Negative fire feedback in a transitional forest of southeastern Amazonia
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to fur...
Gespeichert in:
| Veröffentlicht in: | Global change biology Jg. 14; H. 10; S. 2276 - 2287 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2008
Blackwell Publishing Ltd Blackwell |
| Schlagworte: | |
| ISSN: | 1354-1013, 1365-2486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha⁻¹ yr⁻¹), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr⁻¹, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability - which has important implications for carbon emissions and potential replacement by scrub vegetation. |
|---|---|
| AbstractList | Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed‐canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire‐induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed‐canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short‐lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation. The negative fire feedback observed in the present study, driven by low fine fuel inputs, implies that there exists a window of inflammability after multiple annual burns in these Amazon transitional forests. The combination of low, or delayed, tree mortality and low litter-fall production may provide a buffer against increasing ignition sources. A delayed wave of tree mortality and treefall due to prior fire damage, logging, and severe drought could create a pulse of available fuels. The results demonstrates that, as the expanding soy and cattle-driven frontier further bisects the forest and leaves degraded edges, understanding fuel dynamics will be essential for predicting transitional forest flammability. Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha-1 yr-1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5 +/- 0.5% yr-1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability--which has important implications for carbon emissions and potential replacement by scrub vegetation. [PUBLICATION ABSTRACT] Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha⁻¹ yr⁻¹), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr⁻¹, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability - which has important implications for carbon emissions and potential replacement by scrub vegetation. Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed‐canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha −1 yr −1 ), half that of other Amazon forests; and (ii) low fire‐induced tree and liana mortality (5.5±0.5% yr −1 , SE, in B3), the lowest measured in closed‐canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short‐lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation. |
| Author | CURRAN, LISA M BALCH, JENNIFER K LEFEBVRE, PAUL NEPSTAD, DANIEL C OSWALDO JR BRANDO, PAULO M PORTELA, OSVALDO |
| Author_xml | – sequence: 1 fullname: BALCH, JENNIFER K – sequence: 2 fullname: NEPSTAD, DANIEL C – sequence: 3 fullname: BRANDO, PAULO M – sequence: 4 fullname: CURRAN, LISA M – sequence: 5 fullname: PORTELA, OSVALDO – sequence: 6 fullname: OSWALDO JR – sequence: 7 fullname: LEFEBVRE, PAUL |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20692284$$DView record in Pascal Francis |
| BookMark | eNqNkl9vFCEUxSemJrbVz-DERN9m5M_AwIMm7Wq3JrWa2EbfyB0GKtvZocKs3frpBafZh75YHoCE37kXzuGg2Bv9aIqixKjGabxd1ZhyVpFG8JogJGqEOWP19kmxvzvYy3vWVBhh-qw4iHGFEKIE8f3i9NxcweR-m9K6kCZj-g70denGEsopwBjd5PwIQ2l9MHEqvS2j30w_DcTJhLE8WsMfPzp4Xjy1METz4n49LC5PPl4sTquzL8tPi6OzSjOOWNVRKjvNkOSdIKbHsgUOtu2IlhYklT3tjdA979pWCkEEbUyHemigx6TvrKCHxZu57k3wvzbpRmrtojbDAKPxm6gagVpBZPtfEDeCCiRYAl89AFd-E9KToyKIZRNZbvv6HoKoYbDJGe2iugluDeEugVwSIprEiZnTwccYjN0hGKkcmFqpXFLlXFQOTP0LTG2T9P0DqXYTZPdTDm54TIF3c4FbN5i7RzdWy8Vx3iV9Netdina700O4VrylLVPfz5fq4gP-8Vnyryo7_HLmLXgFVyH5cfmNpD-GMKOy5Zz-BUGKyMA |
| CitedBy_id | crossref_primary_10_1071_WF10029 crossref_primary_10_1002_2014MS000358 crossref_primary_10_1111_gcb_13951 crossref_primary_10_1016_j_foreco_2021_119441 crossref_primary_10_1186_s42408_024_00304_9 crossref_primary_10_1007_s10980_012_9723_6 crossref_primary_10_1590_1519_6984_12813 crossref_primary_10_5194_cp_9_289_2013 crossref_primary_10_1016_j_foreco_2009_07_024 crossref_primary_10_1038_506041a crossref_primary_10_1071_WF14182 crossref_primary_10_1007_s10750_021_04604_y crossref_primary_10_1007_s40415_015_0186_2 crossref_primary_10_1029_2020JG005677 crossref_primary_10_1016_j_foreco_2019_117497 crossref_primary_10_1038_nature10717 crossref_primary_10_3389_ffgc_2018_00006 crossref_primary_10_1038_s43247_022_00522_6 crossref_primary_10_1126_science_1194032 crossref_primary_10_1073_pnas_1305499111 crossref_primary_10_1111_geb_12739 crossref_primary_10_1111_j_1466_8238_2010_00634_x crossref_primary_10_1071_WF14054 crossref_primary_10_1016_j_baae_2019_01_001 crossref_primary_10_1016_j_foreco_2019_117804 crossref_primary_10_1016_j_tree_2015_03_010 crossref_primary_10_1038_s41598_024_77924_3 crossref_primary_10_1086_665819 crossref_primary_10_3390_fire7120477 crossref_primary_10_1016_j_foreco_2010_09_029 crossref_primary_10_3390_fire5020045 crossref_primary_10_1016_j_foreco_2017_03_035 crossref_primary_10_1111_j_1442_9993_2011_02324_x crossref_primary_10_1111_btp_13129 crossref_primary_10_1371_journal_pone_0290203 crossref_primary_10_1016_j_agrformet_2023_109875 crossref_primary_10_1088_1748_9326_ade60d crossref_primary_10_5194_esd_8_1237_2017 crossref_primary_10_3390_f10050436 crossref_primary_10_3389_ffgc_2020_00082 crossref_primary_10_1080_17550874_2013_826744 crossref_primary_10_1016_j_catena_2025_108924 crossref_primary_10_1111_rec_14036 crossref_primary_10_3390_fire7080266 crossref_primary_10_1016_j_foreco_2015_10_033 crossref_primary_10_1111_geb_12562 crossref_primary_10_1016_j_agee_2012_06_013 crossref_primary_10_1111_gcb_13172 crossref_primary_10_1016_j_foreco_2015_05_015 crossref_primary_10_1016_j_biocon_2017_08_020 crossref_primary_10_1016_j_foreco_2025_122584 crossref_primary_10_1111_gcb_14659 crossref_primary_10_1670_13_041 crossref_primary_10_1007_s00442_015_3259_9 crossref_primary_10_3389_ffgc_2020_00010 crossref_primary_10_1155_2012_780713 crossref_primary_10_1088_1748_9326_add8a4 crossref_primary_10_1002_2016JG003470 crossref_primary_10_1111_1365_2745_13076 crossref_primary_10_1088_1748_9326_ad77e6 crossref_primary_10_1002_ajb2_70066 crossref_primary_10_1016_j_quascirev_2012_11_029 crossref_primary_10_1002_ecs2_3231 crossref_primary_10_1016_j_foreco_2022_120354 crossref_primary_10_1080_23766808_2016_1236769 crossref_primary_10_3389_ffgc_2020_507710 crossref_primary_10_5194_nhess_21_2169_2021 crossref_primary_10_1038_s41467_024_50916_7 crossref_primary_10_1017_S026646741200051X crossref_primary_10_1007_s10666_014_9411_9 crossref_primary_10_1007_s10021_011_9480_4 crossref_primary_10_1111_1365_2745_13549 crossref_primary_10_1371_journal_pone_0012877 crossref_primary_10_1088_1748_9326_aa69ce crossref_primary_10_1007_s10021_019_00453_y crossref_primary_10_1111_j_1469_8137_2010_03358_x crossref_primary_10_1016_j_rse_2019_111340 crossref_primary_10_1016_j_flora_2014_02_008 crossref_primary_10_1890_10_1168_1 crossref_primary_10_1002_ecs2_3347 crossref_primary_10_3390_plants9121803 crossref_primary_10_1017_S0266467420000176 crossref_primary_10_1038_s43247_024_01248_3 crossref_primary_10_1016_j_foreco_2011_10_025 crossref_primary_10_1016_j_biocon_2020_108862 crossref_primary_10_1016_j_agrformet_2022_109289 crossref_primary_10_1017_S0266467409990150 crossref_primary_10_5194_bg_11_7305_2014 crossref_primary_10_1088_1748_9326_aac331 crossref_primary_10_1016_j_cosust_2009_10_008 crossref_primary_10_1016_j_foreco_2018_10_009 crossref_primary_10_1371_journal_pone_0103933 crossref_primary_10_1002_ecs2_4780 crossref_primary_10_1017_S0376892911000452 crossref_primary_10_1017_S0376892918000127 crossref_primary_10_1080_03066150_2014_917371 crossref_primary_10_1093_biosci_biv106 crossref_primary_10_1890_10_0827_1 crossref_primary_10_5194_gmd_11_815_2018 crossref_primary_10_1111_j_1365_2486_2011_02533_x crossref_primary_10_1007_s10531_012_0426_8 crossref_primary_10_1080_17550874_2013_798368 crossref_primary_10_1016_j_agee_2011_08_016 crossref_primary_10_1016_j_foreco_2018_01_038 crossref_primary_10_1017_S0266467412000107 crossref_primary_10_1038_s41558_019_0540_7 crossref_primary_10_1007_s00442_012_2482_x crossref_primary_10_1111_aec_12015 crossref_primary_10_1016_j_rse_2011_03_002 crossref_primary_10_1017_S0266467416000559 crossref_primary_10_1007_s00442_016_3638_x crossref_primary_10_1016_j_gloenvcha_2015_01_009 crossref_primary_10_1126_science_1210465 crossref_primary_10_5194_bg_11_3739_2014 crossref_primary_10_1111_gcb_15279 crossref_primary_10_1111_j_1365_2486_2011_02392_x crossref_primary_10_1016_j_foreco_2017_06_046 crossref_primary_10_1017_S0266467412000636 crossref_primary_10_5194_bg_10_8385_2013 crossref_primary_10_1111_1365_2664_12338 crossref_primary_10_1007_s11258_021_01205_6 crossref_primary_10_3389_ffgc_2022_880963 crossref_primary_10_1890_14_1740_1 crossref_primary_10_1146_annurev_earth_082517_010235 crossref_primary_10_1111_j_1365_2699_2011_02595_x crossref_primary_10_1111_j_1469_185X_2010_00155_x crossref_primary_10_1111_j_1365_2745_2009_01547_x crossref_primary_10_1111_oik_10764 crossref_primary_10_1111_btp_12627 crossref_primary_10_1111_nph_17239 crossref_primary_10_1371_journal_pone_0026208 crossref_primary_10_1111_nph_14766 |
| Cites_doi | 10.1890/04-0385 10.1007/s00704-004-0049-4 10.1038/nature04389 10.1007/s00442-004-1598-z 10.1111/j.1469-8137.2004.01252.x 10.1579/0044-7447-30.7.388 10.1111/j.1529-8817.2003.00772.x 10.1017/S0266467400001437 10.2307/1942661 10.1016/S0378-1127(03)00156-7 10.1175/EI150.1 10.1038/372666a0 10.1007/s10531-006-9102-1 10.1007/978-3-642-79464-3_21 10.1126/science.227.4682.53 10.1016/S0378-1127(02)00548-0 10.1890/01-6029 10.1111/j.1365-2745.2004.00954.x 10.1046/j.1461-0248.2003.00394.x 10.7312/zari12906-019 10.1007/BF00341336 10.1111/j.1529-8817.2003.00776.x 10.1126/science.284.5421.1832 10.1029/95GB02148 10.1007/s00442-004-1788-8 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2 10.1007/s10021-007-9042-y 10.1111/j.1744-7429.1999.tb00112.x 10.1038/nature05900 10.2737/INT-GTR-129 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2 10.1038/19066 10.1016/S0378-1127(98)00447-2 10.1007/s00442-005-0100-x 10.1890/05-0404 10.1029/97GL03092 10.2307/1940299 10.1073/pnas.0606377103 10.1038/35106547 10.1034/j.1600-0706.2001.11311.x 10.1029/2003GL018600 10.1111/j.1744-7429.2006.00257.x 10.1029/2005GL024981 10.1080/02757259009532120 10.1890/1540-9295(2005)003[0365:LOFSCA]2.0.CO;2 10.2307/2261703 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 10.2307/1939481 10.1029/2001JD000360 10.1590/S0044-59672006000400009 |
| ContentType | Journal Article |
| Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd 2008 INIST-CNRS Journal compilation © 2008 Blackwell Publishing |
| Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: 2008 INIST-CNRS – notice: Journal compilation © 2008 Blackwell Publishing |
| DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI 7S9 L.6 |
| DOI | 10.1111/j.1365-2486.2008.01655.x |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 2287 |
| ExternalDocumentID | 1559631491 20692284 10_1111_j_1365_2486_2008_01655_x GCB1655 ark_67375_WNG_TD1XM96P_7 US201301539766 |
| Genre | article Feature |
| GeographicLocations | South America Brazil Amazon Basin America Amazonia |
| GeographicLocations_xml | – name: Amazon Basin – name: Amazonia |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c5605-b339bc5096b82ed197a6af7b2c9fa939d3de8cd6b779882834eb0da4ad12dbf83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 171 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259360500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Thu Oct 02 07:07:21 EDT 2025 Tue Oct 07 07:47:27 EDT 2025 Mon Nov 10 03:10:19 EST 2025 Mon Jul 21 09:10:58 EDT 2025 Tue Nov 18 21:08:25 EST 2025 Sat Nov 29 06:02:11 EST 2025 Sun Sep 21 06:19:30 EDT 2025 Tue Nov 11 03:31:15 EST 2025 Wed Dec 27 18:44:51 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Savannah Mato Grosso transitional forests large-scale experimental burns Tropical zone Emission Brazilian Amazon feedbacks Tropical forest Experimental study Climatic zone Carbon tropical wildfires Fire ecology Feedback forest-savanna transitions Fires Fuel tropical forests Transition Amazonia Vegetation fire carbon emissions Large scale |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5605-b339bc5096b82ed197a6af7b2c9fa939d3de8cd6b779882834eb0da4ad12dbf83 |
| Notes | http://dx.doi.org/10.1111/j.1365-2486.2008.01655.x istex:5AA070310AF7B906986FD3063ABA826E45260163 ark:/67375/WNG-TD1XM96P-7 ArticleID:GCB1655 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 205136558 |
| PQPubID | 30327 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_48078297 proquest_miscellaneous_14838085 proquest_journals_205136558 pascalfrancis_primary_20692284 crossref_primary_10_1111_j_1365_2486_2008_01655_x crossref_citationtrail_10_1111_j_1365_2486_2008_01655_x wiley_primary_10_1111_j_1365_2486_2008_01655_x_GCB1655 istex_primary_ark_67375_WNG_TD1XM96P_7 fao_agris_US201301539766 |
| PublicationCentury | 2000 |
| PublicationDate | October 2008 |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: October 2008 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2008 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
| References | Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298. Rodríguez JP, Balch JK, Rodríguez-Clark KM (2007) Assessing extinction risk in the absence of species-level data: quantitative criteria for terrestrial ecosystems. Biodiversity and Conservation, 16, 183-209. Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503-518. Trumbore SE, Davidson EA, De Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9, 515-528. Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104, 397-408. Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System-1978, General Technical Report INT 39. USDA Forest Service, Ogden. Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters, 24, 3057-3060. Vieira S, De Camargo PB, Selhorst D et al. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468-479. Davidson EA, De Carvalho CJR, Figueira AM et al. (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995-999. Sanford RL, Saldarriaga J, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science, 227, 53-55. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370. Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832-1835. Nepstad DC, De Carvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669. Whelan RJ (1995) The Ecology of Fire. Cambridge University Press, Cambridge. Welles JM (1990) Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5, 31-43. Van Mantgem P, Schwartz M, Keifer MB (2001) Monitoring fire effects for managed burns and wildfires: coming to terms with pseudoreplication. Natural Areas Journal, 21, 266-273. Hammond DS, Ter Steege H, Van Der Borg K (2007) Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica, 39, 153-160. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211. Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663. Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327-335. Alencar AAC, Solórzano LA, Nepstad DC (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, S139-S149. Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437-440. Van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191-201. Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137-156. Haugaasen T, Barlow J, Peres CA (2003) Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management, 179, 321-331. Hutyra LR, Munger JW, Nobre CA, Saleska SR, Vieira SA, Wofsy SC (2005) Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32, L24712. Oksanen L (2001) Logic of experiments in ecolog: is pseudoreplication a pseudoissue? Oikos, 94, 27-38. Grogan J, Galvão J (2006) Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil. Acta Amazonica, 36, 483-496. Sheil D, May RM (1996) Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology, 84, 91-100. Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology, 10, 833-843. Ivanauskas NM, Monteiro R, Rodrigues RR (2003) Alterations following a fire in a forest community of Alto Rio Xingu. Forest Ecology and Management, 184, 239-250. Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications, 7, 713-725. Soares-Filho BS, Nepstad DC, Curran LM et al. (2006) Modelling conservation in the Amazon basin. Nature, 440, 520-523. Zarin DJ, Davidson EA, Brondízio E et al. (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 3, 365-369. Brooks ML, D'Antonio CM, Richardson DM et al. (2004) Effects of invasive alien plants on fire regimes. Bioscience, 54, 677-688. Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31, 2-16. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525-537. R Development Core Team (2007) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org Morton DC, DeFries RS, Shimabukuro YE et al. (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103, 14637-14641. Barlow J, Peres CA, Lagan BO, Haugaasen T (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8. Chave J, Andalo C, Brown S et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. Ambio, 30, 388-396. Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17, 8-18. Rothermel RC, Deeming JC (1980) Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT-93. USDA Forest Service, Ogden. Nepstad DC, Moutinho P, Dias MB et al. (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research - Atmospheres, 107, 8085, doi: DOI: 10.1029/2001JD000360. Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449. Nepstad D, Lefebvre P, Da Silva UL et al. (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 10, 704-717. Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252. Nepstad DC, Verissimo A, Alencar A et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505-508. Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678. Alencar A, Nepstad DC, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17. Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters, 30, 2199-2191, doi: DOI: 10.1029/2003GL018600. 2007; 39 2001; 94 1994; 372 1984; 65 2006; 36 1992; 17 1999; 284 1997; 7 1977 2000; 16 2005; 143 2005; 145 2003; 6 1984; 54 2004; 78 2002; 107 2006; 440 2005; 32 1982 1980 2001; 11 2001; 414 1995; 9 2007; 447 2006; 10 2004; 140 1997; 24 2007 2006 1995 2004 1985; 227 1992 2007; 10 2003; 179 2003; 30 2007; 16 2001; 21 2004; 54 2004; 10 2005; 165 2004; 14 2003; 184 1995; 104 1996; 84 1999; 31 2005; 93 2005; 3 1999; 398 2005; 15 1999; 116 2001; 30 2006; 103 1990; 71 1990; 5 e_1_2_7_5_1 Brown S (e_1_2_7_9_1) 1992; 17 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 R Development Core Team (e_1_2_7_41_1) 2007 Whelan RJ (e_1_2_7_58_1) 1995 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 Ratter JA (e_1_2_7_39_1) 1992 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Van Mantgem P (e_1_2_7_53_1) 2001; 21 e_1_2_7_51_1 Deeming JE (e_1_2_7_18_1) 1977 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Rothermel RC (e_1_2_7_43_1) 1980 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211. – reference: Sanford RL, Saldarriaga J, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science, 227, 53-55. – reference: Van Mantgem P, Schwartz M, Keifer MB (2001) Monitoring fire effects for managed burns and wildfires: coming to terms with pseudoreplication. Natural Areas Journal, 21, 266-273. – reference: Nepstad D, Lefebvre P, Da Silva UL et al. (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 10, 704-717. – reference: Rodríguez JP, Balch JK, Rodríguez-Clark KM (2007) Assessing extinction risk in the absence of species-level data: quantitative criteria for terrestrial ecosystems. Biodiversity and Conservation, 16, 183-209. – reference: Morton DC, DeFries RS, Shimabukuro YE et al. (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103, 14637-14641. – reference: Chave J, Andalo C, Brown S et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99. – reference: Alencar AAC, Solórzano LA, Nepstad DC (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, S139-S149. – reference: Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370. – reference: Ivanauskas NM, Monteiro R, Rodrigues RR (2003) Alterations following a fire in a forest community of Alto Rio Xingu. Forest Ecology and Management, 184, 239-250. – reference: Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298. – reference: Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437-440. – reference: Van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191-201. – reference: Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663. – reference: Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104, 397-408. – reference: Haugaasen T, Barlow J, Peres CA (2003) Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management, 179, 321-331. – reference: Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327-335. – reference: Hutyra LR, Munger JW, Nobre CA, Saleska SR, Vieira SA, Wofsy SC (2005) Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32, L24712. – reference: Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. Ambio, 30, 388-396. – reference: Zarin DJ, Davidson EA, Brondízio E et al. (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 3, 365-369. – reference: Alencar A, Nepstad DC, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17. – reference: Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System-1978, General Technical Report INT 39. USDA Forest Service, Ogden. – reference: Rothermel RC, Deeming JC (1980) Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT-93. USDA Forest Service, Ogden. – reference: Soares-Filho BS, Nepstad DC, Curran LM et al. (2006) Modelling conservation in the Amazon basin. Nature, 440, 520-523. – reference: Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252. – reference: Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832-1835. – reference: Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications, 7, 713-725. – reference: Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525-537. – reference: Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31, 2-16. – reference: Oksanen L (2001) Logic of experiments in ecolog: is pseudoreplication a pseudoissue? Oikos, 94, 27-38. – reference: Vieira S, De Camargo PB, Selhorst D et al. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468-479. – reference: Welles JM (1990) Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5, 31-43. – reference: Nepstad DC, Moutinho P, Dias MB et al. (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research - Atmospheres, 107, 8085, doi: DOI: 10.1029/2001JD000360. – reference: Sheil D, May RM (1996) Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology, 84, 91-100. – reference: Brooks ML, D'Antonio CM, Richardson DM et al. (2004) Effects of invasive alien plants on fire regimes. Bioscience, 54, 677-688. – reference: Barlow J, Peres CA, Lagan BO, Haugaasen T (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8. – reference: Trumbore SE, Davidson EA, De Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9, 515-528. – reference: R Development Core Team (2007) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org – reference: Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137-156. – reference: Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology, 10, 833-843. – reference: Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10. – reference: Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters, 30, 2199-2191, doi: DOI: 10.1029/2003GL018600. – reference: Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters, 24, 3057-3060. – reference: Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503-518. – reference: Hammond DS, Ter Steege H, Van Der Borg K (2007) Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica, 39, 153-160. – reference: Nepstad DC, De Carvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669. – reference: Whelan RJ (1995) The Ecology of Fire. Cambridge University Press, Cambridge. – reference: Nepstad DC, Verissimo A, Alencar A et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505-508. – reference: Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678. – reference: Grogan J, Galvão J (2006) Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil. Acta Amazonica, 36, 483-496. – reference: Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449. – reference: Davidson EA, De Carvalho CJR, Figueira AM et al. (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995-999. – reference: Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17, 8-18. – volume: 16 start-page: 183 year: 2007 end-page: 209 article-title: Assessing extinction risk in the absence of species‐level data publication-title: Biodiversity and Conservation – start-page: 310 year: 2004 end-page: 324 – volume: 107 start-page: 8085 year: 2002 article-title: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest publication-title: Journal of Geophysical Research – Atmospheres – volume: 447 start-page: 995 year: 2007 end-page: 999 article-title: Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment publication-title: Nature – volume: 54 start-page: 677 year: 2004 end-page: 688 article-title: Effects of invasive alien plants on fire regimes publication-title: Bioscience – volume: 39 start-page: 153 year: 2007 end-page: 160 article-title: Upland soil charcoal in the wet tropical forests of central Guyana publication-title: Biotropica – volume: 398 start-page: 505 year: 1999 end-page: 508 article-title: Large‐scale impoverishment of Amazonian forests by logging and fire publication-title: Nature – volume: 184 start-page: 239 year: 2003 end-page: 250 article-title: Alterations following a fire in a forest community of Alto Rio Xingu publication-title: Forest Ecology and Management – volume: 143 start-page: 1 year: 2005 end-page: 10 article-title: Effects of fire on properties of forest soils publication-title: Oecologia – volume: 15 start-page: 1664 year: 2005 end-page: 1678 article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape publication-title: Ecological Applications – volume: 21 start-page: 266 year: 2001 end-page: 273 article-title: Monitoring fire effects for managed burns and wildfires publication-title: Natural Areas Journal – volume: 6 start-page: 6 year: 2003 end-page: 8 article-title: Large tree mortality and the decline of forest biomass following Amazonian wildfires publication-title: Ecology Letters – year: 1982 – volume: 16 start-page: 327 year: 2000 end-page: 335 article-title: Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest publication-title: Journal of Tropical Ecology – volume: 10 start-page: 833 year: 2004 end-page: 843 article-title: CO flux from soil in pastures and forests in southwestern Amazonia publication-title: Global Change Biology – volume: 32 start-page: L24712 year: 2005 article-title: Climatic variability and vegetation vulnerability in Amazonia publication-title: Geophysical Research Letters – volume: 54 start-page: 187 year: 1984 end-page: 211 article-title: Pseudoreplication and the design of ecological field experiments publication-title: Ecological Monographs – volume: 24 start-page: 3057 year: 1997 end-page: 3060 article-title: El Niño and climate change publication-title: Geophysical Research Letters – volume: 227 start-page: 53 year: 1985 end-page: 55 article-title: Amazon rain‐forest fires publication-title: Science – volume: 10 start-page: 704 year: 2004 end-page: 717 article-title: Amazon drought and its implications for forest flammability and tree growth publication-title: Global Change Biology – start-page: 417 year: 1992 end-page: 429 – volume: 165 start-page: 525 year: 2005 end-page: 537 article-title: The global distribution of ecosystems in a world without fire publication-title: New Phytologist – volume: 414 start-page: 437 year: 2001 end-page: 440 article-title: Increased damage from fires in logged forests during droughts caused by El Niño publication-title: Nature – volume: 440 start-page: 520 year: 2006 end-page: 523 article-title: Modelling conservation in the Amazon basin publication-title: Nature – volume: 104 start-page: 397 year: 1995 end-page: 408 article-title: Fire in the Brazilian Amazon publication-title: Oecologia – volume: 103 start-page: 14637 year: 2006 end-page: 14641 article-title: Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 284 start-page: 1832 year: 1999 end-page: 1835 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science – volume: 179 start-page: 321 year: 2003 end-page: 331 article-title: Surface wildfires in central Amazonia publication-title: Forest Ecology and Management – volume: 14 start-page: S139 year: 2004 end-page: S149 article-title: Modeling forest understory fires in an eastern Amazonian landscape publication-title: Ecological Applications – volume: 15 start-page: 1649 year: 2005 end-page: 1663 article-title: Modest trade‐offs between timber management and fire susceptibility of a Bolivian semi‐deciduous forest publication-title: Ecological Applications – volume: 31 start-page: 2 year: 1999 end-page: 16 article-title: Fire as a recurrent event in tropical forests of the eastern Amazon publication-title: Biotropica – year: 2007 – volume: 71 start-page: 437 year: 1990 end-page: 449 article-title: Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon publication-title: Ecology – volume: 10 start-page: 1 year: 2006 end-page: 17 article-title: Forest understory fire in the Brazilian Amazon in ENSO and non‐ENSO years publication-title: Earth Interactions – volume: 11 start-page: 356 year: 2001 end-page: 370 article-title: Measuring net primary production in forests publication-title: Ecological Applications – volume: 5 start-page: 31 year: 1990 end-page: 43 article-title: Some indirect methods of estimating canopy structure publication-title: Remote Sensing Reviews – year: 1977 – volume: 9 start-page: 515 year: 1995 end-page: 528 article-title: Belowground cycling of carbon in forests and pastures of eastern Amazonia publication-title: Global Biogeochemical Cycles – volume: 30 start-page: 2199 year: 2003 end-page: 2191 article-title: A new climate–vegetation equilibrium state for tropical South America publication-title: Geophysical Research Letters – volume: 84 start-page: 91 year: 1996 end-page: 100 article-title: Mortality and recruitment rate evaluations in heterogeneous tropical forests publication-title: Journal of Ecology – volume: 36 start-page: 483 year: 2006 end-page: 496 article-title: Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil publication-title: Acta Amazonica – volume: 116 start-page: 247 year: 1999 end-page: 252 