Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering

Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Synthetic and systems biotechnology Ročník 10; číslo 3; s. 737 - 750
Hlavní autori: Abdullah, Chalak Najat, Liu, Mengsu, Chen, Qihang, Gao, Song, Zhang, Changtai, Liu, Shike, Zhou, Jingwen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: China Elsevier B.V 01.09.2025
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Predmet:
ISSN:2405-805X, 2405-805X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. [Display omitted]
AbstractList Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to biosynthesis of astaxanthin. Here, was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of and as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in .
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. [Display omitted]
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica. Image 1
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and βB-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
Author Liu, Mengsu
Zhang, Changtai
Zhou, Jingwen
Chen, Qihang
Liu, Shike
Abdullah, Chalak Najat
Gao, Song
Author_xml – sequence: 1
  givenname: Chalak Najat
  surname: Abdullah
  fullname: Abdullah, Chalak Najat
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 2
  givenname: Mengsu
  surname: Liu
  fullname: Liu, Mengsu
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 3
  givenname: Qihang
  surname: Chen
  fullname: Chen, Qihang
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 4
  givenname: Song
  surname: Gao
  fullname: Gao, Song
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 5
  givenname: Changtai
  surname: Zhang
  fullname: Zhang, Changtai
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 6
  givenname: Shike
  surname: Liu
  fullname: Liu, Shike
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
– sequence: 7
  givenname: Jingwen
  surname: Zhou
  fullname: Zhou, Jingwen
  email: zhoujw1982@jiangnan.edu.cn
  organization: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40248487$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUHaRiP-w_EBnwxZddk0xmJuODRUrVQsEXBX0Kd27u7GaZTdYkU93-erNuK20fFAI3JOccDvec4-LAeUdF8YKzOWe8ebOax63rrZ8LJuo5E3PG5ZPiSEhWzxSrvx3cux8WpzGuGGNciabp1LPiUDIhlVTtUYEXw2DRkkvlJngzYbLelX4oISb4BS4trSvz-Q4h-J8WytFu_LhNFqFMy-CnxbJcU4LejxZLcKYkd7NdUx4L64iCdYvnxdMBxkint_Ok-Prh4sv5p9nV54-X5--vZlg3LM0EkxKbbqix6kwzNAxNq6jiEnnbs4yphOnbSnKOAoiQg6qbHgYQqud1r6qT4nKvazys9CbYNYSt9mD1nwcfFhpCdj6S7ns0pu041tDKTgwKB4nUEFaNMNhC1jrba22mfk0G84ICjA9EH_44u9QLf625YEy0vM4Kr28Vgv8xUUx6bSPSOIIjP0Vd8Y5XneKtzNBXj6ArPwWXd7VD1UrmKFlGvbxv6a-XuzAz4O0egMHHGGjQaBPsAs0O7ag507vy6JXel0fvyqOZ0Lk8mSwfke_0_0N7t6dRDvbaUtBx1yYkYwNhypu3_xb4DXE34wU
CitedBy_id crossref_primary_10_3389_fbioe_2025_1673169
crossref_primary_10_1016_j_fm_2025_104883
Cites_doi 10.1111/raq.12200
10.3390/md15100296
10.1016/j.jbiotec.2018.07.010
10.1016/j.jbiotec.2010.05.004
10.1073/pnas.1607295113
10.1016/j.ymben.2006.06.001
10.1111/j.1574-6968.1996.tb08343.x
10.1039/C8GC01905C
10.1186/1475-2859-10-29
10.1007/s00253-015-6791-y
10.1038/s41467-018-04211-x
10.3390/microorganisms7100472
10.1007/s00253-018-9006-5
10.1007/s10295-014-1565-6
10.1186/s12934-022-01798-1
10.1002/bit.22330
10.1007/s00253-020-10648-2
10.3390/molecules25030628
10.1016/j.ymben.2019.08.001
10.1021/acssynbio.2c00044
10.1038/s41467-022-28277-w
10.3390/md17110621
10.1021/acs.jafc.2c08153
10.1016/j.ymben.2017.04.004
10.1021/np300136t
10.1016/j.ymben.2023.12.002
10.1016/j.synbio.2017.10.002
10.1021/acs.jafc.1c08072
10.1021/jo050101l
10.1016/j.tibtech.2018.06.007
10.1016/j.plipres.2020.101083
10.1021/acs.jafc.3c09080
10.1111/1751-7915.14060
10.1074/jbc.272.10.6128
10.1021/acssynbio.6b00285
10.1016/j.synbio.2022.10.005
10.1016/j.ymben.2019.11.001
10.1007/s00253-013-5358-z
10.1016/j.biotechadv.2022.108033
10.1016/j.enzmictec.2017.02.006
10.1016/j.ymben.2021.10.004
10.1021/acssynbio.1c00480
10.1016/j.mec.2019.e00112
10.1038/s41467-019-12247-w
10.1016/j.biortech.2017.07.116
10.1134/S0003683815030151
10.1186/s13068-016-0593-z
10.1016/j.ymben.2024.01.003
10.1016/j.meteno.2017.09.001
10.1016/j.ymben.2020.07.010
10.1021/acs.jafc.1c04489
10.1016/j.biortech.2021.126124
10.1016/j.algal.2014.09.002
10.1021/acssynbio.8b00535
10.1002/bit.25976
10.1128/mSphere.00541-18
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1016/j.synbio.2025.02.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2405-805X
EndPage 750
ExternalDocumentID oai_doaj_org_article_bbcdd791c5a7492f8cf4ce6ec362dc7a
PMC12002715
40248487
10_1016_j_synbio_2025_02_014
S2405805X25000316
Genre Journal Article
GeographicLocations China
Shanghai China
GeographicLocations_xml – name: Shanghai China
– name: China
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAYWO
ABJCF
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFKRA
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ARAPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
HYE
IPNFZ
KQ8
M41
M7P
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RIG
ROL
RPM
SSZ
AAYXX
AFFHD
CITATION
AACTN
NPM
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c560t-2044c69f5c39d6f60cd78e314c17b0c5632db73411c2aeec1a856bafa28b15b83
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471081600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-805X
IngestDate Tue Oct 14 19:06:57 EDT 2025
Tue Nov 04 02:04:16 EST 2025
Fri Oct 03 00:17:32 EDT 2025
Fri Jul 25 11:48:35 EDT 2025
Sun Apr 20 01:21:03 EDT 2025
Tue Nov 18 22:43:16 EST 2025
Sat Nov 29 07:33:08 EST 2025
Sat Oct 04 17:01:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Modular enzyme assembly
Subcellular organelles
Enzyme engineering
Astaxanthin
Yarrowia lipolytica
Language English
License This is an open access article under the CC BY license.
2025 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-2044c69f5c39d6f60cd78e314c17b0c5632db73411c2aeec1a856bafa28b15b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bbcdd791c5a7492f8cf4ce6ec362dc7a
PMID 40248487
PQID 3195844050
PQPubID 6865019
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_bbcdd791c5a7492f8cf4ce6ec362dc7a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12002715
proquest_miscellaneous_3191398174
proquest_journals_3195844050
pubmed_primary_40248487
crossref_citationtrail_10_1016_j_synbio_2025_02_014
crossref_primary_10_1016_j_synbio_2025_02_014
elsevier_sciencedirect_doi_10_1016_j_synbio_2025_02_014
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
– name: Shanghai
PublicationTitle Synthetic and systems biotechnology
PublicationTitleAlternate Synth Syst Biotechnol
PublicationYear 2025
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Zhang, Chen, Too (bib23) 2020; 104
Gurtovenko, Anwar (bib43) 2007; 111
Lim, Yusoff, Shariff, Kamarudin (bib10) 2018; 10
Liu, Cui, Su, Lu, Hou, Qi (bib32) 2022; 15
Du, Wang, Bai, Liu, Huang, Zhang (bib8) 2020; 25
Vandermies, Kar, Carly, Nicaud, Delvigne, Fickers (bib39) 2018; 102
Ma, Li, Huang, Stephanopoulos (bib44) 2021; 68
Luo, Liu, Lazar, Chatzivasileiou, Ward, Chen (bib50) 2020; 61
Qin, Liu, Ren, Zeng, Luo, Zhou (bib61) 2024; 72
Liu, Li, Zhou, Jiang, Tao, Liu (bib62) 2020; 57
Xu, Qiao, Ahn, Stephanopoulos (bib60) 2016; 113
Choi, Koo (bib15) 2005; 70
Wang, Ma, Ma, Yao, Jiang, Jiang (bib48) 2025;73:1952–1964
Liu, Zhang, Ye, Qi, Hou (bib40) 2021; 10
Zhu, Jiang, Wu, Zhou, Liu, Huang (bib21) 2022; 70
Yang, Qiao, Li, Xu, Yan, Madzak (bib35) 2019; 55
Zhang, Gong, Tang, Lu, Li, Zhang (bib3) 2022; 21
de la Fuente, Rodríguez-Sáiz, Schleissner, Díez, Peiro, Barredo (bib46) 2010; 148
Breitenbach, Misawa, Kajiwara, Sandmann (bib5) 1996; 140
Kim, Lee, Narasimhan, Kim, Oh (bib4) 2022; 343
Mirończuk, Rzechonek, Biegalska, Rakicka, Dobrowolski (bib27) 2016; 9
Fraser, Miura, Misawa (bib17) 1997; 272
Sekova, Isakova, Deryabina (bib22) 2015; 51
Schwartz, Shabbir-Hussain, Frogue, Blenner, Wheeldon (bib31) 2017; 6
Kang, Ma, Liu, Qu, Liu, Zhang (bib28) 2019; 10
Scaife, Ma, Ninlayarn, Wright, Armenta (bib53) 2012; 75
Molino, Rimauro, Casella, Cerbone, Larocca, Chianese (bib7) 2018; 283
Scaife, Burja, Wright (bib16) 2009; 103
Di, Yang, Jiao-Yang, Qing-Yan, Jin-Lei, Shi-Ru (bib57) 2020; 18
Pomraning, Bredeweg, Kerkhoven, Barry, Haridas, Hundley (bib41) 2018; 3
Lemuth, Steuer, Albermann (bib11) 2011; 10
i Nogué, Black, Kruger, Singer, Ramirez, Reed (bib26) 2018; 20
Igielska-Kalwat, Gościańska, Nowak (bib49) 2015; 69
Gassel, Breitenbach, Sandmann (bib13) 2014; 98
Zhou, Ye, Xie, Lv, Yu (bib12) 2015; 99
Sun, Li, Li, Lyu, Yu, Zhou (bib34) 2021; 69
Zhou, Xie, Li, Wang, Yao, Bian (bib42) 2017; 100
Park, Hahn (bib38) 2024; 81
Lu, Bu, Liu (bib54) 2017; 15
Lazar, Liu, Stephanopoulos (bib24) 2018; 36
Lv, Edwards, Zhou, Xu (bib29) 2019; 8
Chen, Zhang, Zhang, Liu, Jiang, Mao (bib1) 2023; 71
Kildegaard, Adiego-Pérez, Belda, Khangura, Holkenbrink, Borodina (bib20) 2017; 2
Ma, Liu, Greisen, Li, Qiao, Huang (bib18) 2022; 13
Zhu, Jiang, Wu, Zhou, Liu, Huang (bib9) 2022; 70
Koller, Muhr, Braunegg (bib6) 2014; 6
Tramontin, Kildegaard, Sudarsan, Borodina (bib14) 2019; 7
Jing, Wang, Zhou, Wang, Li, Sun (bib37) 2022; 61
Liu, Wu, Yue, Ning, Guan, Gao (bib33) 2024; 82
Wan, Zhou, Moncalian, Su, Chen, Zhu (bib51) 2021; 81
Wong, Engel, Jin, Holdridge, Xu (bib30) 2017; 5
Henke, Wendisch (bib56) 2019; 17
Gao, Tong, Zhu, Ge, Zhang, Chen (bib36) 2017; 41
Yang, Edwards, Xu (bib25) 2020; 10
Tao, Wilczek, Odom, Cheng (bib58) 2006; 8
Li, Zhou, Chen, Yu, Ye (bib19) 2022; 11
Zhang, Seow, Chen, Too (bib52) 2018; 9
Zhang, Wang, Hu, Sommerfeld, Li, Han (bib45) 2016; 113
Lin, Chang, Lin, Thia, Kao, Huang (bib2) 2017; 245
Ding, Lu, Zheng, Ma, Jin, Jia (bib59) 2023; 8
Li, Tian, Shen, Liu (bib55) 2015; 42
Ma (10.1016/j.synbio.2025.02.014_bib18) 2022; 13
Li (10.1016/j.synbio.2025.02.014_bib19) 2022; 11
Gurtovenko (10.1016/j.synbio.2025.02.014_bib43) 2007; 111
Yang (10.1016/j.synbio.2025.02.014_bib25) 2020; 10
Molino (10.1016/j.synbio.2025.02.014_bib7) 2018; 283
Di (10.1016/j.synbio.2025.02.014_bib57) 2020; 18
Luo (10.1016/j.synbio.2025.02.014_bib50) 2020; 61
Chen (10.1016/j.synbio.2025.02.014_bib1) 2023; 71
Liu (10.1016/j.synbio.2025.02.014_bib33) 2024; 82
Zhu (10.1016/j.synbio.2025.02.014_bib9) 2022; 70
Du (10.1016/j.synbio.2025.02.014_bib8) 2020; 25
Lu (10.1016/j.synbio.2025.02.014_bib54) 2017; 15
Mirończuk (10.1016/j.synbio.2025.02.014_bib27) 2016; 9
Liu (10.1016/j.synbio.2025.02.014_bib62) 2020; 57
Zhang (10.1016/j.synbio.2025.02.014_bib3) 2022; 21
Lazar (10.1016/j.synbio.2025.02.014_bib24) 2018; 36
Zhang (10.1016/j.synbio.2025.02.014_bib52) 2018; 9
Koller (10.1016/j.synbio.2025.02.014_bib6) 2014; 6
Sekova (10.1016/j.synbio.2025.02.014_bib22) 2015; 51
Lv (10.1016/j.synbio.2025.02.014_bib29) 2019; 8
Lim (10.1016/j.synbio.2025.02.014_bib10) 2018; 10
Wang (10.1016/j.synbio.2025.02.014_bib48) 2025731952
Kang (10.1016/j.synbio.2025.02.014_bib28) 2019; 10
Yang (10.1016/j.synbio.2025.02.014_bib35) 2019; 55
Scaife (10.1016/j.synbio.2025.02.014_bib53) 2012; 75
Tramontin (10.1016/j.synbio.2025.02.014_bib14) 2019; 7
Igielska-Kalwat (10.1016/j.synbio.2025.02.014_bib49) 2015; 69
Li (10.1016/j.synbio.2025.02.014_bib55) 2015; 42
Liu (10.1016/j.synbio.2025.02.014_bib40) 2021; 10
i Nogué (10.1016/j.synbio.2025.02.014_bib26) 2018; 20
Kildegaard (10.1016/j.synbio.2025.02.014_bib20) 2017; 2
Lin (10.1016/j.synbio.2025.02.014_bib2) 2017; 245
Breitenbach (10.1016/j.synbio.2025.02.014_bib5) 1996; 140
Zhou (10.1016/j.synbio.2025.02.014_bib12) 2015; 99
Tao (10.1016/j.synbio.2025.02.014_bib58) 2006; 8
Wong (10.1016/j.synbio.2025.02.014_bib30) 2017; 5
Zhang (10.1016/j.synbio.2025.02.014_bib45) 2016; 113
Ma (10.1016/j.synbio.2025.02.014_bib44) 2021; 68
Jing (10.1016/j.synbio.2025.02.014_bib37) 2022; 61
Zhang (10.1016/j.synbio.2025.02.014_bib23) 2020; 104
Gassel (10.1016/j.synbio.2025.02.014_bib13) 2014; 98
Lemuth (10.1016/j.synbio.2025.02.014_bib11) 2011; 10
Park (10.1016/j.synbio.2025.02.014_bib38) 2024; 81
Pomraning (10.1016/j.synbio.2025.02.014_bib41) 2018; 3
Schwartz (10.1016/j.synbio.2025.02.014_bib31) 2017; 6
Wan (10.1016/j.synbio.2025.02.014_bib51) 2021; 81
Xu (10.1016/j.synbio.2025.02.014_bib60) 2016; 113
Zhou (10.1016/j.synbio.2025.02.014_bib42) 2017; 100
Kim (10.1016/j.synbio.2025.02.014_bib4) 2022; 343
Fraser (10.1016/j.synbio.2025.02.014_bib17) 1997; 272
Gao (10.1016/j.synbio.2025.02.014_bib36) 2017; 41
Qin (10.1016/j.synbio.2025.02.014_bib61) 2024; 72
Liu (10.1016/j.synbio.2025.02.014_bib32) 2022; 15
Sun (10.1016/j.synbio.2025.02.014_bib34) 2021; 69
Scaife (10.1016/j.synbio.2025.02.014_bib16) 2009; 103
de la Fuente (10.1016/j.synbio.2025.02.014_bib46) 2010; 148
Zhu (10.1016/j.synbio.2025.02.014_bib21) 2022; 70
Vandermies (10.1016/j.synbio.2025.02.014_bib39) 2018; 102
Ding (10.1016/j.synbio.2025.02.014_bib59) 2023; 8
Choi (10.1016/j.synbio.2025.02.014_bib15) 2005; 70
Henke (10.1016/j.synbio.2025.02.014_bib56) 2019; 17
References_xml – volume: 10
  start-page: 738
  year: 2018
  end-page: 773
  ident: bib10
  article-title: Astaxanthin as feed supplement in aquatic animals
  publication-title: Rev Aquacult
– volume: 6
  start-page: 52
  year: 2014
  end-page: 63
  ident: bib6
  article-title: Microalgae as versatile cellular factories for valued products
  publication-title: Algal Res
– volume: 68
  start-page: 152
  year: 2021
  end-page: 161
  ident: bib44
  article-title: Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in
  publication-title: Metab Eng
– volume: 41
  start-page: 192
  year: 2017
  end-page: 201
  ident: bib36
  article-title: Iterative integration of multiple-copy pathway genes in
  publication-title: Metab Eng
– volume: 6
  start-page: 402
  year: 2017
  end-page: 409
  ident: bib31
  article-title: Standardized markerless gene integration for pathway engineering in
  publication-title: ACS Synth Biol
– volume: 7
  start-page: 472
  year: 2019
  ident: bib14
  article-title: Enhancement of astaxanthin biosynthesis in oleaginous yeast
  publication-title: Microorganisms
– volume: 8
  start-page: 46
  year: 2023
  end-page: 53
  ident: bib59
  article-title: Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in
  publication-title: Synth Syst Biotechnol
– volume: 15
  start-page: 2223
  year: 2022
  end-page: 2234
  ident: bib32
  article-title: Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in
  publication-title: Microb Biotechnol
– volume: 140
  start-page: 241
  year: 1996
  end-page: 246
  ident: bib5
  article-title: Expression in
  publication-title: FEMS Microbiol Lett
– volume: 148
  start-page: 144
  year: 2010
  end-page: 146
  ident: bib46
  article-title: High-titer production of astaxanthin by the semi-industrial fermentation of
  publication-title: J Biotechnol
– volume: 21
  start-page: 71
  year: 2022
  ident: bib3
  article-title: Improving astaxanthin production in
  publication-title: Microb Cell Fact
– volume: 113
  start-page: 10848
  year: 2016
  end-page: 10853
  ident: bib60
  article-title: Engineering
  publication-title: Proc Natl Acad Sci USA
– volume: 245
  start-page: 899
  year: 2017
  end-page: 905
  ident: bib2
  article-title: Metabolic engineering a yeast to produce astaxanthin
  publication-title: Bioresour Technol
– volume: 104
  start-page: 5725
  year: 2020
  end-page: 5737
  ident: bib23
  article-title: Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook
  publication-title: Appl Microbiol Biotechnol
– volume: 11
  start-page: 2636
  year: 2022
  end-page: 2649
  ident: bib19
  article-title: Spatiotemporal regulation of astaxanthin synthesis in
  publication-title: ACS Synth Biol
– year: 2025;73:1952–1964
  ident: bib48
  article-title: Microbial astaxanthin synthesis by
  publication-title: J Agric Food Chem
– volume: 55
  start-page: 231
  year: 2019
  end-page: 238
  ident: bib35
  article-title: Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in
  publication-title: Metab Eng
– volume: 10
  start-page: 1
  year: 2011
  end-page: 12
  ident: bib11
  article-title: Engineering of a plasmid-free
  publication-title: Microb Cell Fact
– volume: 8
  start-page: 523
  year: 2006
  end-page: 531
  ident: bib58
  article-title: Engineering a β-carotene ketolase for astaxanthin production
  publication-title: Metab Eng
– volume: 9
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib27
  article-title: A novel strain of
  publication-title: Biotechnol Biofuels
– volume: 18
  start-page: 666
  year: 2020
  end-page: 676
  ident: bib57
  article-title: Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in
  publication-title: Chin J Nat Med
– volume: 343
  year: 2022
  ident: bib4
  article-title: Cell disruption and astaxanthin extraction from
  publication-title: Bioresour Technol
– volume: 99
  start-page: 8419
  year: 2015
  end-page: 8428
  ident: bib12
  article-title: Highly efficient biosynthesis of astaxanthin in
  publication-title: Appl Microbiol Biotechnol
– volume: 3
  year: 2018
  ident: bib41
  article-title: Regulation of yeast-to-hyphae transition in
  publication-title: mSphere
– volume: 75
  start-page: 1117
  year: 2012
  end-page: 1124
  ident: bib53
  article-title: Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis
  publication-title: J Nat Prod
– volume: 10
  year: 2020
  ident: bib25
  article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in
  publication-title: Metab Eng Commun
– volume: 5
  start-page: 68
  year: 2017
  end-page: 77
  ident: bib30
  article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in
  publication-title: Metab Eng Commun
– volume: 9
  start-page: 1858
  year: 2018
  ident: bib52
  article-title: Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in
  publication-title: Nat Commun
– volume: 98
  start-page: 345
  year: 2014
  end-page: 350
  ident: bib13
  article-title: Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in
  publication-title: Appl Microbiol Biotechnol
– volume: 10
  start-page: 4248
  year: 2019
  ident: bib28
  article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux
  publication-title: Nat Commun
– volume: 15
  start-page: 296
  year: 2017
  ident: bib54
  article-title: Metabolic engineering of
  publication-title: Mar Drugs
– volume: 61
  start-page: 344
  year: 2020
  end-page: 351
  ident: bib50
  article-title: Enhancing isoprenoid synthesis in
  publication-title: Metab Eng
– volume: 100
  start-page: 28
  year: 2017
  end-page: 36
  ident: bib42
  article-title: Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in
  publication-title: Enzym Microb Technol
– volume: 17
  start-page: 621
  year: 2019
  ident: bib56
  article-title: Improved astaxanthin production with
  publication-title: Mar Drugs
– volume: 36
  start-page: 1157
  year: 2018
  end-page: 1170
  ident: bib24
  article-title: Holistic approaches in lipid production by
  publication-title: Trends Biotechnol
– volume: 71
  start-page: 2943
  year: 2023
  end-page: 2951
  ident: bib1
  article-title: Heterologous expression of the plant-derived astaxanthin biosynthesis pathway in
  publication-title: J Agric Food Chem
– volume: 272
  start-page: 6128
  year: 1997
  end-page: 6135
  ident: bib17
  article-title: In vitro characterization of astaxanthin biosynthetic enzymes
  publication-title: J Biol Chem
– volume: 81
  start-page: 197
  year: 2024
  end-page: 209
  ident: bib38
  article-title: Engineering
  publication-title: Metab Eng
– volume: 103
  start-page: 944
  year: 2009
  end-page: 955
  ident: bib16
  article-title: Characterization of cyanobacterial β‐carotene ketolase and hydroxylase genes in
  publication-title: Biotechnol Bioeng
– volume: 102
  start-page: 5473
  year: 2018
  end-page: 5482
  ident: bib39
  article-title: morphological mutant enables lasting in situ immobilization in bioreactor
  publication-title: Appl Microbiol Biotechnol
– volume: 70
  start-page: 2673
  year: 2022
  end-page: 2683
  ident: bib21
  article-title: Production of high levels of 3S,3′S-astaxanthin in
  publication-title: J Agric Food Chem
– volume: 8
  start-page: 568
  year: 2019
  end-page: 576
  ident: bib29
  article-title: Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in
  publication-title: ACS Synth Biol
– volume: 283
  start-page: 51
  year: 2018
  end-page: 61
  ident: bib7
  article-title: Extraction of astaxanthin from microalga
  publication-title: J Biotechnol
– volume: 72
  start-page: 5348
  year: 2024
  end-page: 5357
  ident: bib61
  article-title: biosynthesis of lutein in
  publication-title: J Agric Food Chem
– volume: 69
  start-page: 418
  year: 2015
  end-page: 428
  ident: bib49
  article-title: Carotenoids as natural antioxidants
  publication-title: Adv Hyg Exp Med
– volume: 13
  start-page: 572
  year: 2022
  ident: bib18
  article-title: Removal of lycopene substrate inhibition enables high carotenoid productivity in
  publication-title: Nat Commun
– volume: 20
  start-page: 4349
  year: 2018
  end-page: 4365
  ident: bib26
  article-title: Integrated diesel production from lignocellulosic sugars via oleaginous yeast
  publication-title: Green Chem
– volume: 82
  start-page: 29
  year: 2024
  end-page: 40
  ident: bib33
  article-title: YaliCMulti and YaliHMulti: stable, efficient multi-copy integration tools for engineering
  publication-title: Metab Eng
– volume: 69
  start-page: 12763
  year: 2021
  end-page: 12772
  ident: bib34
  article-title: Enhancing flavan-3-ol biosynthesis in
  publication-title: J Agric Food Chem
– volume: 111
  start-page: 10453
  year: 2007
  end-page: 10460
  ident: bib43
  article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide
  publication-title: J Mater Chem B
– volume: 70
  start-page: 3328
  year: 2005
  end-page: 3331
  ident: bib15
  article-title: Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene
  publication-title: J Org Chem
– volume: 61
  year: 2022
  ident: bib37
  article-title: Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin
  publication-title: Biotechnol. Adv.
– volume: 81
  year: 2021
  ident: bib51
  article-title: Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering
  publication-title: Prog Lipid Res
– volume: 25
  start-page: 628
  year: 2020
  ident: bib8
  article-title: A quantitative analysis model established to determine the concentration of each source in mixed astaxanthin from different sources
  publication-title: Molecules
– volume: 113
  start-page: 2088
  year: 2016
  end-page: 2099
  ident: bib45
  article-title: A new paradigm for producing astaxanthin from the unicellular green alga
  publication-title: Biotechnol Bioeng
– volume: 10
  start-page: 3551
  year: 2021
  end-page: 3560
  ident: bib40
  article-title: Morphological and metabolic engineering of
  publication-title: ACS Synth Biol
– volume: 57
  start-page: 151
  year: 2020
  end-page: 161
  ident: bib62
  article-title: The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction
  publication-title: Metab Eng
– volume: 70
  start-page: 2673
  year: 2022
  end-page: 2683
  ident: bib9
  article-title: Production of high levels of 3S,3′S-astaxanthin in
  publication-title: J Agric Food Chem
– volume: 51
  start-page: 278
  year: 2015
  end-page: 291
  ident: bib22
  article-title: Biotechnological applications of the extremophilic yeast
  publication-title: Appl Biochem Microbiol
– volume: 2
  start-page: 287
  year: 2017
  end-page: 294
  ident: bib20
  article-title: Engineering of
  publication-title: Synth Syst Biotechnol
– volume: 42
  start-page: 627
  year: 2015
  end-page: 636
  ident: bib55
  article-title: Metabolic engineering of
  publication-title: J Ind Microbiol Biotechnol
– volume: 10
  start-page: 738
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib10
  article-title: Astaxanthin as feed supplement in aquatic animals
  publication-title: Rev Aquacult
  doi: 10.1111/raq.12200
– volume: 15
  start-page: 296
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib54
  article-title: Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid
  publication-title: Mar Drugs
  doi: 10.3390/md15100296
– volume: 283
  start-page: 51
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib7
  article-title: Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2018.07.010
– volume: 148
  start-page: 144
  year: 2010
  ident: 10.1016/j.synbio.2025.02.014_bib46
  article-title: High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2010.05.004
– volume: 113
  start-page: 10848
  year: 2016
  ident: 10.1016/j.synbio.2025.02.014_bib60
  article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1607295113
– volume: 8
  start-page: 523
  year: 2006
  ident: 10.1016/j.synbio.2025.02.014_bib58
  article-title: Engineering a β-carotene ketolase for astaxanthin production
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2006.06.001
– volume: 140
  start-page: 241
  year: 1996
  ident: 10.1016/j.synbio.2025.02.014_bib5
  article-title: Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1996.tb08343.x
– volume: 20
  start-page: 4349
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib26
  article-title: Integrated diesel production from lignocellulosic sugars via oleaginous yeast
  publication-title: Green Chem
  doi: 10.1039/C8GC01905C
– volume: 10
  start-page: 1
  year: 2011
  ident: 10.1016/j.synbio.2025.02.014_bib11
  article-title: Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-10-29
– volume: 99
  start-page: 8419
  year: 2015
  ident: 10.1016/j.synbio.2025.02.014_bib12
  article-title: Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-6791-y
– volume: 9
  start-page: 1858
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib52
  article-title: Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04211-x
– volume: 18
  start-page: 666
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib57
  article-title: Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli
  publication-title: Chin J Nat Med
– volume: 69
  start-page: 418
  year: 2015
  ident: 10.1016/j.synbio.2025.02.014_bib49
  article-title: Carotenoids as natural antioxidants
  publication-title: Adv Hyg Exp Med
– volume: 7
  start-page: 472
  year: 2019
  ident: 10.1016/j.synbio.2025.02.014_bib14
  article-title: Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7100472
– volume: 102
  start-page: 5473
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib39
  article-title: Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-018-9006-5
– volume: 42
  start-page: 627
  year: 2015
  ident: 10.1016/j.synbio.2025.02.014_bib55
  article-title: Metabolic engineering of Escherichia coli to produce zeaxanthin
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-014-1565-6
– volume: 21
  start-page: 71
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib3
  article-title: Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-022-01798-1
– volume: 103
  start-page: 944
  year: 2009
  ident: 10.1016/j.synbio.2025.02.014_bib16
  article-title: Characterization of cyanobacterial β‐carotene ketolase and hydroxylase genes in Escherichia coli, and their application for astaxanthin biosynthesis
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22330
– volume: 104
  start-page: 5725
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib23
  article-title: Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-10648-2
– volume: 25
  start-page: 628
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib8
  article-title: A quantitative analysis model established to determine the concentration of each source in mixed astaxanthin from different sources
  publication-title: Molecules
  doi: 10.3390/molecules25030628
– volume: 55
  start-page: 231
  year: 2019
  ident: 10.1016/j.synbio.2025.02.014_bib35
  article-title: Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2019.08.001
– volume: 11
  start-page: 2636
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib19
  article-title: Spatiotemporal regulation of astaxanthin synthesis in S. cerevisiae
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.2c00044
– volume: 111
  start-page: 10453
  year: 2007
  ident: 10.1016/j.synbio.2025.02.014_bib43
  article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide
  publication-title: J Mater Chem B
– volume: 13
  start-page: 572
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib18
  article-title: Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28277-w
– volume: 17
  start-page: 621
  year: 2019
  ident: 10.1016/j.synbio.2025.02.014_bib56
  article-title: Improved astaxanthin production with Corynebacterium glutamicum by application of a membrane fusion protein
  publication-title: Mar Drugs
  doi: 10.3390/md17110621
– volume: 71
  start-page: 2943
  year: 2023
  ident: 10.1016/j.synbio.2025.02.014_bib1
  article-title: Heterologous expression of the plant-derived astaxanthin biosynthesis pathway in Yarrowia lipolytica for glycosylated astaxanthin production
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.2c08153
– volume: 41
  start-page: 192
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib36
  article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2017.04.004
– volume: 75
  start-page: 1117
  year: 2012
  ident: 10.1016/j.synbio.2025.02.014_bib53
  article-title: Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis
  publication-title: J Nat Prod
  doi: 10.1021/np300136t
– volume: 81
  start-page: 197
  year: 2024
  ident: 10.1016/j.synbio.2025.02.014_bib38
  article-title: Engineering Yarrowia lipolytica for sustainable ricinoleic acid production: a pathway to free fatty acid synthesis
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2023.12.002
– volume: 2
  start-page: 287
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib20
  article-title: Engineering of Yarrowia lipolytica for production of astaxanthin
  publication-title: Synth Syst Biotechnol
  doi: 10.1016/j.synbio.2017.10.002
– volume: 70
  start-page: 2673
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib9
  article-title: Production of high levels of 3S,3′S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.1c08072
– volume: 70
  start-page: 3328
  year: 2005
  ident: 10.1016/j.synbio.2025.02.014_bib15
  article-title: Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene
  publication-title: J Org Chem
  doi: 10.1021/jo050101l
– volume: 36
  start-page: 1157
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib24
  article-title: Holistic approaches in lipid production by Yarrowia lipolytica
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2018.06.007
– volume: 81
  year: 2021
  ident: 10.1016/j.synbio.2025.02.014_bib51
  article-title: Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2020.101083
– volume: 72
  start-page: 5348
  year: 2024
  ident: 10.1016/j.synbio.2025.02.014_bib61
  article-title: De novo biosynthesis of lutein in Yarrowia lipolytica
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.3c09080
– volume: 70
  start-page: 2673
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib21
  article-title: Production of high levels of 3S,3′S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.1c08072
– volume: 15
  start-page: 2223
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib32
  article-title: Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in Yarrowia lipolytica
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.14060
– volume: 272
  start-page: 6128
  year: 1997
  ident: 10.1016/j.synbio.2025.02.014_bib17
  article-title: In vitro characterization of astaxanthin biosynthetic enzymes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.10.6128
– volume: 6
  start-page: 402
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib31
  article-title: Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.6b00285
– volume: 8
  start-page: 46
  year: 2023
  ident: 10.1016/j.synbio.2025.02.014_bib59
  article-title: Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae
  publication-title: Synth Syst Biotechnol
  doi: 10.1016/j.synbio.2022.10.005
– volume: 57
  start-page: 151
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib62
  article-title: The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2019.11.001
– volume: 98
  start-page: 345
  year: 2014
  ident: 10.1016/j.synbio.2025.02.014_bib13
  article-title: Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-013-5358-z
– volume: 61
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib37
  article-title: Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2022.108033
– volume: 100
  start-page: 28
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib42
  article-title: Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae
  publication-title: Enzym Microb Technol
  doi: 10.1016/j.enzmictec.2017.02.006
– volume: 68
  start-page: 152
  year: 2021
  ident: 10.1016/j.synbio.2025.02.014_bib44
  article-title: Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2021.10.004
– volume: 10
  start-page: 3551
  year: 2021
  ident: 10.1016/j.synbio.2025.02.014_bib40
  article-title: Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.1c00480
– volume: 10
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib25
  article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica
  publication-title: Metab Eng Commun
  doi: 10.1016/j.mec.2019.e00112
– volume: 10
  start-page: 4248
  year: 2019
  ident: 10.1016/j.synbio.2025.02.014_bib28
  article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12247-w
– volume: 245
  start-page: 899
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib2
  article-title: Metabolic engineering a yeast to produce astaxanthin
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.07.116
– volume: 51
  start-page: 278
  year: 2015
  ident: 10.1016/j.synbio.2025.02.014_bib22
  article-title: Biotechnological applications of the extremophilic yeast Yarrowia lipolytica
  publication-title: Appl Biochem Microbiol
  doi: 10.1134/S0003683815030151
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.synbio.2025.02.014_bib27
  article-title: A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-016-0593-z
– volume: 82
  start-page: 29
  year: 2024
  ident: 10.1016/j.synbio.2025.02.014_bib33
  article-title: YaliCMulti and YaliHMulti: stable, efficient multi-copy integration tools for engineering Yarrowia lipolytica
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2024.01.003
– volume: 5
  start-page: 68
  year: 2017
  ident: 10.1016/j.synbio.2025.02.014_bib30
  article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
  publication-title: Metab Eng Commun
  doi: 10.1016/j.meteno.2017.09.001
– volume: 61
  start-page: 344
  year: 2020
  ident: 10.1016/j.synbio.2025.02.014_bib50
  article-title: Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2020.07.010
– volume: 69
  start-page: 12763
  year: 2021
  ident: 10.1016/j.synbio.2025.02.014_bib34
  article-title: Enhancing flavan-3-ol biosynthesis in Saccharomyces cerevisiae
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.1c04489
– volume: 343
  year: 2022
  ident: 10.1016/j.synbio.2025.02.014_bib4
  article-title: Cell disruption and astaxanthin extraction from Haematococcus pluvialis: recent advances
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126124
– volume: 6
  start-page: 52
  year: 2014
  ident: 10.1016/j.synbio.2025.02.014_bib6
  article-title: Microalgae as versatile cellular factories for valued products
  publication-title: Algal Res
  doi: 10.1016/j.algal.2014.09.002
– volume: 8
  start-page: 568
  year: 2019
  ident: 10.1016/j.synbio.2025.02.014_bib29
  article-title: Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.8b00535
– volume: 113
  start-page: 2088
  year: 2016
  ident: 10.1016/j.synbio.2025.02.014_bib45
  article-title: A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25976
– volume: 3
  year: 2018
  ident: 10.1016/j.synbio.2025.02.014_bib41
  article-title: Regulation of yeast-to-hyphae transition in Yarrowia lipolytica
  publication-title: mSphere
  doi: 10.1128/mSphere.00541-18
– year: 2025731952
  ident: 10.1016/j.synbio.2025.02.014_bib48
  article-title: Microbial astaxanthin synthesis by Komagataella phaffii through metabolic and fermentation engineering
  publication-title: J Agric Food Chem
SSID ssj0001826698
ssib050739087
ssib051945712
Score 2.3410065
Snippet Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 737
SubjectTerms Algae
Antioxidants
Astaxanthin
Bacteria
Batch culture
Biosynthesis
Carotene
Carotenoids
Catalytic activity
CRISPR
Dietary supplements
E coli
Enzyme engineering
Enzymes
Fermentation
Genes
Genomes
Glucose
Metabolic engineering
Modular enzyme assembly
Organelles
Original
Pharmaceutical industry
Plasmids
Productivity
Subcellular organelles
Yarrowia lipolytica
Yeast
β-Carotene
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxjYgTO3ZOCFArTlUPIC0nyx47NGibLLvbqsuvZ-w42y5I9IC0UqSN87Dm88xne_INIW-b1jWB1-YVusicl8bkRiqbQ-OZcqVkbeNisQl5dKRms-Y4LbitUlrl5BOjo3YDhDXyd1VQReFIL4r3i595qBoVdldTCY2b5FZQSahi6t7xhCcRdqGKS_qBZIULmcJ5XINBbl3HcrkY1wQ6azGbvq6LKWCrTW-78IVgKaKwJ-M70SuK_O8Esb9J6p-5lleC1-H9_-32A3Iv0Vb6YcTZQ3LD94_I3Stiho8JHEQ1CnwBuhhlZNHkdGipQQJ6gQY86XqKv29R9rEzdN4thvkmrKXTVC2Invo1gnLeATW9o77_tTn1eNg-5Qn5enjw5dPnPJVwyAGp1BrHIOdQN62AqnF1WxfgpPIV48CkLbBNVTorESYMSuM9MKNEbU1rSmWZsKp6Svb6offPCTWiYK0TxkGLLFMZW-NkjRdQScmsclVGqsk0GpK-eSizMddTItsPPRpUB4PqotRo0Izk26sWo77HNe0_Bqtv2wZ17vjHsPyu02DX1oJzsmEgjORN2SpoOfjaA7IFB9JkRE6Y0YnojAQGb9Vd8_j9CSY6OZuVvsRIRt5sT6ObCHs_pvfDWWyDXF_h_DMjz0ZEbvvAg64dTlwzonawutPJ3TN9dxKlyFnI8ZFMvPj3e70kd0Inxty8fbK3Xp75V-Q2nK-71fJ1HLS_AagoSoY
  priority: 102
  providerName: ProQuest
Title Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering
URI https://dx.doi.org/10.1016/j.synbio.2025.02.014
https://www.ncbi.nlm.nih.gov/pubmed/40248487
https://www.proquest.com/docview/3195844050
https://www.proquest.com/docview/3191398174
https://pubmed.ncbi.nlm.nih.gov/PMC12002715
https://doaj.org/article/bbcdd791c5a7492f8cf4ce6ec362dc7a
Volume 10
WOSCitedRecordID wos001471081600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050739087
  issn: 2405-805X
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: P5Z
  dateStart: 20240301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: M7P
  dateStart: 20240301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: M7S
  dateStart: 20240301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: BENPR
  dateStart: 20240301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2405-805X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826698
  issn: 2405-805X
  databaseCode: PIMPY
  dateStart: 20240301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvAUhmJa0ScOLF9ZFFXcKCKeEhdLpaf2qy6abXtou3-esbOQy0cekGKHCm2k3hmHH92xt8g9F54KwKuTQv4RKY0VypVjOvUCEe4zRnxwsZgE2w24_O5qHdCfQWfsI4euBPcB62NtUwQUypGRe658dS4yhn48lrDIjQC1LMzmYqrK4CaK8GHvXLRoWu9bXUT9vvlZaTpJHRvLIqU_XtD0r-Q82_PyZ2h6PQxetRjSPyxe_cn6I5rn6KHO8yCz5CZRmoIqI9XHacryB8vPVaABm9AmudNi-E4ixyMjcKLZrVcbMPCNu5D9-BLtwELWTQGq9Zi195uLx2cxqc8Rz9Ppz8-fU77eAqpAVyzgQ5BqamEL00hbOWrzFjGXUGoIUxnUKbIrWagM2Jy5ZwhipeVVl7lXJNS8-IFOmqXrXuFsCoz4m2prPEA-bjSFcycaGYKxojmtkhQMUhWmp5sPMS8WMjBq-xCdvqQQR8yyyXoI0HpWGvVkW0cKH8SlDaWDVTZ8QIYkOwNSB4yoASxQeWyRx0dmoBbNQcefzxYiOx7_loWgb2HAgzOEvRuzIY-G37EqNYtr2MZAN4cJoMJetkZ1NgGGkjmYBaZIL5nanuN3M9pm_PIC06Cww0j5ev_IZY36EFoaudOd4yONlfX7i26b35vmvXVBN1lcz5B906ms_rbJPa9SXCbrWP6HdK6_AX59Zev9dkf7yE8dA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuF8CA4wEjxGxY8fOA0JcNm3aqPYwpPJkHNthQV1S2g4oP4rfyLFz2QoSe9oDUqVKjZvktJ_P-U58_B2EnuWlzT2vjVNwkTGjWsdayCI2uSPSUkHK3IZmE2I0kuNxvr-GfvV7YXxZZe8Tg6O2jfHPyF-kXhWFAb1IXk2_xr5rlF9d7VtotLDYdcvvkLLNX-68g__3OaVbmwdvt-Ouq0BsILovABaMmSwvuUlzm5VZYqyQLiXMEFEkMCalthBw58RQ7ZwhWvKs0KWmsiC8kCmc9wK6CDSCylAquN_jl_tVr-SE7gA5Ylx09CE88wEun4X2vBBHOQQHPu5384WSs_myLiq_I5HyICRK2Eq0DE0FVoLm36T4z9rOU8Fy6_r_9jPfQNc6Wo5ft_PoJlpz9S109ZRY421kNoPaBhiMp61MLkAaNyXWQLB_AEAPqxrD62OQtaw0nlTTZrL0awW464aEj9wCJt2kMljXFrv65_LIwdtwlTvow7lYeRet103t7iOseUJKy7U1JbBoqYsMklGWmFQIUkibRijtoaBMp9_u24hMVF-o90W1AFIeQCqhCgAUoXj41rTVLzlj_BuPsmGsVx8PHzSzz6pzZqoojLUiJ4ZrwXJaSlMy4zJngA1ZI3SERI9R1RG5lqDBqaozLr_Rw1J1znSuTjAZoafDYXCDfm1L1645DmMgl5GQX0foXjsDBhuY1-2DxDxCcmVurBi5eqSuDoPUOvE1TILwB_--ryfo8vbB-z21tzPafYiueIPaOsQNtL6YHbtH6JL5tqjms8fBYWD06bynzm9sDad9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+production+of+astaxanthin+in+Yarrowia+lipolytica+through+metabolic+and+enzyme+engineering&rft.jtitle=Synthetic+and+systems+biotechnology&rft.au=Abdullah%2C+Chalak+Najat&rft.au=Liu%2C+Mengsu&rft.au=Chen%2C+Qihang&rft.au=Gao%2C+Song&rft.date=2025-09-01&rft.pub=KeAi+Publishing&rft.eissn=2405-805X&rft.volume=10&rft.issue=3&rft.spage=737&rft.epage=750&rft_id=info:doi/10.1016%2Fj.synbio.2025.02.014&rft.externalDocID=PMC12002715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-805X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-805X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-805X&client=summon