Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica...
Uložené v:
| Vydané v: | Synthetic and systems biotechnology Ročník 10; číslo 3; s. 737 - 750 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
China
Elsevier B.V
01.09.2025
KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
| Predmet: | |
| ISSN: | 2405-805X, 2405-805X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
[Display omitted] |
|---|---|
| AbstractList | Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to biosynthesis of astaxanthin. Here, was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of and as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in . Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. [Display omitted] Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. Image 1 Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and βB-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. |
| Author | Liu, Mengsu Zhang, Changtai Zhou, Jingwen Chen, Qihang Liu, Shike Abdullah, Chalak Najat Gao, Song |
| Author_xml | – sequence: 1 givenname: Chalak Najat surname: Abdullah fullname: Abdullah, Chalak Najat organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 2 givenname: Mengsu surname: Liu fullname: Liu, Mengsu organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 3 givenname: Qihang surname: Chen fullname: Chen, Qihang organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 4 givenname: Song surname: Gao fullname: Gao, Song organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 5 givenname: Changtai surname: Zhang fullname: Zhang, Changtai organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 6 givenname: Shike surname: Liu fullname: Liu, Shike organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China – sequence: 7 givenname: Jingwen surname: Zhou fullname: Zhou, Jingwen email: zhoujw1982@jiangnan.edu.cn organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40248487$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUl1rFDEUHaRiP-w_EBnwxZddk0xmJuODRUrVQsEXBX0Kd27u7GaZTdYkU93-erNuK20fFAI3JOccDvec4-LAeUdF8YKzOWe8ebOax63rrZ8LJuo5E3PG5ZPiSEhWzxSrvx3cux8WpzGuGGNciabp1LPiUDIhlVTtUYEXw2DRkkvlJngzYbLelX4oISb4BS4trSvz-Q4h-J8WytFu_LhNFqFMy-CnxbJcU4LejxZLcKYkd7NdUx4L64iCdYvnxdMBxkint_Ok-Prh4sv5p9nV54-X5--vZlg3LM0EkxKbbqix6kwzNAxNq6jiEnnbs4yphOnbSnKOAoiQg6qbHgYQqud1r6qT4nKvazys9CbYNYSt9mD1nwcfFhpCdj6S7ns0pu041tDKTgwKB4nUEFaNMNhC1jrba22mfk0G84ICjA9EH_44u9QLf625YEy0vM4Kr28Vgv8xUUx6bSPSOIIjP0Vd8Y5XneKtzNBXj6ArPwWXd7VD1UrmKFlGvbxv6a-XuzAz4O0egMHHGGjQaBPsAs0O7ag507vy6JXel0fvyqOZ0Lk8mSwfke_0_0N7t6dRDvbaUtBx1yYkYwNhypu3_xb4DXE34wU |
| CitedBy_id | crossref_primary_10_3389_fbioe_2025_1673169 crossref_primary_10_1016_j_fm_2025_104883 |
| Cites_doi | 10.1111/raq.12200 10.3390/md15100296 10.1016/j.jbiotec.2018.07.010 10.1016/j.jbiotec.2010.05.004 10.1073/pnas.1607295113 10.1016/j.ymben.2006.06.001 10.1111/j.1574-6968.1996.tb08343.x 10.1039/C8GC01905C 10.1186/1475-2859-10-29 10.1007/s00253-015-6791-y 10.1038/s41467-018-04211-x 10.3390/microorganisms7100472 10.1007/s00253-018-9006-5 10.1007/s10295-014-1565-6 10.1186/s12934-022-01798-1 10.1002/bit.22330 10.1007/s00253-020-10648-2 10.3390/molecules25030628 10.1016/j.ymben.2019.08.001 10.1021/acssynbio.2c00044 10.1038/s41467-022-28277-w 10.3390/md17110621 10.1021/acs.jafc.2c08153 10.1016/j.ymben.2017.04.004 10.1021/np300136t 10.1016/j.ymben.2023.12.002 10.1016/j.synbio.2017.10.002 10.1021/acs.jafc.1c08072 10.1021/jo050101l 10.1016/j.tibtech.2018.06.007 10.1016/j.plipres.2020.101083 10.1021/acs.jafc.3c09080 10.1111/1751-7915.14060 10.1074/jbc.272.10.6128 10.1021/acssynbio.6b00285 10.1016/j.synbio.2022.10.005 10.1016/j.ymben.2019.11.001 10.1007/s00253-013-5358-z 10.1016/j.biotechadv.2022.108033 10.1016/j.enzmictec.2017.02.006 10.1016/j.ymben.2021.10.004 10.1021/acssynbio.1c00480 10.1016/j.mec.2019.e00112 10.1038/s41467-019-12247-w 10.1016/j.biortech.2017.07.116 10.1134/S0003683815030151 10.1186/s13068-016-0593-z 10.1016/j.ymben.2024.01.003 10.1016/j.meteno.2017.09.001 10.1016/j.ymben.2020.07.010 10.1021/acs.jafc.1c04489 10.1016/j.biortech.2021.126124 10.1016/j.algal.2014.09.002 10.1021/acssynbio.8b00535 10.1002/bit.25976 10.1128/mSphere.00541-18 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors 2025 The Authors. 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 The Authors 2025 |
| Copyright_xml | – notice: 2025 The Authors – notice: 2025 The Authors. – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 The Authors 2025 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1016/j.synbio.2025.02.014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2405-805X |
| EndPage | 750 |
| ExternalDocumentID | oai_doaj_org_article_bbcdd791c5a7492f8cf4ce6ec362dc7a PMC12002715 40248487 10_1016_j_synbio_2025_02_014 S2405805X25000316 |
| Genre | Journal Article |
| GeographicLocations | China Shanghai China |
| GeographicLocations_xml | – name: Shanghai China – name: China |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAYWO ABJCF ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFKRA AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ARAPS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ HYE IPNFZ KQ8 M41 M7P M7S O9- OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RIG ROL RPM SSZ AAYXX AFFHD CITATION AACTN NPM 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c560t-2044c69f5c39d6f60cd78e314c17b0c5632db73411c2aeec1a856bafa28b15b83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471081600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-805X |
| IngestDate | Tue Oct 14 19:06:57 EDT 2025 Tue Nov 04 02:04:16 EST 2025 Fri Oct 03 00:17:32 EDT 2025 Fri Jul 25 11:48:35 EDT 2025 Sun Apr 20 01:21:03 EDT 2025 Tue Nov 18 22:43:16 EST 2025 Sat Nov 29 07:33:08 EST 2025 Sat Oct 04 17:01:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Modular enzyme assembly Subcellular organelles Enzyme engineering Astaxanthin Yarrowia lipolytica |
| Language | English |
| License | This is an open access article under the CC BY license. 2025 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c560t-2044c69f5c39d6f60cd78e314c17b0c5632db73411c2aeec1a856bafa28b15b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/bbcdd791c5a7492f8cf4ce6ec362dc7a |
| PMID | 40248487 |
| PQID | 3195844050 |
| PQPubID | 6865019 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bbcdd791c5a7492f8cf4ce6ec362dc7a pubmedcentral_primary_oai_pubmedcentral_nih_gov_12002715 proquest_miscellaneous_3191398174 proquest_journals_3195844050 pubmed_primary_40248487 crossref_citationtrail_10_1016_j_synbio_2025_02_014 crossref_primary_10_1016_j_synbio_2025_02_014 elsevier_sciencedirect_doi_10_1016_j_synbio_2025_02_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China – name: Shanghai |
| PublicationTitle | Synthetic and systems biotechnology |
| PublicationTitleAlternate | Synth Syst Biotechnol |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing Communications Ltd – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
| References | Zhang, Chen, Too (bib23) 2020; 104 Gurtovenko, Anwar (bib43) 2007; 111 Lim, Yusoff, Shariff, Kamarudin (bib10) 2018; 10 Liu, Cui, Su, Lu, Hou, Qi (bib32) 2022; 15 Du, Wang, Bai, Liu, Huang, Zhang (bib8) 2020; 25 Vandermies, Kar, Carly, Nicaud, Delvigne, Fickers (bib39) 2018; 102 Ma, Li, Huang, Stephanopoulos (bib44) 2021; 68 Luo, Liu, Lazar, Chatzivasileiou, Ward, Chen (bib50) 2020; 61 Qin, Liu, Ren, Zeng, Luo, Zhou (bib61) 2024; 72 Liu, Li, Zhou, Jiang, Tao, Liu (bib62) 2020; 57 Xu, Qiao, Ahn, Stephanopoulos (bib60) 2016; 113 Choi, Koo (bib15) 2005; 70 Wang, Ma, Ma, Yao, Jiang, Jiang (bib48) 2025;73:1952–1964 Liu, Zhang, Ye, Qi, Hou (bib40) 2021; 10 Zhu, Jiang, Wu, Zhou, Liu, Huang (bib21) 2022; 70 Yang, Qiao, Li, Xu, Yan, Madzak (bib35) 2019; 55 Zhang, Gong, Tang, Lu, Li, Zhang (bib3) 2022; 21 de la Fuente, Rodríguez-Sáiz, Schleissner, Díez, Peiro, Barredo (bib46) 2010; 148 Breitenbach, Misawa, Kajiwara, Sandmann (bib5) 1996; 140 Kim, Lee, Narasimhan, Kim, Oh (bib4) 2022; 343 Mirończuk, Rzechonek, Biegalska, Rakicka, Dobrowolski (bib27) 2016; 9 Fraser, Miura, Misawa (bib17) 1997; 272 Sekova, Isakova, Deryabina (bib22) 2015; 51 Schwartz, Shabbir-Hussain, Frogue, Blenner, Wheeldon (bib31) 2017; 6 Kang, Ma, Liu, Qu, Liu, Zhang (bib28) 2019; 10 Scaife, Ma, Ninlayarn, Wright, Armenta (bib53) 2012; 75 Molino, Rimauro, Casella, Cerbone, Larocca, Chianese (bib7) 2018; 283 Scaife, Burja, Wright (bib16) 2009; 103 Di, Yang, Jiao-Yang, Qing-Yan, Jin-Lei, Shi-Ru (bib57) 2020; 18 Pomraning, Bredeweg, Kerkhoven, Barry, Haridas, Hundley (bib41) 2018; 3 Lemuth, Steuer, Albermann (bib11) 2011; 10 i Nogué, Black, Kruger, Singer, Ramirez, Reed (bib26) 2018; 20 Igielska-Kalwat, Gościańska, Nowak (bib49) 2015; 69 Gassel, Breitenbach, Sandmann (bib13) 2014; 98 Zhou, Ye, Xie, Lv, Yu (bib12) 2015; 99 Sun, Li, Li, Lyu, Yu, Zhou (bib34) 2021; 69 Zhou, Xie, Li, Wang, Yao, Bian (bib42) 2017; 100 Park, Hahn (bib38) 2024; 81 Lu, Bu, Liu (bib54) 2017; 15 Lazar, Liu, Stephanopoulos (bib24) 2018; 36 Lv, Edwards, Zhou, Xu (bib29) 2019; 8 Chen, Zhang, Zhang, Liu, Jiang, Mao (bib1) 2023; 71 Kildegaard, Adiego-Pérez, Belda, Khangura, Holkenbrink, Borodina (bib20) 2017; 2 Ma, Liu, Greisen, Li, Qiao, Huang (bib18) 2022; 13 Zhu, Jiang, Wu, Zhou, Liu, Huang (bib9) 2022; 70 Koller, Muhr, Braunegg (bib6) 2014; 6 Tramontin, Kildegaard, Sudarsan, Borodina (bib14) 2019; 7 Jing, Wang, Zhou, Wang, Li, Sun (bib37) 2022; 61 Liu, Wu, Yue, Ning, Guan, Gao (bib33) 2024; 82 Wan, Zhou, Moncalian, Su, Chen, Zhu (bib51) 2021; 81 Wong, Engel, Jin, Holdridge, Xu (bib30) 2017; 5 Henke, Wendisch (bib56) 2019; 17 Gao, Tong, Zhu, Ge, Zhang, Chen (bib36) 2017; 41 Yang, Edwards, Xu (bib25) 2020; 10 Tao, Wilczek, Odom, Cheng (bib58) 2006; 8 Li, Zhou, Chen, Yu, Ye (bib19) 2022; 11 Zhang, Seow, Chen, Too (bib52) 2018; 9 Zhang, Wang, Hu, Sommerfeld, Li, Han (bib45) 2016; 113 Lin, Chang, Lin, Thia, Kao, Huang (bib2) 2017; 245 Ding, Lu, Zheng, Ma, Jin, Jia (bib59) 2023; 8 Li, Tian, Shen, Liu (bib55) 2015; 42 Ma (10.1016/j.synbio.2025.02.014_bib18) 2022; 13 Li (10.1016/j.synbio.2025.02.014_bib19) 2022; 11 Gurtovenko (10.1016/j.synbio.2025.02.014_bib43) 2007; 111 Yang (10.1016/j.synbio.2025.02.014_bib25) 2020; 10 Molino (10.1016/j.synbio.2025.02.014_bib7) 2018; 283 Di (10.1016/j.synbio.2025.02.014_bib57) 2020; 18 Luo (10.1016/j.synbio.2025.02.014_bib50) 2020; 61 Chen (10.1016/j.synbio.2025.02.014_bib1) 2023; 71 Liu (10.1016/j.synbio.2025.02.014_bib33) 2024; 82 Zhu (10.1016/j.synbio.2025.02.014_bib9) 2022; 70 Du (10.1016/j.synbio.2025.02.014_bib8) 2020; 25 Lu (10.1016/j.synbio.2025.02.014_bib54) 2017; 15 Mirończuk (10.1016/j.synbio.2025.02.014_bib27) 2016; 9 Liu (10.1016/j.synbio.2025.02.014_bib62) 2020; 57 Zhang (10.1016/j.synbio.2025.02.014_bib3) 2022; 21 Lazar (10.1016/j.synbio.2025.02.014_bib24) 2018; 36 Zhang (10.1016/j.synbio.2025.02.014_bib52) 2018; 9 Koller (10.1016/j.synbio.2025.02.014_bib6) 2014; 6 Sekova (10.1016/j.synbio.2025.02.014_bib22) 2015; 51 Lv (10.1016/j.synbio.2025.02.014_bib29) 2019; 8 Lim (10.1016/j.synbio.2025.02.014_bib10) 2018; 10 Wang (10.1016/j.synbio.2025.02.014_bib48) 2025731952 Kang (10.1016/j.synbio.2025.02.014_bib28) 2019; 10 Yang (10.1016/j.synbio.2025.02.014_bib35) 2019; 55 Scaife (10.1016/j.synbio.2025.02.014_bib53) 2012; 75 Tramontin (10.1016/j.synbio.2025.02.014_bib14) 2019; 7 Igielska-Kalwat (10.1016/j.synbio.2025.02.014_bib49) 2015; 69 Li (10.1016/j.synbio.2025.02.014_bib55) 2015; 42 Liu (10.1016/j.synbio.2025.02.014_bib40) 2021; 10 i Nogué (10.1016/j.synbio.2025.02.014_bib26) 2018; 20 Kildegaard (10.1016/j.synbio.2025.02.014_bib20) 2017; 2 Lin (10.1016/j.synbio.2025.02.014_bib2) 2017; 245 Breitenbach (10.1016/j.synbio.2025.02.014_bib5) 1996; 140 Zhou (10.1016/j.synbio.2025.02.014_bib12) 2015; 99 Tao (10.1016/j.synbio.2025.02.014_bib58) 2006; 8 Wong (10.1016/j.synbio.2025.02.014_bib30) 2017; 5 Zhang (10.1016/j.synbio.2025.02.014_bib45) 2016; 113 Ma (10.1016/j.synbio.2025.02.014_bib44) 2021; 68 Jing (10.1016/j.synbio.2025.02.014_bib37) 2022; 61 Zhang (10.1016/j.synbio.2025.02.014_bib23) 2020; 104 Gassel (10.1016/j.synbio.2025.02.014_bib13) 2014; 98 Lemuth (10.1016/j.synbio.2025.02.014_bib11) 2011; 10 Park (10.1016/j.synbio.2025.02.014_bib38) 2024; 81 Pomraning (10.1016/j.synbio.2025.02.014_bib41) 2018; 3 Schwartz (10.1016/j.synbio.2025.02.014_bib31) 2017; 6 Wan (10.1016/j.synbio.2025.02.014_bib51) 2021; 81 Xu (10.1016/j.synbio.2025.02.014_bib60) 2016; 113 Zhou (10.1016/j.synbio.2025.02.014_bib42) 2017; 100 Kim (10.1016/j.synbio.2025.02.014_bib4) 2022; 343 Fraser (10.1016/j.synbio.2025.02.014_bib17) 1997; 272 Gao (10.1016/j.synbio.2025.02.014_bib36) 2017; 41 Qin (10.1016/j.synbio.2025.02.014_bib61) 2024; 72 Liu (10.1016/j.synbio.2025.02.014_bib32) 2022; 15 Sun (10.1016/j.synbio.2025.02.014_bib34) 2021; 69 Scaife (10.1016/j.synbio.2025.02.014_bib16) 2009; 103 de la Fuente (10.1016/j.synbio.2025.02.014_bib46) 2010; 148 Zhu (10.1016/j.synbio.2025.02.014_bib21) 2022; 70 Vandermies (10.1016/j.synbio.2025.02.014_bib39) 2018; 102 Ding (10.1016/j.synbio.2025.02.014_bib59) 2023; 8 Choi (10.1016/j.synbio.2025.02.014_bib15) 2005; 70 Henke (10.1016/j.synbio.2025.02.014_bib56) 2019; 17 |
| References_xml | – volume: 10 start-page: 738 year: 2018 end-page: 773 ident: bib10 article-title: Astaxanthin as feed supplement in aquatic animals publication-title: Rev Aquacult – volume: 6 start-page: 52 year: 2014 end-page: 63 ident: bib6 article-title: Microalgae as versatile cellular factories for valued products publication-title: Algal Res – volume: 68 start-page: 152 year: 2021 end-page: 161 ident: bib44 article-title: Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in publication-title: Metab Eng – volume: 41 start-page: 192 year: 2017 end-page: 201 ident: bib36 article-title: Iterative integration of multiple-copy pathway genes in publication-title: Metab Eng – volume: 6 start-page: 402 year: 2017 end-page: 409 ident: bib31 article-title: Standardized markerless gene integration for pathway engineering in publication-title: ACS Synth Biol – volume: 7 start-page: 472 year: 2019 ident: bib14 article-title: Enhancement of astaxanthin biosynthesis in oleaginous yeast publication-title: Microorganisms – volume: 8 start-page: 46 year: 2023 end-page: 53 ident: bib59 article-title: Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in publication-title: Synth Syst Biotechnol – volume: 15 start-page: 2223 year: 2022 end-page: 2234 ident: bib32 article-title: Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in publication-title: Microb Biotechnol – volume: 140 start-page: 241 year: 1996 end-page: 246 ident: bib5 article-title: Expression in publication-title: FEMS Microbiol Lett – volume: 148 start-page: 144 year: 2010 end-page: 146 ident: bib46 article-title: High-titer production of astaxanthin by the semi-industrial fermentation of publication-title: J Biotechnol – volume: 21 start-page: 71 year: 2022 ident: bib3 article-title: Improving astaxanthin production in publication-title: Microb Cell Fact – volume: 113 start-page: 10848 year: 2016 end-page: 10853 ident: bib60 article-title: Engineering publication-title: Proc Natl Acad Sci USA – volume: 245 start-page: 899 year: 2017 end-page: 905 ident: bib2 article-title: Metabolic engineering a yeast to produce astaxanthin publication-title: Bioresour Technol – volume: 104 start-page: 5725 year: 2020 end-page: 5737 ident: bib23 article-title: Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook publication-title: Appl Microbiol Biotechnol – volume: 11 start-page: 2636 year: 2022 end-page: 2649 ident: bib19 article-title: Spatiotemporal regulation of astaxanthin synthesis in publication-title: ACS Synth Biol – year: 2025;73:1952–1964 ident: bib48 article-title: Microbial astaxanthin synthesis by publication-title: J Agric Food Chem – volume: 55 start-page: 231 year: 2019 end-page: 238 ident: bib35 article-title: Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in publication-title: Metab Eng – volume: 10 start-page: 1 year: 2011 end-page: 12 ident: bib11 article-title: Engineering of a plasmid-free publication-title: Microb Cell Fact – volume: 8 start-page: 523 year: 2006 end-page: 531 ident: bib58 article-title: Engineering a β-carotene ketolase for astaxanthin production publication-title: Metab Eng – volume: 9 start-page: 1 year: 2016 end-page: 12 ident: bib27 article-title: A novel strain of publication-title: Biotechnol Biofuels – volume: 18 start-page: 666 year: 2020 end-page: 676 ident: bib57 article-title: Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in publication-title: Chin J Nat Med – volume: 343 year: 2022 ident: bib4 article-title: Cell disruption and astaxanthin extraction from publication-title: Bioresour Technol – volume: 99 start-page: 8419 year: 2015 end-page: 8428 ident: bib12 article-title: Highly efficient biosynthesis of astaxanthin in publication-title: Appl Microbiol Biotechnol – volume: 3 year: 2018 ident: bib41 article-title: Regulation of yeast-to-hyphae transition in publication-title: mSphere – volume: 75 start-page: 1117 year: 2012 end-page: 1124 ident: bib53 article-title: Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis publication-title: J Nat Prod – volume: 10 year: 2020 ident: bib25 article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in publication-title: Metab Eng Commun – volume: 5 start-page: 68 year: 2017 end-page: 77 ident: bib30 article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in publication-title: Metab Eng Commun – volume: 9 start-page: 1858 year: 2018 ident: bib52 article-title: Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in publication-title: Nat Commun – volume: 98 start-page: 345 year: 2014 end-page: 350 ident: bib13 article-title: Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in publication-title: Appl Microbiol Biotechnol – volume: 10 start-page: 4248 year: 2019 ident: bib28 article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux publication-title: Nat Commun – volume: 15 start-page: 296 year: 2017 ident: bib54 article-title: Metabolic engineering of publication-title: Mar Drugs – volume: 61 start-page: 344 year: 2020 end-page: 351 ident: bib50 article-title: Enhancing isoprenoid synthesis in publication-title: Metab Eng – volume: 100 start-page: 28 year: 2017 end-page: 36 ident: bib42 article-title: Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in publication-title: Enzym Microb Technol – volume: 17 start-page: 621 year: 2019 ident: bib56 article-title: Improved astaxanthin production with publication-title: Mar Drugs – volume: 36 start-page: 1157 year: 2018 end-page: 1170 ident: bib24 article-title: Holistic approaches in lipid production by publication-title: Trends Biotechnol – volume: 71 start-page: 2943 year: 2023 end-page: 2951 ident: bib1 article-title: Heterologous expression of the plant-derived astaxanthin biosynthesis pathway in publication-title: J Agric Food Chem – volume: 272 start-page: 6128 year: 1997 end-page: 6135 ident: bib17 article-title: In vitro characterization of astaxanthin biosynthetic enzymes publication-title: J Biol Chem – volume: 81 start-page: 197 year: 2024 end-page: 209 ident: bib38 article-title: Engineering publication-title: Metab Eng – volume: 103 start-page: 944 year: 2009 end-page: 955 ident: bib16 article-title: Characterization of cyanobacterial β‐carotene ketolase and hydroxylase genes in publication-title: Biotechnol Bioeng – volume: 102 start-page: 5473 year: 2018 end-page: 5482 ident: bib39 article-title: morphological mutant enables lasting in situ immobilization in bioreactor publication-title: Appl Microbiol Biotechnol – volume: 70 start-page: 2673 year: 2022 end-page: 2683 ident: bib21 article-title: Production of high levels of 3S,3′S-astaxanthin in publication-title: J Agric Food Chem – volume: 8 start-page: 568 year: 2019 end-page: 576 ident: bib29 article-title: Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in publication-title: ACS Synth Biol – volume: 283 start-page: 51 year: 2018 end-page: 61 ident: bib7 article-title: Extraction of astaxanthin from microalga publication-title: J Biotechnol – volume: 72 start-page: 5348 year: 2024 end-page: 5357 ident: bib61 article-title: biosynthesis of lutein in publication-title: J Agric Food Chem – volume: 69 start-page: 418 year: 2015 end-page: 428 ident: bib49 article-title: Carotenoids as natural antioxidants publication-title: Adv Hyg Exp Med – volume: 13 start-page: 572 year: 2022 ident: bib18 article-title: Removal of lycopene substrate inhibition enables high carotenoid productivity in publication-title: Nat Commun – volume: 20 start-page: 4349 year: 2018 end-page: 4365 ident: bib26 article-title: Integrated diesel production from lignocellulosic sugars via oleaginous yeast publication-title: Green Chem – volume: 82 start-page: 29 year: 2024 end-page: 40 ident: bib33 article-title: YaliCMulti and YaliHMulti: stable, efficient multi-copy integration tools for engineering publication-title: Metab Eng – volume: 69 start-page: 12763 year: 2021 end-page: 12772 ident: bib34 article-title: Enhancing flavan-3-ol biosynthesis in publication-title: J Agric Food Chem – volume: 111 start-page: 10453 year: 2007 end-page: 10460 ident: bib43 article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide publication-title: J Mater Chem B – volume: 70 start-page: 3328 year: 2005 end-page: 3331 ident: bib15 article-title: Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene publication-title: J Org Chem – volume: 61 year: 2022 ident: bib37 article-title: Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin publication-title: Biotechnol. Adv. – volume: 81 year: 2021 ident: bib51 article-title: Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering publication-title: Prog Lipid Res – volume: 25 start-page: 628 year: 2020 ident: bib8 article-title: A quantitative analysis model established to determine the concentration of each source in mixed astaxanthin from different sources publication-title: Molecules – volume: 113 start-page: 2088 year: 2016 end-page: 2099 ident: bib45 article-title: A new paradigm for producing astaxanthin from the unicellular green alga publication-title: Biotechnol Bioeng – volume: 10 start-page: 3551 year: 2021 end-page: 3560 ident: bib40 article-title: Morphological and metabolic engineering of publication-title: ACS Synth Biol – volume: 57 start-page: 151 year: 2020 end-page: 161 ident: bib62 article-title: The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction publication-title: Metab Eng – volume: 70 start-page: 2673 year: 2022 end-page: 2683 ident: bib9 article-title: Production of high levels of 3S,3′S-astaxanthin in publication-title: J Agric Food Chem – volume: 51 start-page: 278 year: 2015 end-page: 291 ident: bib22 article-title: Biotechnological applications of the extremophilic yeast publication-title: Appl Biochem Microbiol – volume: 2 start-page: 287 year: 2017 end-page: 294 ident: bib20 article-title: Engineering of publication-title: Synth Syst Biotechnol – volume: 42 start-page: 627 year: 2015 end-page: 636 ident: bib55 article-title: Metabolic engineering of publication-title: J Ind Microbiol Biotechnol – volume: 10 start-page: 738 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib10 article-title: Astaxanthin as feed supplement in aquatic animals publication-title: Rev Aquacult doi: 10.1111/raq.12200 – volume: 15 start-page: 296 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib54 article-title: Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid publication-title: Mar Drugs doi: 10.3390/md15100296 – volume: 283 start-page: 51 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib7 article-title: Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2018.07.010 – volume: 148 start-page: 144 year: 2010 ident: 10.1016/j.synbio.2025.02.014_bib46 article-title: High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.05.004 – volume: 113 start-page: 10848 year: 2016 ident: 10.1016/j.synbio.2025.02.014_bib60 article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1607295113 – volume: 8 start-page: 523 year: 2006 ident: 10.1016/j.synbio.2025.02.014_bib58 article-title: Engineering a β-carotene ketolase for astaxanthin production publication-title: Metab Eng doi: 10.1016/j.ymben.2006.06.001 – volume: 140 start-page: 241 year: 1996 ident: 10.1016/j.synbio.2025.02.014_bib5 article-title: Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1996.tb08343.x – volume: 20 start-page: 4349 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib26 article-title: Integrated diesel production from lignocellulosic sugars via oleaginous yeast publication-title: Green Chem doi: 10.1039/C8GC01905C – volume: 10 start-page: 1 year: 2011 ident: 10.1016/j.synbio.2025.02.014_bib11 article-title: Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin publication-title: Microb Cell Fact doi: 10.1186/1475-2859-10-29 – volume: 99 start-page: 8419 year: 2015 ident: 10.1016/j.synbio.2025.02.014_bib12 article-title: Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6791-y – volume: 9 start-page: 1858 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib52 article-title: Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli publication-title: Nat Commun doi: 10.1038/s41467-018-04211-x – volume: 18 start-page: 666 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib57 article-title: Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli publication-title: Chin J Nat Med – volume: 69 start-page: 418 year: 2015 ident: 10.1016/j.synbio.2025.02.014_bib49 article-title: Carotenoids as natural antioxidants publication-title: Adv Hyg Exp Med – volume: 7 start-page: 472 year: 2019 ident: 10.1016/j.synbio.2025.02.014_bib14 article-title: Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway publication-title: Microorganisms doi: 10.3390/microorganisms7100472 – volume: 102 start-page: 5473 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib39 article-title: Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-018-9006-5 – volume: 42 start-page: 627 year: 2015 ident: 10.1016/j.synbio.2025.02.014_bib55 article-title: Metabolic engineering of Escherichia coli to produce zeaxanthin publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-014-1565-6 – volume: 21 start-page: 71 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib3 article-title: Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference publication-title: Microb Cell Fact doi: 10.1186/s12934-022-01798-1 – volume: 103 start-page: 944 year: 2009 ident: 10.1016/j.synbio.2025.02.014_bib16 article-title: Characterization of cyanobacterial β‐carotene ketolase and hydroxylase genes in Escherichia coli, and their application for astaxanthin biosynthesis publication-title: Biotechnol Bioeng doi: 10.1002/bit.22330 – volume: 104 start-page: 5725 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib23 article-title: Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10648-2 – volume: 25 start-page: 628 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib8 article-title: A quantitative analysis model established to determine the concentration of each source in mixed astaxanthin from different sources publication-title: Molecules doi: 10.3390/molecules25030628 – volume: 55 start-page: 231 year: 2019 ident: 10.1016/j.synbio.2025.02.014_bib35 article-title: Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica publication-title: Metab Eng doi: 10.1016/j.ymben.2019.08.001 – volume: 11 start-page: 2636 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib19 article-title: Spatiotemporal regulation of astaxanthin synthesis in S. cerevisiae publication-title: ACS Synth Biol doi: 10.1021/acssynbio.2c00044 – volume: 111 start-page: 10453 year: 2007 ident: 10.1016/j.synbio.2025.02.014_bib43 article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide publication-title: J Mater Chem B – volume: 13 start-page: 572 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib18 article-title: Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica publication-title: Nat Commun doi: 10.1038/s41467-022-28277-w – volume: 17 start-page: 621 year: 2019 ident: 10.1016/j.synbio.2025.02.014_bib56 article-title: Improved astaxanthin production with Corynebacterium glutamicum by application of a membrane fusion protein publication-title: Mar Drugs doi: 10.3390/md17110621 – volume: 71 start-page: 2943 year: 2023 ident: 10.1016/j.synbio.2025.02.014_bib1 article-title: Heterologous expression of the plant-derived astaxanthin biosynthesis pathway in Yarrowia lipolytica for glycosylated astaxanthin production publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c08153 – volume: 41 start-page: 192 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib36 article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production publication-title: Metab Eng doi: 10.1016/j.ymben.2017.04.004 – volume: 75 start-page: 1117 year: 2012 ident: 10.1016/j.synbio.2025.02.014_bib53 article-title: Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis publication-title: J Nat Prod doi: 10.1021/np300136t – volume: 81 start-page: 197 year: 2024 ident: 10.1016/j.synbio.2025.02.014_bib38 article-title: Engineering Yarrowia lipolytica for sustainable ricinoleic acid production: a pathway to free fatty acid synthesis publication-title: Metab Eng doi: 10.1016/j.ymben.2023.12.002 – volume: 2 start-page: 287 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib20 article-title: Engineering of Yarrowia lipolytica for production of astaxanthin publication-title: Synth Syst Biotechnol doi: 10.1016/j.synbio.2017.10.002 – volume: 70 start-page: 2673 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib9 article-title: Production of high levels of 3S,3′S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c08072 – volume: 70 start-page: 3328 year: 2005 ident: 10.1016/j.synbio.2025.02.014_bib15 article-title: Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene publication-title: J Org Chem doi: 10.1021/jo050101l – volume: 36 start-page: 1157 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib24 article-title: Holistic approaches in lipid production by Yarrowia lipolytica publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.06.007 – volume: 81 year: 2021 ident: 10.1016/j.synbio.2025.02.014_bib51 article-title: Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2020.101083 – volume: 72 start-page: 5348 year: 2024 ident: 10.1016/j.synbio.2025.02.014_bib61 article-title: De novo biosynthesis of lutein in Yarrowia lipolytica publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.3c09080 – volume: 70 start-page: 2673 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib21 article-title: Production of high levels of 3S,3′S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c08072 – volume: 15 start-page: 2223 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib32 article-title: Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in Yarrowia lipolytica publication-title: Microb Biotechnol doi: 10.1111/1751-7915.14060 – volume: 272 start-page: 6128 year: 1997 ident: 10.1016/j.synbio.2025.02.014_bib17 article-title: In vitro characterization of astaxanthin biosynthetic enzymes publication-title: J Biol Chem doi: 10.1074/jbc.272.10.6128 – volume: 6 start-page: 402 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib31 article-title: Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica publication-title: ACS Synth Biol doi: 10.1021/acssynbio.6b00285 – volume: 8 start-page: 46 year: 2023 ident: 10.1016/j.synbio.2025.02.014_bib59 article-title: Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae publication-title: Synth Syst Biotechnol doi: 10.1016/j.synbio.2022.10.005 – volume: 57 start-page: 151 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib62 article-title: The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction publication-title: Metab Eng doi: 10.1016/j.ymben.2019.11.001 – volume: 98 start-page: 345 year: 2014 ident: 10.1016/j.synbio.2025.02.014_bib13 article-title: Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-013-5358-z – volume: 61 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib37 article-title: Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2022.108033 – volume: 100 start-page: 28 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib42 article-title: Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae publication-title: Enzym Microb Technol doi: 10.1016/j.enzmictec.2017.02.006 – volume: 68 start-page: 152 year: 2021 ident: 10.1016/j.synbio.2025.02.014_bib44 article-title: Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica publication-title: Metab Eng doi: 10.1016/j.ymben.2021.10.004 – volume: 10 start-page: 3551 year: 2021 ident: 10.1016/j.synbio.2025.02.014_bib40 article-title: Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production publication-title: ACS Synth Biol doi: 10.1021/acssynbio.1c00480 – volume: 10 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib25 article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica publication-title: Metab Eng Commun doi: 10.1016/j.mec.2019.e00112 – volume: 10 start-page: 4248 year: 2019 ident: 10.1016/j.synbio.2025.02.014_bib28 article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux publication-title: Nat Commun doi: 10.1038/s41467-019-12247-w – volume: 245 start-page: 899 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib2 article-title: Metabolic engineering a yeast to produce astaxanthin publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.07.116 – volume: 51 start-page: 278 year: 2015 ident: 10.1016/j.synbio.2025.02.014_bib22 article-title: Biotechnological applications of the extremophilic yeast Yarrowia lipolytica publication-title: Appl Biochem Microbiol doi: 10.1134/S0003683815030151 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.synbio.2025.02.014_bib27 article-title: A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol publication-title: Biotechnol Biofuels doi: 10.1186/s13068-016-0593-z – volume: 82 start-page: 29 year: 2024 ident: 10.1016/j.synbio.2025.02.014_bib33 article-title: YaliCMulti and YaliHMulti: stable, efficient multi-copy integration tools for engineering Yarrowia lipolytica publication-title: Metab Eng doi: 10.1016/j.ymben.2024.01.003 – volume: 5 start-page: 68 year: 2017 ident: 10.1016/j.synbio.2025.02.014_bib30 article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica publication-title: Metab Eng Commun doi: 10.1016/j.meteno.2017.09.001 – volume: 61 start-page: 344 year: 2020 ident: 10.1016/j.synbio.2025.02.014_bib50 article-title: Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity publication-title: Metab Eng doi: 10.1016/j.ymben.2020.07.010 – volume: 69 start-page: 12763 year: 2021 ident: 10.1016/j.synbio.2025.02.014_bib34 article-title: Enhancing flavan-3-ol biosynthesis in Saccharomyces cerevisiae publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c04489 – volume: 343 year: 2022 ident: 10.1016/j.synbio.2025.02.014_bib4 article-title: Cell disruption and astaxanthin extraction from Haematococcus pluvialis: recent advances publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126124 – volume: 6 start-page: 52 year: 2014 ident: 10.1016/j.synbio.2025.02.014_bib6 article-title: Microalgae as versatile cellular factories for valued products publication-title: Algal Res doi: 10.1016/j.algal.2014.09.002 – volume: 8 start-page: 568 year: 2019 ident: 10.1016/j.synbio.2025.02.014_bib29 article-title: Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica publication-title: ACS Synth Biol doi: 10.1021/acssynbio.8b00535 – volume: 113 start-page: 2088 year: 2016 ident: 10.1016/j.synbio.2025.02.014_bib45 article-title: A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis publication-title: Biotechnol Bioeng doi: 10.1002/bit.25976 – volume: 3 year: 2018 ident: 10.1016/j.synbio.2025.02.014_bib41 article-title: Regulation of yeast-to-hyphae transition in Yarrowia lipolytica publication-title: mSphere doi: 10.1128/mSphere.00541-18 – year: 2025731952 ident: 10.1016/j.synbio.2025.02.014_bib48 article-title: Microbial astaxanthin synthesis by Komagataella phaffii through metabolic and fermentation engineering publication-title: J Agric Food Chem |
| SSID | ssj0001826698 ssib050739087 ssib051945712 |
| Score | 2.3410065 |
| Snippet | Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 737 |
| SubjectTerms | Algae Antioxidants Astaxanthin Bacteria Batch culture Biosynthesis Carotene Carotenoids Catalytic activity CRISPR Dietary supplements E coli Enzyme engineering Enzymes Fermentation Genes Genomes Glucose Metabolic engineering Modular enzyme assembly Organelles Original Pharmaceutical industry Plasmids Productivity Subcellular organelles Yarrowia lipolytica Yeast β-Carotene |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxjYgTO3ZOCFArTlUPIC0nyx47NGibLLvbqsuvZ-w42y5I9IC0UqSN87Dm88xne_INIW-b1jWB1-YVusicl8bkRiqbQ-OZcqVkbeNisQl5dKRms-Y4LbitUlrl5BOjo3YDhDXyd1VQReFIL4r3i595qBoVdldTCY2b5FZQSahi6t7xhCcRdqGKS_qBZIULmcJ5XINBbl3HcrkY1wQ6azGbvq6LKWCrTW-78IVgKaKwJ-M70SuK_O8Esb9J6p-5lleC1-H9_-32A3Iv0Vb6YcTZQ3LD94_I3Stiho8JHEQ1CnwBuhhlZNHkdGipQQJ6gQY86XqKv29R9rEzdN4thvkmrKXTVC2Invo1gnLeATW9o77_tTn1eNg-5Qn5enjw5dPnPJVwyAGp1BrHIOdQN62AqnF1WxfgpPIV48CkLbBNVTorESYMSuM9MKNEbU1rSmWZsKp6Svb6offPCTWiYK0TxkGLLFMZW-NkjRdQScmsclVGqsk0GpK-eSizMddTItsPPRpUB4PqotRo0Izk26sWo77HNe0_Bqtv2wZ17vjHsPyu02DX1oJzsmEgjORN2SpoOfjaA7IFB9JkRE6Y0YnojAQGb9Vd8_j9CSY6OZuVvsRIRt5sT6ObCHs_pvfDWWyDXF_h_DMjz0ZEbvvAg64dTlwzonawutPJ3TN9dxKlyFnI8ZFMvPj3e70kd0Inxty8fbK3Xp75V-Q2nK-71fJ1HLS_AagoSoY priority: 102 providerName: ProQuest |
| Title | Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering |
| URI | https://dx.doi.org/10.1016/j.synbio.2025.02.014 https://www.ncbi.nlm.nih.gov/pubmed/40248487 https://www.proquest.com/docview/3195844050 https://www.proquest.com/docview/3191398174 https://pubmed.ncbi.nlm.nih.gov/PMC12002715 https://doaj.org/article/bbcdd791c5a7492f8cf4ce6ec362dc7a |
| Volume | 10 |
| WOSCitedRecordID | wos001471081600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050739087 issn: 2405-805X databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: P5Z dateStart: 20240301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: M7P dateStart: 20240301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: M7S dateStart: 20240301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: BENPR dateStart: 20240301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2405-805X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001826698 issn: 2405-805X databaseCode: PIMPY dateStart: 20240301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvAUhmJa0ScOLF9ZFFXcKCKeEhdLpaf2qy6abXtou3-esbOQy0cekGKHCm2k3hmHH92xt8g9F54KwKuTQv4RKY0VypVjOvUCEe4zRnxwsZgE2w24_O5qHdCfQWfsI4euBPcB62NtUwQUypGRe658dS4yhn48lrDIjQC1LMzmYqrK4CaK8GHvXLRoWu9bXUT9vvlZaTpJHRvLIqU_XtD0r-Q82_PyZ2h6PQxetRjSPyxe_cn6I5rn6KHO8yCz5CZRmoIqI9XHacryB8vPVaABm9AmudNi-E4ixyMjcKLZrVcbMPCNu5D9-BLtwELWTQGq9Zi195uLx2cxqc8Rz9Ppz8-fU77eAqpAVyzgQ5BqamEL00hbOWrzFjGXUGoIUxnUKbIrWagM2Jy5ZwhipeVVl7lXJNS8-IFOmqXrXuFsCoz4m2prPEA-bjSFcycaGYKxojmtkhQMUhWmp5sPMS8WMjBq-xCdvqQQR8yyyXoI0HpWGvVkW0cKH8SlDaWDVTZ8QIYkOwNSB4yoASxQeWyRx0dmoBbNQcefzxYiOx7_loWgb2HAgzOEvRuzIY-G37EqNYtr2MZAN4cJoMJetkZ1NgGGkjmYBaZIL5nanuN3M9pm_PIC06Cww0j5ev_IZY36EFoaudOd4yONlfX7i26b35vmvXVBN1lcz5B906ms_rbJPa9SXCbrWP6HdK6_AX59Zev9dkf7yE8dA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuF8CA4wEjxGxY8fOA0JcNm3aqPYwpPJkHNthQV1S2g4oP4rfyLFz2QoSe9oDUqVKjZvktJ_P-U58_B2EnuWlzT2vjVNwkTGjWsdayCI2uSPSUkHK3IZmE2I0kuNxvr-GfvV7YXxZZe8Tg6O2jfHPyF-kXhWFAb1IXk2_xr5rlF9d7VtotLDYdcvvkLLNX-68g__3OaVbmwdvt-Ouq0BsILovABaMmSwvuUlzm5VZYqyQLiXMEFEkMCalthBw58RQ7ZwhWvKs0KWmsiC8kCmc9wK6CDSCylAquN_jl_tVr-SE7gA5Ylx09CE88wEun4X2vBBHOQQHPu5384WSs_myLiq_I5HyICRK2Eq0DE0FVoLm36T4z9rOU8Fy6_r_9jPfQNc6Wo5ft_PoJlpz9S109ZRY421kNoPaBhiMp61MLkAaNyXWQLB_AEAPqxrD62OQtaw0nlTTZrL0awW464aEj9wCJt2kMljXFrv65_LIwdtwlTvow7lYeRet103t7iOseUJKy7U1JbBoqYsMklGWmFQIUkibRijtoaBMp9_u24hMVF-o90W1AFIeQCqhCgAUoXj41rTVLzlj_BuPsmGsVx8PHzSzz6pzZqoojLUiJ4ZrwXJaSlMy4zJngA1ZI3SERI9R1RG5lqDBqaozLr_Rw1J1znSuTjAZoafDYXCDfm1L1645DmMgl5GQX0foXjsDBhuY1-2DxDxCcmVurBi5eqSuDoPUOvE1TILwB_--ryfo8vbB-z21tzPafYiueIPaOsQNtL6YHbtH6JL5tqjms8fBYWD06bynzm9sDad9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+production+of+astaxanthin+in+Yarrowia+lipolytica+through+metabolic+and+enzyme+engineering&rft.jtitle=Synthetic+and+systems+biotechnology&rft.au=Abdullah%2C+Chalak+Najat&rft.au=Liu%2C+Mengsu&rft.au=Chen%2C+Qihang&rft.au=Gao%2C+Song&rft.date=2025-09-01&rft.pub=KeAi+Publishing&rft.eissn=2405-805X&rft.volume=10&rft.issue=3&rft.spage=737&rft.epage=750&rft_id=info:doi/10.1016%2Fj.synbio.2025.02.014&rft.externalDocID=PMC12002715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-805X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-805X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-805X&client=summon |