article-title: Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia publication-title: Forest Ecology and Management – volume: 30 start-page: 388 year: 2001 end-page: 396 article-title: Spatial and temporal patterns of Amazon rainfall publication-title: Ambio – year: 1980 – volume: 140 start-page: 468 year: 2004 end-page: 479 article-title: Forest structure and carbon dynamics in Amazonian tropical rain forests publication-title: Oecologia – volume: 145 start-page: 87 year: 2005 end-page: 99 article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests publication-title: Oecologia – volume: 7 start-page: 713 year: 1997 end-page: 725 article-title: Fire in Amazonian selectively logged rain forest and the potential for fire reduction publication-title: Ecological Applications – volume: 93 start-page: 191 year: 2005 end-page: 201 article-title: Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia publication-title: Journal of Ecology – year: 2006 – start-page: 333 year: 1995 end-page: 349 – volume: 372 start-page: 666 year: 1994 end-page: 669 article-title: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures publication-title: Nature – year: 1995 – volume: 3 start-page: 365 year: 2005 end-page: 369 article-title: Legacy of fire slows carbon accumulation in Amazonian forest regrowth publication-title: Frontiers in Ecology and the Environment – volume: 10 start-page: 503 year: 2007 end-page: 518 article-title: Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo publication-title: Ecosystems – volume: 78 start-page: 137 year: 2004 end-page: 156 article-title: Amazonian forest dieback under climate‐carbon cycle projections for the 21st century publication-title: Theoretical and Applied Climatology – volume: 17 start-page: 8 year: 1992 end-page: 18 article-title: Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon publication-title: Interciencia – volume: 65 start-page: 285 year: 1984 end-page: 298 article-title: Litterfall, nutrient cycling, and nutrient limitation in tropical forests publication-title: Ecology – volume: 94 start-page: 27 year: 2001 end-page: 38 article-title: Logic of experiments in ecolog publication-title: Oikos – ident: e_1_2_7_5_1 doi: 10.1890/04-0385 – ident: e_1_2_7_16_1 doi: 10.1007/s00704-004-0049-4 – ident: e_1_2_7_48_1 doi: 10.1038/nature04389 – ident: e_1_2_7_55_1 doi: 10.1007/s00442-004-1598-z – ident: e_1_2_7_6_1 doi: 10.1111/j.1469-8137.2004.01252.x – ident: e_1_2_7_49_1 doi: 10.1579/0044-7447-30.7.388 – ident: e_1_2_7_34_1 doi: 10.1111/j.1529-8817.2003.00772.x – ident: e_1_2_7_19_1 doi: 10.1017/S0266467400001437 – ident: e_1_2_7_24_1 doi: 10.2307/1942661 – ident: e_1_2_7_27_1 doi: 10.1016/S0378-1127(03)00156-7 – volume-title: The Ecology of Fire year: 1995 ident: e_1_2_7_58_1 – ident: e_1_2_7_2_1 doi: 10.1175/EI150.1 – ident: e_1_2_7_30_1 doi: 10.1038/372666a0 – ident: e_1_2_7_42_1 doi: 10.1007/s10531-006-9102-1 – ident: e_1_2_7_31_1 doi: 10.1007/978-3-642-79464-3_21 – ident: e_1_2_7_45_1 doi: 10.1126/science.227.4682.53 – ident: e_1_2_7_22_1 doi: 10.1016/S0378-1127(02)00548-0 – volume: 21 start-page: 266 year: 2001 ident: e_1_2_7_53_1 article-title: Monitoring fire effects for managed burns and wildfires publication-title: Natural Areas Journal – ident: e_1_2_7_3_1 doi: 10.1890/01-6029 – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2745.2004.00954.x – ident: e_1_2_7_4_1 doi: 10.1046/j.1461-0248.2003.00394.x – ident: e_1_2_7_15_1 doi: 10.7312/zari12906-019 – volume-title: R: A Language and Environment for Statistical Computing year: 2007 ident: e_1_2_7_41_1 – ident: e_1_2_7_28_1 doi: 10.1007/BF00341336 – ident: e_1_2_7_44_1 doi: 10.1111/j.1529-8817.2003.00776.x – volume-title: The National Fire Danger Rating System‐1978, General Technical Report INT 39 year: 1977 ident: e_1_2_7_18_1 – ident: e_1_2_7_13_1 doi: 10.1126/science.284.5421.1832 – ident: e_1_2_7_51_1 doi: 10.1029/95GB02148 – ident: e_1_2_7_10_1 doi: 10.1007/s00442-004-1788-8 – ident: e_1_2_7_12_1 doi: 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2 – ident: e_1_2_7_37_1 doi: 10.1007/s10021-007-9042-y – ident: e_1_2_7_14_1 doi: 10.1111/j.1744-7429.1999.tb00112.x – ident: e_1_2_7_17_1 doi: 10.1038/nature05900 – ident: e_1_2_7_8_1 doi: 10.2737/INT-GTR-129 – ident: e_1_2_7_23_1 doi: 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.1038/19066 – ident: e_1_2_7_38_1 doi: 10.1016/S0378-1127(98)00447-2 – ident: e_1_2_7_11_1 doi: 10.1007/s00442-005-0100-x – ident: e_1_2_7_40_1 doi: 10.1890/05-0404 – ident: e_1_2_7_50_1 doi: 10.1029/97GL03092 – volume-title: Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT‐93 year: 1980 ident: e_1_2_7_43_1 – ident: e_1_2_7_52_1 doi: 10.2307/1940299 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.0606377103 – ident: e_1_2_7_47_1 doi: 10.1038/35106547 – ident: e_1_2_7_35_1 doi: 10.1034/j.1600-0706.2001.11311.x – ident: e_1_2_7_36_1 doi: 10.1029/2003GL018600 – ident: e_1_2_7_21_1 doi: 10.1111/j.1744-7429.2006.00257.x – ident: e_1_2_7_25_1 doi: 10.1029/2005GL024981 – ident: e_1_2_7_57_1 doi: 10.1080/02757259009532120 – volume: 17 start-page: 8 year: 1992 ident: e_1_2_7_9_1 article-title: Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon publication-title: Interciencia – ident: e_1_2_7_59_1 doi: 10.1890/1540-9295(2005)003[0365:LOFSCA]2.0.CO;2 – ident: e_1_2_7_46_1 doi: 10.2307/2261703 – ident: e_1_2_7_7_1 doi: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 – ident: e_1_2_7_26_1 – start-page: 417 volume-title: Nature and Dynamics of Forest–Savanna Boundaries year: 1992 ident: e_1_2_7_39_1 – ident: e_1_2_7_56_1 doi: 10.2307/1939481 – ident: e_1_2_7_32_1 doi: 10.1029/2001JD000360 – ident: e_1_2_7_20_1 doi: 10.1590/S0044-59672006000400009 |
| SSID | ssj0003206 |
| Score | 2.361092 |
| Snippet | Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests'... The negative fire feedback observed in the present study, driven by low fine fuel inputs, implies that there exists a window of inflammability after multiple... |
| SourceID | proquest pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2276 |
| SubjectTerms | Amazonia Animal and plant ecology Animal, plant and microbial ecology Anthropogenic factors Biological and medical sciences Brazilian Amazon burning Canopies carbon carbon emissions Climate change Drought Emissions Emissions control Feedback feedbacks fire ecology fire spread Flammability Forest & brush fires Forest and land fires forest decline Forest fires forest-savanna transitions Forests fuel Fuels fuels (fire ecology) Fundamental and applied biological sciences. Psychology General aspects Human influences large-scale experimental burns Leaf litter Leaves Mato Grosso transitional forests Microclimate Mortality Phytopathology. Animal pests. Plant and forest protection plant litter prediction Savannahs shrublands tree mortality Treefall trees Tropical forests tropical wildfires Understory Vapor pressure Vegetation Weather damages. Fires |
| Title | Negative fire feedback in a transitional forest of southeastern Amazonia |
| URI | https://api.istex.fr/ark:/67375/WNG-TD1XM96P-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2008.01655.x https://www.proquest.com/docview/205136558 https://www.proquest.com/docview/14838085 https://www.proquest.com/docview/48078297 |
| Volume | 14 |
| WOSCitedRecordID | wos000259360500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BFiQufCxUDYXiA-otCNuJkxzL9uvQriroir1ZdmxXq7ZZtNmiwq9nJsmGrgRShbglih3Fk_Gb52T8BuC9sSqXqggxxiIXJ9ZlsQlCxaIUMsOQH0Krrn-Sjcf5dFqcdflPtBem1YfoP7jRzGjwmia4sfX6JG8ytJJcdSmRXKXpB-STGwLdOB3Axv7nw8lJj8tSNJU2uUwTBB8u1_N6_nivtWD1MJg5Uliy_i2lUJoarRja8hdr_PQuy23C1OGz_znA5_C0I6tsr_WuF_DAV0N43Jav_DGEzYPfu-SwWQcT9RCiU6Ti80XTjO2y0dUMeXFz9hKOx_6iERtnAdGWBYye1pSXbFYxw5YUOWft50mGdBoHyuaB1VTnj4oM-UXF9q7NTwQi8womhwfno-O4K-cQl0ir0thKWdiS5GZsLrzjRWaUCZkVZRFMIQsnnc9Lp2xGGmpIexJvPzqTGMeFsyGXmzCo5pXfApantKNWqEx4laC1rBcm4JnhJXfc-Qiy1XvTZad1TiU3rvSdNQ8aV5Nxu0qcZFx9GwHve35r9T7u0WcLXUObC4RlPfki6GcwBhIkeiqC3cZf-nuZxSWl0mWp_jo-0uf7fHpaqDOdRbCz5lB9B3TaQiCHiGB75WG6g5kaL6b0SGkewbv-KuID_fQxlZ_f1Li0y2WOvPrvLUhUgDZYR6Aad7z3uPXR6BMdvf7XjtvwRKzkhfkbGCwXN_4tPCq_L2f1Yqebv78A9Ho_aA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgA8ELP8qmhcHmB7S3IGwnTvI4unVFtNUEreibZcf2VG0kqOnQ4K_nLknDKoE0Id4SxY7iy_m7L875O0LeaCNTITMfQiyyYWRsEmrPZchzLhII-d436vqjZDJJ5_PsvC0HhHthGn2IbsENZ0aN1zjBcUF6c5bXKVpRKtucSCbj-C0Qyu0IvArcffvk02A26oBZ8LrUJhNxBOjDxGZizx_vtRGt7ntdAodF899gDqWuwIy-qX-xQVBv09w6Tg2e_tcRPiNPWrpKjxv_ek7uuaJHHjYFLH_0yO7p731y0KwFiqpHgjGQ8XJZN6NHtH-1AGZcn70gw4m7qOXGqQe8pR7ip9H5JV0UVNMVxs5Fs0BJgVDDSGnpaYWV_rDMkFsW9Pir_glQpHfIbHA67Q_DtqBDmAOxikMjRGZyFJwxKXeWZYmW2ieG55nXmcissC7NrTQJqqgB8YmceWd1pC3j1vhU7JKtoizcHqFpjHtquUy4kxFYyziuPZxpljPLrAtIsn5xKm_VzrHoxpW69dUDxlVo3LYWJxpX3QSEdT2_NYofd-izB76h9AUAs5p95vg7GEIJUD0ZkKPaYbp76eUlJtMlsfoyOVPTEzYfZ_JcJQE52PCorgN4bcaBRQRkf-1iqgWaCi7G-EhxGpDD7iogBP720YUrryv4uEtFCsz67y1QVgC3WAdE1v5453Grs_57PHr5rx0PyaPhdDxSow-Tj_vkMV-LDbNXZGu1vHavyYP8-2pRLQ_ayfwLHV5DWA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BB4gXfhSmhcHmB7S3IGwnTvI42nVDdFUFq-ibZcf2VG2kU9KhwV_POUnDKoE0Id4SxY7iy_m7z8n5PoC3SouUi8yFGItMGGmThMoxEbKc8QRDvnNNdf1xMpmk83k2beWA_F6Ypj5E98HNz4war_0Et1fGbc7yOkUrSkWbE0lFHL9DQrkVeU2ZHmwNP49m4w6YOaulNimPI0QfyjcTe_54r41odd-pJXJYb_4bn0OpKjSja_QvNgjqbZpbx6nR0_86wmfwpKWr5LDxr-dwzxZ9eNgIWP7ow_bR731y2KwFiqoPwSmS8WVZNyMHZHC5QGZcn72Ak4k9r8uNE4d4SxzGT63yC7IoiCIrHzsXzQdKgoQaR0qWjlRe6c_LDNmyIIff1E-EIvUSZqOjs8FJ2Ao6hDkSqzjUnGc69wVndMqsoVmihHKJZnnmVMYzw41NcyN04quoIfGJrH5vVKQMZUa7lG9Dr1gWdgdIGvs9tUwkzIoIraUtUw7PFM2pocYGkKxfnMzbaudedONS3lr1oHGlN26rxemNK28CoF3Pq6bixx367KBvSHWOwCxnX5j_HYyhBKmeCOCgdpjuXqq88Ml0SSy_To7l2ZDOTzMxlUkAexse1XVAr80YsogAdtcuJlugqfBi7B8pTgPY764iQvjfPqqwy-sKF3cpT5FZ_72FLyvgt1gHIGp_vPO45fHggz969a8d9-HRdDiS44-TT7vwmK1rDdPX0FuV1_YNPMi_rxZVudfO5V9CUkLT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+fire+feedback+in+a+transitional+forest+of+southeastern+Amazonia&rft.jtitle=Global+change+biology&rft.au=BALCH%2C+JENNIFER+K.&rft.au=NEPSTAD%2C+DANIEL+C.&rft.au=BRANDO%2C+PAULO+M.&rft.au=CURRAN%2C+LISA+M.&rft.date=2008-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=14&rft.issue=10&rft.spage=2276&rft.epage=2287&rft_id=info:doi/10.1111%2Fj.1365-2486.2008.01655.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2486_2008_01655_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |