ref_8
  article-title: Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger
  publication-title: Int. J. Environ. Stud.
  doi: 10.1080/0020723032000143346
– volume: 112
  start-page: 48
  year: 2012
  ident: ref_53
  article-title: Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.01.002
– volume: 683
  start-page: 63
  year: 2010
  ident: ref_36
  article-title: Asymmetric least squares for multiple spectra baseline correction
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.08.033
– volume: 2008
  start-page: 937651
  year: 2008
  ident: ref_22
  article-title: Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry
  publication-title: J. Autom. Methods Manag. Chem.
  doi: 10.1155/2008/937651
– volume: 573–574
  start-page: 125
  year: 2006
  ident: ref_23
  article-title: Enzymatic methods in food analysis: Determination of ascorbic acid
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.05.015
– volume: 667
  start-page: 14
  year: 2010
  ident: ref_49
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.03.048
– volume: 247
  start-page: 3053
  year: 2021
  ident: ref_18
  article-title: Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-021-03857-0
– volume: 12
  start-page: 346
  year: 2018
  ident: ref_33
  article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-017-9646-7
– volume: 10
  start-page: 2165
  year: 2019
  ident: ref_7
  article-title: Production and characterization of bacterial cellulose from citrus peels
  publication-title: Waste Biomass. Valor.
  doi: 10.1007/s12649-018-0241-x
– volume: 15
  start-page: 23
  year: 2022
  ident: ref_45
  article-title: Nondestructive determination of IMP content in chilled chicken based on hyperspectral data combined with chemometrics
  publication-title: Int. J. Agr. Biol. Eng.
– volume: 248
  start-page: 2185
  year: 2022
  ident: ref_30
  article-title: Non-destructive assessment of vitamin C in foods: A review of the main fndings and limitations of vibrational spectroscopic techniques
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-022-04023-w
– ident: ref_28
  doi: 10.1002/9781119636489
– volume: 14
  start-page: 182
  year: 2021
  ident: ref_50
  article-title: Mining hyperspectral data for non-destructive and rapid prediction of nitrite content in ham sausages
  publication-title: Int. J. Agr. Biol. Eng.
– volume: 2
  start-page: 83
  year: 2008
  ident: ref_4
  article-title: Citrus peels: An excellent raw material for the bioconversion into value-added products
  publication-title: Tree Forest. Sci. Biotechnol.
– volume: 34
  start-page: 4285
  year: 2007
  ident: ref_54
  article-title: Choosing the informative fit function: Comparison of the Akaike information criterion and the F-test
  publication-title: Med. Phys.
  doi: 10.1118/1.2794176
– volume: 48
  start-page: 182
  year: 2006
  ident: ref_2
  article-title: Extraction of phenolics from citrus peels I. Solvent extraction method
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2005.07.005
– volume: 218
  start-page: 95
  year: 2017
  ident: ref_11
  article-title: Postharvest factors affecting vitamin C content of citrus fruits: A review
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.02.024
– volume: 50
  start-page: 231
  year: 2018
  ident: ref_5
  article-title: Citrus peels prevent cancer
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2017.08.011
– volume: 44
  start-page: e13611
  year: 2021
  ident: ref_14
  article-title: Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13611
– volume: 1058
  start-page: 9
  year: 2019
  ident: ref_40
  article-title: The Impact of Signal Pre-Processing on the Final Interpretation of Analytical Outcomes—A tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.10.055
– volume: 116
  start-page: 105069
  year: 2023
  ident: ref_29
  article-title: Rapid determination of chemical compositions in chicken flesh by mining hyperspectral data
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.105069
– volume: 55
  start-page: 864
  year: 2015
  ident: ref_48
  article-title: Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408398.2012.746638
– volume: 99
  start-page: 450
  year: 2006
  ident: ref_6
  article-title: Citrus peel extract—A natural source of antioxidant
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.07.054
– volume: 181
  start-page: 107625
  year: 2022
  ident: ref_19
  article-title: Green fast and simple UPLC-ESI-MRM/MS method for determination of trace water-soluble vitamins in honey: Greenness assessment using GAPI and analytical eco-scale
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107625
– volume: 220
  start-page: 444
  year: 2017
  ident: ref_24
  article-title: Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.10.012
– volume: 28
  start-page: 1201
  year: 2009
  ident: ref_35
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC-Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 2
  start-page: 8
  year: 2015
  ident: ref_38
  article-title: Review of multidimensional data processing approaches for Raman and infrared spectroscopy
  publication-title: EPJ Techn. Instrum.
  doi: 10.1140/epjti/s40485-015-0018-6
– volume: 14
  start-page: 243
  year: 2021
  ident: ref_47
  article-title: Quick assessment of chicken spoilage based on hyperspectral NIR spectra combined with partial least squares regression
  publication-title: Int. J. Agr. Biol. Eng.
– volume: 42
  start-page: 84
  year: 2013
  ident: ref_52
  article-title: The successive projections algorithm
  publication-title: TrAC-Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.09.006
– volume: 6
  start-page: 1214
  year: 2018
  ident: ref_10
  article-title: Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.660
– ident: ref_16
  doi: 10.1007/978-1-4419-1463-7
SSID ssj0021415
Score 2.4189918
Snippet Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C is a good strategy for citrus peel recycling. It is essential to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1681
SubjectTerms Algorithms
Analysis
Antioxidants
Ascorbic Acid
Chromatography
Citrus
Citrus fruits
citrus peel
Composition
determination
Ethanol
Health aspects
Least-Squares Analysis
linear algorithm
Mean square errors
Measurement
Methods
Near infrared spectroscopy
near-infrared (NIR)
Normal distribution
Nutritional aspects
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Vitamin C
Vitamins
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdbO9he9r3VWzc0GAwGprblSPLTSEPK9hJC6EbfjD7OjSGxsyYt7L_fne14NYW-7MUP1gl03Onud9LpjrHPo9RlMolcqClESWMYhRopw1FaSJU5oyPVNptQs5m-uMjm3YHbtkur3NvExlD72tEZ-UmiVEaNcpPo2-Z3SF2j6Ha1a6HxkB1SpTLU88PT6Wy-6EOuGP1Te5cpMLg_WbctZ2GbUNkdqeOBN2qK9t81zbd80zBv8pYjOnv2vyw8Z087CMrHrc68YA-geskeT_ad316x9XmTS8vHblkCHTjwhdmUnk_RHLQvHXld8F_lzqzLik84fZrHG3wO6Gq5_cNnPxacWtsjA3xSX29W4Dkd-XLDMfrF3cXHq0tc2265fs1-nk3PJ9_Dri1D6BAe7UJpbYa4IDbKQGaS1AM4hTjHFa4QDqwdWas8PU3KvFFeAGIMEDYSmZdGp4V4ww6quoIjxglwOQOxpDI5iHVsYRFRRMInkY8yAwGL9uLJXVeznFpnrHKMXUii-R2JBuxrP2XTFuy4j_iUZN4TUq3t5kd9dZl3WzdPPFipRYGsIfwpnNZWIPMSFACCLRmwL6QxOVkEXJwz3cMGZJFqa-VjBGmonSLVATseUKJY3XB4rzd5Z0m2-T-lCdinfphmUnZcBfU10egGCkoRsLetivYsCVy6lgpnq4HyDngejlTlsqkzTqEwwpd39y_rPXuSIPBrM9mP2QGqG3xgj9zNrtxefew25F_A3EJ2
  priority: 102
  providerName: ProQuest
Title Toward Achieving Rapid Estimation of Vitamin C in Citrus Peels by NIR Spectra Coupled with a Linear Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/36838670
https://www.proquest.com/docview/2779654720
https://www.proquest.com/docview/2780074363
https://pubmed.ncbi.nlm.nih.gov/PMC9966128
https://doaj.org/article/2deb683fceb240fc88b31a76e7ee9106
Volume 28
WOSCitedRecordID wos000940987400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBbtttBeSt91uw0qFAoFs7Ll6HHMhizdQ4MJ25KejCzJXUNih0220H_fGcsJMQvtpRdDrBGRNCPPN_boG0I-jjOrRcpsrDBEyRI_jhVIxuOsElJbo5gMxSbkfK6WS50flfrCnLBADxwW7ix1vhSKVxZCwIxVVqmSJ0YKL70HV9eRbTOp98FUH2ol4JfCN0wOQf3ZOpSa9dsU6XaESgZeqCPrv_tIPvJJw3zJIwd08ZQ86ZEjnYQRPyP3fPOcPJruC7a9IOurLgWWTux17fE9AV2YTe3oDHZxOKBI24p-r3dmXTd0SvHSnbmguQcPScvfdH65oFiRHv6fTtvbzco7im9qqaEQtMKmoJPVz_YG7qxfkm8Xs6vpl7ivphBbQDW7WJSlBncOa2e8NmnmvLcS4ImtbMVhdctxWUqHJ4q0M9JxD9DA85Jx7YRRWcVfkZOmbfwbQhEnWeMTgew2AFHKCnSTMO5S5pg2PiJsv7qF7anGseLFqoCQAxVS3FFIRD4fumwCz8bfhM9RZQdBpMjuboDhFL3hFP8ynIh8QoUXuJFhcNb05xFgikiJVUwAW0F0zDMVkdOBJKjVDpv3JlP0D4BtkUqpsa5zyiLy4dCMPTGprfHtLcqoDsEJHpHXwcIOU-IwdCUk9JYD2xvMedjS1NcdPThGsIA63v6PRXpHHqeA6kKa-ik5AaP078lD-2tXb29G5L5cyu6qRuTB-WyeL0bdPoRf-eXX_McfbjA4_w
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceD8MBRYJhIRk1fY63vUBoRBaNWobRSWg9mT25cZSYockBfVP8RuZ8SPUqtRbD1x88M5aO_bszDfreRDythvqOAo87Qp0UULfdl0BlG43TCMeayk8XjWb4MOhODmJRxvkT5MLg2GVjU4sFbUpNJ6R7wScx9goN_A-zX-62DUK_642LTQqsTiwF7_BZVt-HHyB7_suCPZ2x_19t-4q4Gqw7is3UioGs-ZLLm0sg9BYqzmYaZ3qlGmrVFcpbjCzJjaSG2bBRFqmPBabSIowZfDcW2QzBGH3OmRzNDgana5dPB_sYfXvlLHY25lVLW7tMsAyP5HwW9avbBJw1RRcsoXtOM1Lhm_v3v_2yu6TuzXEpr1qTzwgGzZ_SLb6TWe7R2Q2LmOFaU9PMosHKvRYzjNDd0HdVZmctEjp92wlZ1lO-xQvZXIKHVmAElRd0OHgmH7FJNWFpP3ifD61huKRNpUUvHvgmfamZ_AuVpPZY_LtRrh9Qjp5kdtnhCKg1NL6EZYBAiynUgWIyWMm8IwXS-sQrxGHRNc12bE1yDQB3wwlKLkiQQ75sJ4yrwqSXEf8GWVsTYi1xMsbxeIsqVVTEhirIsFSYA3gXaqFUAyYjyy3FsBk5JD3KKEJajxYnJZ14gawiLXDkh6A0MD3WSgcst2ihM-q28ONnCa1plwm_4TUIW_WwzgTo_9yW5wjjSihbsQc8rTaEmuWGCxdRBxm89ZmafHcHsmzSVlHHV19gGfPr1_Wa7K1Pz46TA4Hw4MX5E4AILeK2t8mHRA9-5Lc1r9W2XLxqlYGlPy46c30F6BHook
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGQMAL32yBAUYCIU2Kmthp7DwgVLpVVENVNQbqW7AdZ43UJqXtQPvX-Ou4y0e3aNLe9sBLHuJz5EvOd79z7oOQd93ARCHzjCvRRQl823UlULrdIA1FZJT0RNVsQoxGcjKJxlvkb5MLg2GVjU4sFXVSGDwj7zAhImyUy7xOWodFjA8Gnxa_XOwghX9am3YalYgc2fM_4L6tPg4P4Fu_Z2xweNL_4tYdBlwDln7thlpHYOJ8JZSNFAsSa40Ak21Sk3Jjte5qLRLMsokSJRJuwVxarj0eJaGSQcrhubfIbSwpiEpBTC6cPR8sY_UXlfPI68yrZrd2xbDgTyj9lh0s2wVcNQqXrGI7YvOSCRw8_J9f3iPyoAbetFftlMdky-ZPyL1-0-_uKZmflBHEtGemmcVjFnqsFllCD0EJVvmdtEjpj2yt5llO-xQvZcoKHVsAGFSf09HwmH7D1NWlov3ibDGzCcWDbqoo-PzAM-3NTuFdrKfzZ-T7jXD7nGznRW53CUWYaZT1QywOBAhPpxpwlMcT5iVepKxDvEY0YlNXaseGIbMYPDaUpviKNDlkfzNlUZUpuY74M8rbhhArjJc3iuVpXCusmCVWh5KnwBqAvtRIqTkwH1phLUDM0CEfUFpj1IOwOKPqdA5gESuKxT2Apsz3eSAdsteihM9q2sONzMa1_lzFFwLrkLebYZyJMYG5Lc6QRpYAOOQO2am2x4YlDkuXoYDZorVxWjy3R_JsWlZXxwMAAG0vrl_WG3IXdlD8dTg6eknuM0C-VSj_HtkGybOvyB3ze52tlq9LrUDJz5veSf8AuMWptg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Achieving+Rapid+Estimation+of+Vitamin+C+in+Citrus+Peels+by+NIR+Spectra+Coupled+with+a+Linear+Algorithm&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Weiqing&rft.au=Lin%2C+Mei&rft.au=He%2C+Hongju&rft.au=Wang%2C+Yuling&rft.date=2023-02-01&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=4&rft.spage=1681&rft_id=info:doi/10.3390%2Fmolecules28041681&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28041681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon