Negative fire feedback in a transitional forest of southeastern Amazonia

Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 14; H. 10; S. 2276 - 2287
Hauptverfasser: BALCH, JENNIFER K, NEPSTAD, DANIEL C, BRANDO, PAULO M, CURRAN, LISA M, PORTELA, OSVALDO, OSWALDO JR, LEFEBVRE, PAUL
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2008
Blackwell Publishing Ltd
Blackwell
Schlagworte:
ISSN:1354-1013, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha⁻¹ yr⁻¹), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr⁻¹, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability - which has important implications for carbon emissions and potential replacement by scrub vegetation.
AbstractList Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed‐canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire‐induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed‐canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short‐lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.
The negative fire feedback observed in the present study, driven by low fine fuel inputs, implies that there exists a window of inflammability after multiple annual burns in these Amazon transitional forests. The combination of low, or delayed, tree mortality and low litter-fall production may provide a buffer against increasing ignition sources. A delayed wave of tree mortality and treefall due to prior fire damage, logging, and severe drought could create a pulse of available fuels. The results demonstrates that, as the expanding soy and cattle-driven frontier further bisects the forest and leaves degraded edges, understanding fuel dynamics will be essential for predicting transitional forest flammability.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha-1 yr-1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5 +/- 0.5% yr-1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability--which has important implications for carbon emissions and potential replacement by scrub vegetation. [PUBLICATION ABSTRACT]
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest-savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha⁻¹ yr⁻¹), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr⁻¹, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability - which has important implications for carbon emissions and potential replacement by scrub vegetation.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed‐canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha −1  yr −1 ), half that of other Amazon forests; and (ii) low fire‐induced tree and liana mortality (5.5±0.5% yr −1 , SE, in B3), the lowest measured in closed‐canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short‐lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.
Author CURRAN, LISA M
BALCH, JENNIFER K
LEFEBVRE, PAUL
NEPSTAD, DANIEL C
OSWALDO JR
BRANDO, PAULO M
PORTELA, OSVALDO
Author_xml – sequence: 1
  fullname: BALCH, JENNIFER K
– sequence: 2
  fullname: NEPSTAD, DANIEL C
– sequence: 3
  fullname: BRANDO, PAULO M
– sequence: 4
  fullname: CURRAN, LISA M
– sequence: 5
  fullname: PORTELA, OSVALDO
– sequence: 6
  fullname: OSWALDO JR
– sequence: 7
  fullname: LEFEBVRE, PAUL
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20692284$$DView record in Pascal Francis
BookMark eNqNkl9vFCEUxSemJrbVz-DERN9m5M_AwIMm7Wq3JrWa2EbfyB0GKtvZocKs3frpBafZh75YHoCE37kXzuGg2Bv9aIqixKjGabxd1ZhyVpFG8JogJGqEOWP19kmxvzvYy3vWVBhh-qw4iHGFEKIE8f3i9NxcweR-m9K6kCZj-g70denGEsopwBjd5PwIQ2l9MHEqvS2j30w_DcTJhLE8WsMfPzp4Xjy1METz4n49LC5PPl4sTquzL8tPi6OzSjOOWNVRKjvNkOSdIKbHsgUOtu2IlhYklT3tjdA979pWCkEEbUyHemigx6TvrKCHxZu57k3wvzbpRmrtojbDAKPxm6gagVpBZPtfEDeCCiRYAl89AFd-E9KToyKIZRNZbvv6HoKoYbDJGe2iugluDeEugVwSIprEiZnTwccYjN0hGKkcmFqpXFLlXFQOTP0LTG2T9P0DqXYTZPdTDm54TIF3c4FbN5i7RzdWy8Vx3iV9Netdina700O4VrylLVPfz5fq4gP-8Vnyryo7_HLmLXgFVyH5cfmNpD-GMKOy5Zz-BUGKyMA
CitedBy_id crossref_primary_10_1071_WF10029
crossref_primary_10_1002_2014MS000358
crossref_primary_10_1111_gcb_13951
crossref_primary_10_1016_j_foreco_2021_119441
crossref_primary_10_1186_s42408_024_00304_9
crossref_primary_10_1007_s10980_012_9723_6
crossref_primary_10_1590_1519_6984_12813
crossref_primary_10_5194_cp_9_289_2013
crossref_primary_10_1016_j_foreco_2009_07_024
crossref_primary_10_1038_506041a
crossref_primary_10_1071_WF14182
crossref_primary_10_1007_s10750_021_04604_y
crossref_primary_10_1007_s40415_015_0186_2
crossref_primary_10_1029_2020JG005677
crossref_primary_10_1016_j_foreco_2019_117497
crossref_primary_10_1038_nature10717
crossref_primary_10_3389_ffgc_2018_00006
crossref_primary_10_1038_s43247_022_00522_6
crossref_primary_10_1126_science_1194032
crossref_primary_10_1073_pnas_1305499111
crossref_primary_10_1111_geb_12739
crossref_primary_10_1111_j_1466_8238_2010_00634_x
crossref_primary_10_1071_WF14054
crossref_primary_10_1016_j_baae_2019_01_001
crossref_primary_10_1016_j_foreco_2019_117804
crossref_primary_10_1016_j_tree_2015_03_010
crossref_primary_10_1038_s41598_024_77924_3
crossref_primary_10_1086_665819
crossref_primary_10_3390_fire7120477
crossref_primary_10_1016_j_foreco_2010_09_029
crossref_primary_10_3390_fire5020045
crossref_primary_10_1016_j_foreco_2017_03_035
crossref_primary_10_1111_j_1442_9993_2011_02324_x
crossref_primary_10_1111_btp_13129
crossref_primary_10_1371_journal_pone_0290203
crossref_primary_10_1016_j_agrformet_2023_109875
crossref_primary_10_1088_1748_9326_ade60d
crossref_primary_10_5194_esd_8_1237_2017
crossref_primary_10_3390_f10050436
crossref_primary_10_3389_ffgc_2020_00082
crossref_primary_10_1080_17550874_2013_826744
crossref_primary_10_1016_j_catena_2025_108924
crossref_primary_10_1111_rec_14036
crossref_primary_10_3390_fire7080266
crossref_primary_10_1016_j_foreco_2015_10_033
crossref_primary_10_1111_geb_12562
crossref_primary_10_1016_j_agee_2012_06_013
crossref_primary_10_1111_gcb_13172
crossref_primary_10_1016_j_foreco_2015_05_015
crossref_primary_10_1016_j_biocon_2017_08_020
crossref_primary_10_1016_j_foreco_2025_122584
crossref_primary_10_1111_gcb_14659
crossref_primary_10_1670_13_041
crossref_primary_10_1007_s00442_015_3259_9
crossref_primary_10_3389_ffgc_2020_00010
crossref_primary_10_1155_2012_780713
crossref_primary_10_1088_1748_9326_add8a4
crossref_primary_10_1002_2016JG003470
crossref_primary_10_1111_1365_2745_13076
crossref_primary_10_1088_1748_9326_ad77e6
crossref_primary_10_1002_ajb2_70066
crossref_primary_10_1016_j_quascirev_2012_11_029
crossref_primary_10_1002_ecs2_3231
crossref_primary_10_1016_j_foreco_2022_120354
crossref_primary_10_1080_23766808_2016_1236769
crossref_primary_10_3389_ffgc_2020_507710
crossref_primary_10_5194_nhess_21_2169_2021
crossref_primary_10_1038_s41467_024_50916_7
crossref_primary_10_1017_S026646741200051X
crossref_primary_10_1007_s10666_014_9411_9
crossref_primary_10_1007_s10021_011_9480_4
crossref_primary_10_1111_1365_2745_13549
crossref_primary_10_1371_journal_pone_0012877
crossref_primary_10_1088_1748_9326_aa69ce
crossref_primary_10_1007_s10021_019_00453_y
crossref_primary_10_1111_j_1469_8137_2010_03358_x
crossref_primary_10_1016_j_rse_2019_111340
crossref_primary_10_1016_j_flora_2014_02_008
crossref_primary_10_1890_10_1168_1
crossref_primary_10_1002_ecs2_3347
crossref_primary_10_3390_plants9121803
crossref_primary_10_1017_S0266467420000176
crossref_primary_10_1038_s43247_024_01248_3
crossref_primary_10_1016_j_foreco_2011_10_025
crossref_primary_10_1016_j_biocon_2020_108862
crossref_primary_10_1016_j_agrformet_2022_109289
crossref_primary_10_1017_S0266467409990150
crossref_primary_10_5194_bg_11_7305_2014
crossref_primary_10_1088_1748_9326_aac331
crossref_primary_10_1016_j_cosust_2009_10_008
crossref_primary_10_1016_j_foreco_2018_10_009
crossref_primary_10_1371_journal_pone_0103933
crossref_primary_10_1002_ecs2_4780
crossref_primary_10_1017_S0376892911000452
crossref_primary_10_1017_S0376892918000127
crossref_primary_10_1080_03066150_2014_917371
crossref_primary_10_1093_biosci_biv106
crossref_primary_10_1890_10_0827_1
crossref_primary_10_5194_gmd_11_815_2018
crossref_primary_10_1111_j_1365_2486_2011_02533_x
crossref_primary_10_1007_s10531_012_0426_8
crossref_primary_10_1080_17550874_2013_798368
crossref_primary_10_1016_j_agee_2011_08_016
crossref_primary_10_1016_j_foreco_2018_01_038
crossref_primary_10_1017_S0266467412000107
crossref_primary_10_1038_s41558_019_0540_7
crossref_primary_10_1007_s00442_012_2482_x
crossref_primary_10_1111_aec_12015
crossref_primary_10_1016_j_rse_2011_03_002
crossref_primary_10_1017_S0266467416000559
crossref_primary_10_1007_s00442_016_3638_x
crossref_primary_10_1016_j_gloenvcha_2015_01_009
crossref_primary_10_1126_science_1210465
crossref_primary_10_5194_bg_11_3739_2014
crossref_primary_10_1111_gcb_15279
crossref_primary_10_1111_j_1365_2486_2011_02392_x
crossref_primary_10_1016_j_foreco_2017_06_046
crossref_primary_10_1017_S0266467412000636
crossref_primary_10_5194_bg_10_8385_2013
crossref_primary_10_1111_1365_2664_12338
crossref_primary_10_1007_s11258_021_01205_6
crossref_primary_10_3389_ffgc_2022_880963
crossref_primary_10_1890_14_1740_1
crossref_primary_10_1146_annurev_earth_082517_010235
crossref_primary_10_1111_j_1365_2699_2011_02595_x
crossref_primary_10_1111_j_1469_185X_2010_00155_x
crossref_primary_10_1111_j_1365_2745_2009_01547_x
crossref_primary_10_1111_oik_10764
crossref_primary_10_1111_btp_12627
crossref_primary_10_1111_nph_17239
crossref_primary_10_1371_journal_pone_0026208
crossref_primary_10_1111_nph_14766
Cites_doi 10.1890/04-0385
10.1007/s00704-004-0049-4
10.1038/nature04389
10.1007/s00442-004-1598-z
10.1111/j.1469-8137.2004.01252.x
10.1579/0044-7447-30.7.388
10.1111/j.1529-8817.2003.00772.x
10.1017/S0266467400001437
10.2307/1942661
10.1016/S0378-1127(03)00156-7
10.1175/EI150.1
10.1038/372666a0
10.1007/s10531-006-9102-1
10.1007/978-3-642-79464-3_21
10.1126/science.227.4682.53
10.1016/S0378-1127(02)00548-0
10.1890/01-6029
10.1111/j.1365-2745.2004.00954.x
10.1046/j.1461-0248.2003.00394.x
10.7312/zari12906-019
10.1007/BF00341336
10.1111/j.1529-8817.2003.00776.x
10.1126/science.284.5421.1832
10.1029/95GB02148
10.1007/s00442-004-1788-8
10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2
10.1007/s10021-007-9042-y
10.1111/j.1744-7429.1999.tb00112.x
10.1038/nature05900
10.2737/INT-GTR-129
10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2
10.1038/19066
10.1016/S0378-1127(98)00447-2
10.1007/s00442-005-0100-x
10.1890/05-0404
10.1029/97GL03092
10.2307/1940299
10.1073/pnas.0606377103
10.1038/35106547
10.1034/j.1600-0706.2001.11311.x
10.1029/2003GL018600
10.1111/j.1744-7429.2006.00257.x
10.1029/2005GL024981
10.1080/02757259009532120
10.1890/1540-9295(2005)003[0365:LOFSCA]2.0.CO;2
10.2307/2261703
10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
10.2307/1939481
10.1029/2001JD000360
10.1590/S0044-59672006000400009
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
2008 INIST-CNRS
Journal compilation © 2008 Blackwell Publishing
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: 2008 INIST-CNRS
– notice: Journal compilation © 2008 Blackwell Publishing
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
7S9
L.6
DOI 10.1111/j.1365-2486.2008.01655.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2287
ExternalDocumentID 1559631491
20692284
10_1111_j_1365_2486_2008_01655_x
GCB1655
ark_67375_WNG_TD1XM96P_7
US201301539766
Genre article
Feature
GeographicLocations South America
Brazil
Amazon Basin
America
Amazonia
GeographicLocations_xml – name: Amazon Basin
– name: Amazonia
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
7S9
L.6
ID FETCH-LOGICAL-c5605-b339bc5096b82ed197a6af7b2c9fa939d3de8cd6b779882834eb0da4ad12dbf83
IEDL.DBID DRFUL
ISICitedReferencesCount 171
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259360500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Thu Oct 02 07:07:21 EDT 2025
Tue Oct 07 07:47:27 EDT 2025
Mon Nov 10 03:10:19 EST 2025
Mon Jul 21 09:10:58 EDT 2025
Tue Nov 18 21:08:25 EST 2025
Sat Nov 29 06:02:11 EST 2025
Sun Sep 21 06:19:30 EDT 2025
Tue Nov 11 03:31:15 EST 2025
Wed Dec 27 18:44:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Savannah
Mato Grosso transitional forests
large-scale experimental burns
Tropical zone
Emission
Brazilian Amazon
feedbacks
Tropical forest
Experimental study
Climatic zone
Carbon
tropical wildfires
Fire ecology
Feedback
forest-savanna transitions
Fires
Fuel
tropical forests
Transition
Amazonia
Vegetation fire
carbon emissions
Large scale
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5605-b339bc5096b82ed197a6af7b2c9fa939d3de8cd6b779882834eb0da4ad12dbf83
Notes http://dx.doi.org/10.1111/j.1365-2486.2008.01655.x
istex:5AA070310AF7B906986FD3063ABA826E45260163
ark:/67375/WNG-TD1XM96P-7
ArticleID:GCB1655
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 205136558
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_48078297
proquest_miscellaneous_14838085
proquest_journals_205136558
pascalfrancis_primary_20692284
crossref_primary_10_1111_j_1365_2486_2008_01655_x
crossref_citationtrail_10_1111_j_1365_2486_2008_01655_x
wiley_primary_10_1111_j_1365_2486_2008_01655_x_GCB1655
istex_primary_ark_67375_WNG_TD1XM96P_7
fao_agris_US201301539766
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298.
Rodríguez JP, Balch JK, Rodríguez-Clark KM (2007) Assessing extinction risk in the absence of species-level data: quantitative criteria for terrestrial ecosystems. Biodiversity and Conservation, 16, 183-209.
Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503-518.
Trumbore SE, Davidson EA, De Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9, 515-528.
Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104, 397-408.
Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System-1978, General Technical Report INT 39. USDA Forest Service, Ogden.
Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters, 24, 3057-3060.
Vieira S, De Camargo PB, Selhorst D et al. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468-479.
Davidson EA, De Carvalho CJR, Figueira AM et al. (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995-999.
Sanford RL, Saldarriaga J, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science, 227, 53-55.
Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370.
Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832-1835.
Nepstad DC, De Carvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669.
Whelan RJ (1995) The Ecology of Fire. Cambridge University Press, Cambridge.
Welles JM (1990) Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5, 31-43.
Van Mantgem P, Schwartz M, Keifer MB (2001) Monitoring fire effects for managed burns and wildfires: coming to terms with pseudoreplication. Natural Areas Journal, 21, 266-273.
Hammond DS, Ter Steege H, Van Der Borg K (2007) Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica, 39, 153-160.
Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211.
Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663.
Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327-335.
Alencar AAC, Solórzano LA, Nepstad DC (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, S139-S149.
Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437-440.
Van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191-201.
Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137-156.
Haugaasen T, Barlow J, Peres CA (2003) Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management, 179, 321-331.
Hutyra LR, Munger JW, Nobre CA, Saleska SR, Vieira SA, Wofsy SC (2005) Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32, L24712.
Oksanen L (2001) Logic of experiments in ecolog: is pseudoreplication a pseudoissue? Oikos, 94, 27-38.
Grogan J, Galvão J (2006) Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil. Acta Amazonica, 36, 483-496.
Sheil D, May RM (1996) Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology, 84, 91-100.
Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology, 10, 833-843.
Ivanauskas NM, Monteiro R, Rodrigues RR (2003) Alterations following a fire in a forest community of Alto Rio Xingu. Forest Ecology and Management, 184, 239-250.
Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications, 7, 713-725.
Soares-Filho BS, Nepstad DC, Curran LM et al. (2006) Modelling conservation in the Amazon basin. Nature, 440, 520-523.
Zarin DJ, Davidson EA, Brondízio E et al. (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 3, 365-369.
Brooks ML, D'Antonio CM, Richardson DM et al. (2004) Effects of invasive alien plants on fire regimes. Bioscience, 54, 677-688.
Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31, 2-16.
Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525-537.
R Development Core Team (2007) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org
Morton DC, DeFries RS, Shimabukuro YE et al. (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103, 14637-14641.
Barlow J, Peres CA, Lagan BO, Haugaasen T (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8.
Chave J, Andalo C, Brown S et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99.
Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. Ambio, 30, 388-396.
Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17, 8-18.
Rothermel RC, Deeming JC (1980) Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT-93. USDA Forest Service, Ogden.
Nepstad DC, Moutinho P, Dias MB et al. (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research - Atmospheres, 107, 8085, doi: DOI: 10.1029/2001JD000360.
Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449.
Nepstad D, Lefebvre P, Da Silva UL et al. (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 10, 704-717.
Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252.
Nepstad DC, Verissimo A, Alencar A et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505-508.
Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678.
Alencar A, Nepstad DC, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17.
Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters, 30, 2199-2191, doi: DOI: 10.1029/2003GL018600.
2007; 39
2001; 94
1994; 372
1984; 65
2006; 36
1992; 17
1999; 284
1997; 7
1977
2000; 16
2005; 143
2005; 145
2003; 6
1984; 54
2004; 78
2002; 107
2006; 440
2005; 32
1982
1980
2001; 11
2001; 414
1995; 9
2007; 447
2006; 10
2004; 140
1997; 24
2007
2006
1995
2004
1985; 227
1992
2007; 10
2003; 179
2003; 30
2007; 16
2001; 21
2004; 54
2004; 10
2005; 165
2004; 14
2003; 184
1995; 104
1996; 84
1999; 31
2005; 93
2005; 3
1999; 398
2005; 15
1999; 116
2001; 30
2006; 103
1990; 71
1990; 5
e_1_2_7_5_1
Brown S (e_1_2_7_9_1) 1992; 17
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
R Development Core Team (e_1_2_7_41_1) 2007
Whelan RJ (e_1_2_7_58_1) 1995
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
Ratter JA (e_1_2_7_39_1) 1992
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Van Mantgem P (e_1_2_7_53_1) 2001; 21
e_1_2_7_51_1
Deeming JE (e_1_2_7_18_1) 1977
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Rothermel RC (e_1_2_7_43_1) 1980
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211.
– reference: Sanford RL, Saldarriaga J, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science, 227, 53-55.
– reference: Van Mantgem P, Schwartz M, Keifer MB (2001) Monitoring fire effects for managed burns and wildfires: coming to terms with pseudoreplication. Natural Areas Journal, 21, 266-273.
– reference: Nepstad D, Lefebvre P, Da Silva UL et al. (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 10, 704-717.
– reference: Rodríguez JP, Balch JK, Rodríguez-Clark KM (2007) Assessing extinction risk in the absence of species-level data: quantitative criteria for terrestrial ecosystems. Biodiversity and Conservation, 16, 183-209.
– reference: Morton DC, DeFries RS, Shimabukuro YE et al. (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103, 14637-14641.
– reference: Chave J, Andalo C, Brown S et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99.
– reference: Alencar AAC, Solórzano LA, Nepstad DC (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, S139-S149.
– reference: Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370.
– reference: Ivanauskas NM, Monteiro R, Rodrigues RR (2003) Alterations following a fire in a forest community of Alto Rio Xingu. Forest Ecology and Management, 184, 239-250.
– reference: Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298.
– reference: Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437-440.
– reference: Van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191-201.
– reference: Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663.
– reference: Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104, 397-408.
– reference: Haugaasen T, Barlow J, Peres CA (2003) Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management, 179, 321-331.
– reference: Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327-335.
– reference: Hutyra LR, Munger JW, Nobre CA, Saleska SR, Vieira SA, Wofsy SC (2005) Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters, 32, L24712.
– reference: Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. Ambio, 30, 388-396.
– reference: Zarin DJ, Davidson EA, Brondízio E et al. (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 3, 365-369.
– reference: Alencar A, Nepstad DC, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17.
– reference: Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System-1978, General Technical Report INT 39. USDA Forest Service, Ogden.
– reference: Rothermel RC, Deeming JC (1980) Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT-93. USDA Forest Service, Ogden.
– reference: Soares-Filho BS, Nepstad DC, Curran LM et al. (2006) Modelling conservation in the Amazon basin. Nature, 440, 520-523.
– reference: Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252.
– reference: Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832-1835.
– reference: Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications, 7, 713-725.
– reference: Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525-537.
– reference: Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica, 31, 2-16.
– reference: Oksanen L (2001) Logic of experiments in ecolog: is pseudoreplication a pseudoissue? Oikos, 94, 27-38.
– reference: Vieira S, De Camargo PB, Selhorst D et al. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468-479.
– reference: Welles JM (1990) Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5, 31-43.
– reference: Nepstad DC, Moutinho P, Dias MB et al. (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research - Atmospheres, 107, 8085, doi: DOI: 10.1029/2001JD000360.
– reference: Sheil D, May RM (1996) Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology, 84, 91-100.
– reference: Brooks ML, D'Antonio CM, Richardson DM et al. (2004) Effects of invasive alien plants on fire regimes. Bioscience, 54, 677-688.
– reference: Barlow J, Peres CA, Lagan BO, Haugaasen T (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8.
– reference: Trumbore SE, Davidson EA, De Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9, 515-528.
– reference: R Development Core Team (2007) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org
– reference: Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137-156.
– reference: Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology, 10, 833-843.
– reference: Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
– reference: Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters, 30, 2199-2191, doi: DOI: 10.1029/2003GL018600.
– reference: Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophysical Research Letters, 24, 3057-3060.
– reference: Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems, 10, 503-518.
– reference: Hammond DS, Ter Steege H, Van Der Borg K (2007) Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica, 39, 153-160.
– reference: Nepstad DC, De Carvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669.
– reference: Whelan RJ (1995) The Ecology of Fire. Cambridge University Press, Cambridge.
– reference: Nepstad DC, Verissimo A, Alencar A et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505-508.
– reference: Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678.
– reference: Grogan J, Galvão J (2006) Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil. Acta Amazonica, 36, 483-496.
– reference: Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449.
– reference: Davidson EA, De Carvalho CJR, Figueira AM et al. (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995-999.
– reference: Brown S, Lugo AE (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17, 8-18.
– volume: 16
  start-page: 183
  year: 2007
  end-page: 209
  article-title: Assessing extinction risk in the absence of species‐level data
  publication-title: Biodiversity and Conservation
– start-page: 310
  year: 2004
  end-page: 324
– volume: 107
  start-page: 8085
  year: 2002
  article-title: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest
  publication-title: Journal of Geophysical Research – Atmospheres
– volume: 447
  start-page: 995
  year: 2007
  end-page: 999
  article-title: Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment
  publication-title: Nature
– volume: 54
  start-page: 677
  year: 2004
  end-page: 688
  article-title: Effects of invasive alien plants on fire regimes
  publication-title: Bioscience
– volume: 39
  start-page: 153
  year: 2007
  end-page: 160
  article-title: Upland soil charcoal in the wet tropical forests of central Guyana
  publication-title: Biotropica
– volume: 398
  start-page: 505
  year: 1999
  end-page: 508
  article-title: Large‐scale impoverishment of Amazonian forests by logging and fire
  publication-title: Nature
– volume: 184
  start-page: 239
  year: 2003
  end-page: 250
  article-title: Alterations following a fire in a forest community of Alto Rio Xingu
  publication-title: Forest Ecology and Management
– volume: 143
  start-page: 1
  year: 2005
  end-page: 10
  article-title: Effects of fire on properties of forest soils
  publication-title: Oecologia
– volume: 15
  start-page: 1664
  year: 2005
  end-page: 1678
  article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape
  publication-title: Ecological Applications
– volume: 21
  start-page: 266
  year: 2001
  end-page: 273
  article-title: Monitoring fire effects for managed burns and wildfires
  publication-title: Natural Areas Journal
– volume: 6
  start-page: 6
  year: 2003
  end-page: 8
  article-title: Large tree mortality and the decline of forest biomass following Amazonian wildfires
  publication-title: Ecology Letters
– year: 1982
– volume: 16
  start-page: 327
  year: 2000
  end-page: 335
  article-title: Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest
  publication-title: Journal of Tropical Ecology
– volume: 10
  start-page: 833
  year: 2004
  end-page: 843
  article-title: CO flux from soil in pastures and forests in southwestern Amazonia
  publication-title: Global Change Biology
– volume: 32
  start-page: L24712
  year: 2005
  article-title: Climatic variability and vegetation vulnerability in Amazonia
  publication-title: Geophysical Research Letters
– volume: 54
  start-page: 187
  year: 1984
  end-page: 211
  article-title: Pseudoreplication and the design of ecological field experiments
  publication-title: Ecological Monographs
– volume: 24
  start-page: 3057
  year: 1997
  end-page: 3060
  article-title: El Niño and climate change
  publication-title: Geophysical Research Letters
– volume: 227
  start-page: 53
  year: 1985
  end-page: 55
  article-title: Amazon rain‐forest fires
  publication-title: Science
– volume: 10
  start-page: 704
  year: 2004
  end-page: 717
  article-title: Amazon drought and its implications for forest flammability and tree growth
  publication-title: Global Change Biology
– start-page: 417
  year: 1992
  end-page: 429
– volume: 165
  start-page: 525
  year: 2005
  end-page: 537
  article-title: The global distribution of ecosystems in a world without fire
  publication-title: New Phytologist
– volume: 414
  start-page: 437
  year: 2001
  end-page: 440
  article-title: Increased damage from fires in logged forests during droughts caused by El Niño
  publication-title: Nature
– volume: 440
  start-page: 520
  year: 2006
  end-page: 523
  article-title: Modelling conservation in the Amazon basin
  publication-title: Nature
– volume: 104
  start-page: 397
  year: 1995
  end-page: 408
  article-title: Fire in the Brazilian Amazon
  publication-title: Oecologia
– volume: 103
  start-page: 14637
  year: 2006
  end-page: 14641
  article-title: Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 284
  start-page: 1832
  year: 1999
  end-page: 1835
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science
– volume: 179
  start-page: 321
  year: 2003
  end-page: 331
  article-title: Surface wildfires in central Amazonia
  publication-title: Forest Ecology and Management
– volume: 14
  start-page: S139
  year: 2004
  end-page: S149
  article-title: Modeling forest understory fires in an eastern Amazonian landscape
  publication-title: Ecological Applications
– volume: 15
  start-page: 1649
  year: 2005
  end-page: 1663
  article-title: Modest trade‐offs between timber management and fire susceptibility of a Bolivian semi‐deciduous forest
  publication-title: Ecological Applications
– volume: 31
  start-page: 2
  year: 1999
  end-page: 16
  article-title: Fire as a recurrent event in tropical forests of the eastern Amazon
  publication-title: Biotropica
– year: 2007
– volume: 71
  start-page: 437
  year: 1990
  end-page: 449
  article-title: Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon
  publication-title: Ecology
– volume: 10
  start-page: 1
  year: 2006
  end-page: 17
  article-title: Forest understory fire in the Brazilian Amazon in ENSO and non‐ENSO years
  publication-title: Earth Interactions
– volume: 11
  start-page: 356
  year: 2001
  end-page: 370
  article-title: Measuring net primary production in forests
  publication-title: Ecological Applications
– volume: 5
  start-page: 31
  year: 1990
  end-page: 43
  article-title: Some indirect methods of estimating canopy structure
  publication-title: Remote Sensing Reviews
– year: 1977
– volume: 9
  start-page: 515
  year: 1995
  end-page: 528
  article-title: Belowground cycling of carbon in forests and pastures of eastern Amazonia
  publication-title: Global Biogeochemical Cycles
– volume: 30
  start-page: 2199
  year: 2003
  end-page: 2191
  article-title: A new climate–vegetation equilibrium state for tropical South America
  publication-title: Geophysical Research Letters
– volume: 84
  start-page: 91
  year: 1996
  end-page: 100
  article-title: Mortality and recruitment rate evaluations in heterogeneous tropical forests
  publication-title: Journal of Ecology
– volume: 36
  start-page: 483
  year: 2006
  end-page: 496
  article-title: Physiographic and floristic gradients across topography in transitional seasonally dry evergreen forests of southeast Para, Brazil
  publication-title: Acta Amazonica
– volume: 116
  start-page: 247
  year: 1999
  end-page: 252
  article-title: Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia
  publication-title: Forest Ecology and Management
– volume: 30
  start-page: 388
  year: 2001
  end-page: 396
  article-title: Spatial and temporal patterns of Amazon rainfall
  publication-title: Ambio
– year: 1980
– volume: 140
  start-page: 468
  year: 2004
  end-page: 479
  article-title: Forest structure and carbon dynamics in Amazonian tropical rain forests
  publication-title: Oecologia
– volume: 145
  start-page: 87
  year: 2005
  end-page: 99
  article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests
  publication-title: Oecologia
– volume: 7
  start-page: 713
  year: 1997
  end-page: 725
  article-title: Fire in Amazonian selectively logged rain forest and the potential for fire reduction
  publication-title: Ecological Applications
– volume: 93
  start-page: 191
  year: 2005
  end-page: 201
  article-title: Drought, fire and tree survival in a Bornean rain forest, East Kalimantan, Indonesia
  publication-title: Journal of Ecology
– year: 2006
– start-page: 333
  year: 1995
  end-page: 349
– volume: 372
  start-page: 666
  year: 1994
  end-page: 669
  article-title: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures
  publication-title: Nature
– year: 1995
– volume: 3
  start-page: 365
  year: 2005
  end-page: 369
  article-title: Legacy of fire slows carbon accumulation in Amazonian forest regrowth
  publication-title: Frontiers in Ecology and the Environment
– volume: 10
  start-page: 503
  year: 2007
  end-page: 518
  article-title: Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo
  publication-title: Ecosystems
– volume: 78
  start-page: 137
  year: 2004
  end-page: 156
  article-title: Amazonian forest dieback under climate‐carbon cycle projections for the 21st century
  publication-title: Theoretical and Applied Climatology
– volume: 17
  start-page: 8
  year: 1992
  end-page: 18
  article-title: Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon
  publication-title: Interciencia
– volume: 65
  start-page: 285
  year: 1984
  end-page: 298
  article-title: Litterfall, nutrient cycling, and nutrient limitation in tropical forests
  publication-title: Ecology
– volume: 94
  start-page: 27
  year: 2001
  end-page: 38
  article-title: Logic of experiments in ecolog
  publication-title: Oikos
– ident: e_1_2_7_5_1
  doi: 10.1890/04-0385
– ident: e_1_2_7_16_1
  doi: 10.1007/s00704-004-0049-4
– ident: e_1_2_7_48_1
  doi: 10.1038/nature04389
– ident: e_1_2_7_55_1
  doi: 10.1007/s00442-004-1598-z
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1469-8137.2004.01252.x
– ident: e_1_2_7_49_1
  doi: 10.1579/0044-7447-30.7.388
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1529-8817.2003.00772.x
– ident: e_1_2_7_19_1
  doi: 10.1017/S0266467400001437
– ident: e_1_2_7_24_1
  doi: 10.2307/1942661
– ident: e_1_2_7_27_1
  doi: 10.1016/S0378-1127(03)00156-7
– volume-title: The Ecology of Fire
  year: 1995
  ident: e_1_2_7_58_1
– ident: e_1_2_7_2_1
  doi: 10.1175/EI150.1
– ident: e_1_2_7_30_1
  doi: 10.1038/372666a0
– ident: e_1_2_7_42_1
  doi: 10.1007/s10531-006-9102-1
– ident: e_1_2_7_31_1
  doi: 10.1007/978-3-642-79464-3_21
– ident: e_1_2_7_45_1
  doi: 10.1126/science.227.4682.53
– ident: e_1_2_7_22_1
  doi: 10.1016/S0378-1127(02)00548-0
– volume: 21
  start-page: 266
  year: 2001
  ident: e_1_2_7_53_1
  article-title: Monitoring fire effects for managed burns and wildfires
  publication-title: Natural Areas Journal
– ident: e_1_2_7_3_1
  doi: 10.1890/01-6029
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1365-2745.2004.00954.x
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1461-0248.2003.00394.x
– ident: e_1_2_7_15_1
  doi: 10.7312/zari12906-019
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2007
  ident: e_1_2_7_41_1
– ident: e_1_2_7_28_1
  doi: 10.1007/BF00341336
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1529-8817.2003.00776.x
– volume-title: The National Fire Danger Rating System‐1978, General Technical Report INT 39
  year: 1977
  ident: e_1_2_7_18_1
– ident: e_1_2_7_13_1
  doi: 10.1126/science.284.5421.1832
– ident: e_1_2_7_51_1
  doi: 10.1029/95GB02148
– ident: e_1_2_7_10_1
  doi: 10.1007/s00442-004-1788-8
– ident: e_1_2_7_12_1
  doi: 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2
– ident: e_1_2_7_37_1
  doi: 10.1007/s10021-007-9042-y
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1744-7429.1999.tb00112.x
– ident: e_1_2_7_17_1
  doi: 10.1038/nature05900
– ident: e_1_2_7_8_1
  doi: 10.2737/INT-GTR-129
– ident: e_1_2_7_23_1
  doi: 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2
– ident: e_1_2_7_33_1
  doi: 10.1038/19066
– ident: e_1_2_7_38_1
  doi: 10.1016/S0378-1127(98)00447-2
– ident: e_1_2_7_11_1
  doi: 10.1007/s00442-005-0100-x
– ident: e_1_2_7_40_1
  doi: 10.1890/05-0404
– ident: e_1_2_7_50_1
  doi: 10.1029/97GL03092
– volume-title: Measuring and Interpreting Fire Behavior for Correlation with Fire Effects, General Technical Report INT‐93
  year: 1980
  ident: e_1_2_7_43_1
– ident: e_1_2_7_52_1
  doi: 10.2307/1940299
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.0606377103
– ident: e_1_2_7_47_1
  doi: 10.1038/35106547
– ident: e_1_2_7_35_1
  doi: 10.1034/j.1600-0706.2001.11311.x
– ident: e_1_2_7_36_1
  doi: 10.1029/2003GL018600
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1744-7429.2006.00257.x
– ident: e_1_2_7_25_1
  doi: 10.1029/2005GL024981
– ident: e_1_2_7_57_1
  doi: 10.1080/02757259009532120
– volume: 17
  start-page: 8
  year: 1992
  ident: e_1_2_7_9_1
  article-title: Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon
  publication-title: Interciencia
– ident: e_1_2_7_59_1
  doi: 10.1890/1540-9295(2005)003[0365:LOFSCA]2.0.CO;2
– ident: e_1_2_7_46_1
  doi: 10.2307/2261703
– ident: e_1_2_7_7_1
  doi: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
– ident: e_1_2_7_26_1
– start-page: 417
  volume-title: Nature and Dynamics of Forest–Savanna Boundaries
  year: 1992
  ident: e_1_2_7_39_1
– ident: e_1_2_7_56_1
  doi: 10.2307/1939481
– ident: e_1_2_7_32_1
  doi: 10.1029/2001JD000360
– ident: e_1_2_7_20_1
  doi: 10.1590/S0044-59672006000400009
SSID ssj0003206
Score 2.361092
Snippet Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests'...
The negative fire feedback observed in the present study, driven by low fine fuel inputs, implies that there exists a window of inflammability after multiple...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2276
SubjectTerms Amazonia
Animal and plant ecology
Animal, plant and microbial ecology
Anthropogenic factors
Biological and medical sciences
Brazilian Amazon
burning
Canopies
carbon
carbon emissions
Climate change
Drought
Emissions
Emissions control
Feedback
feedbacks
fire ecology
fire spread
Flammability
Forest & brush fires
Forest and land fires
forest decline
Forest fires
forest-savanna transitions
Forests
fuel
Fuels
fuels (fire ecology)
Fundamental and applied biological sciences. Psychology
General aspects
Human influences
large-scale experimental burns
Leaf litter
Leaves
Mato Grosso transitional forests
Microclimate
Mortality
Phytopathology. Animal pests. Plant and forest protection
plant litter
prediction
Savannahs
shrublands
tree mortality
Treefall
trees
Tropical forests
tropical wildfires
Understory
Vapor pressure
Vegetation
Weather damages. Fires
Title Negative fire feedback in a transitional forest of southeastern Amazonia
URI https://api.istex.fr/ark:/67375/WNG-TD1XM96P-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2008.01655.x
https://www.proquest.com/docview/205136558
https://www.proquest.com/docview/14838085
https://www.proquest.com/docview/48078297
Volume 14
WOSCitedRecordID wos000259360500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BFiQufCxUDYXiA-otCNuJkxzL9uvQriroir1ZdmxXq7ZZtNmiwq9nJsmGrgRShbglih3Fk_Gb52T8BuC9sSqXqggxxiIXJ9ZlsQlCxaIUMsOQH0Krrn-Sjcf5dFqcdflPtBem1YfoP7jRzGjwmia4sfX6JG8ytJJcdSmRXKXpB-STGwLdOB3Axv7nw8lJj8tSNJU2uUwTBB8u1_N6_nivtWD1MJg5Uliy_i2lUJoarRja8hdr_PQuy23C1OGz_znA5_C0I6tsr_WuF_DAV0N43Jav_DGEzYPfu-SwWQcT9RCiU6Ti80XTjO2y0dUMeXFz9hKOx_6iERtnAdGWBYye1pSXbFYxw5YUOWft50mGdBoHyuaB1VTnj4oM-UXF9q7NTwQi8womhwfno-O4K-cQl0ir0thKWdiS5GZsLrzjRWaUCZkVZRFMIQsnnc9Lp2xGGmpIexJvPzqTGMeFsyGXmzCo5pXfApantKNWqEx4laC1rBcm4JnhJXfc-Qiy1XvTZad1TiU3rvSdNQ8aV5Nxu0qcZFx9GwHve35r9T7u0WcLXUObC4RlPfki6GcwBhIkeiqC3cZf-nuZxSWl0mWp_jo-0uf7fHpaqDOdRbCz5lB9B3TaQiCHiGB75WG6g5kaL6b0SGkewbv-KuID_fQxlZ_f1Li0y2WOvPrvLUhUgDZYR6Aad7z3uPXR6BMdvf7XjtvwRKzkhfkbGCwXN_4tPCq_L2f1Yqebv78A9Ho_aA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgA8ELP8qmhcHmB7S3IGwnTvI4unVFtNUEreibZcf2VG0kqOnQ4K_nLknDKoE0Id4SxY7iy_m7L875O0LeaCNTITMfQiyyYWRsEmrPZchzLhII-d436vqjZDJJ5_PsvC0HhHthGn2IbsENZ0aN1zjBcUF6c5bXKVpRKtucSCbj-C0Qyu0IvArcffvk02A26oBZ8LrUJhNxBOjDxGZizx_vtRGt7ntdAodF899gDqWuwIy-qX-xQVBv09w6Tg2e_tcRPiNPWrpKjxv_ek7uuaJHHjYFLH_0yO7p731y0KwFiqpHgjGQ8XJZN6NHtH-1AGZcn70gw4m7qOXGqQe8pR7ip9H5JV0UVNMVxs5Fs0BJgVDDSGnpaYWV_rDMkFsW9Pir_glQpHfIbHA67Q_DtqBDmAOxikMjRGZyFJwxKXeWZYmW2ieG55nXmcissC7NrTQJqqgB8YmceWd1pC3j1vhU7JKtoizcHqFpjHtquUy4kxFYyziuPZxpljPLrAtIsn5xKm_VzrHoxpW69dUDxlVo3LYWJxpX3QSEdT2_NYofd-izB76h9AUAs5p95vg7GEIJUD0ZkKPaYbp76eUlJtMlsfoyOVPTEzYfZ_JcJQE52PCorgN4bcaBRQRkf-1iqgWaCi7G-EhxGpDD7iogBP720YUrryv4uEtFCsz67y1QVgC3WAdE1v5453Grs_57PHr5rx0PyaPhdDxSow-Tj_vkMV-LDbNXZGu1vHavyYP8-2pRLQ_ayfwLHV5DWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BB4gXfhSmhcHmB7S3IGwnTvI42nVDdFUFq-ibZcf2VG2kU9KhwV_POUnDKoE0Id4SxY7iy_m7z8n5PoC3SouUi8yFGItMGGmThMoxEbKc8QRDvnNNdf1xMpmk83k2beWA_F6Ypj5E98HNz4war_0Et1fGbc7yOkUrSkWbE0lFHL9DQrkVeU2ZHmwNP49m4w6YOaulNimPI0QfyjcTe_54r41odd-pJXJYb_4bn0OpKjSja_QvNgjqbZpbx6nR0_86wmfwpKWr5LDxr-dwzxZ9eNgIWP7ow_bR731y2KwFiqoPwSmS8WVZNyMHZHC5QGZcn72Ak4k9r8uNE4d4SxzGT63yC7IoiCIrHzsXzQdKgoQaR0qWjlRe6c_LDNmyIIff1E-EIvUSZqOjs8FJ2Ao6hDkSqzjUnGc69wVndMqsoVmihHKJZnnmVMYzw41NcyN04quoIfGJrH5vVKQMZUa7lG9Dr1gWdgdIGvs9tUwkzIoIraUtUw7PFM2pocYGkKxfnMzbaudedONS3lr1oHGlN26rxemNK28CoF3Pq6bixx367KBvSHWOwCxnX5j_HYyhBKmeCOCgdpjuXqq88Ml0SSy_To7l2ZDOTzMxlUkAexse1XVAr80YsogAdtcuJlugqfBi7B8pTgPY764iQvjfPqqwy-sKF3cpT5FZ_72FLyvgt1gHIGp_vPO45fHggz969a8d9-HRdDiS44-TT7vwmK1rDdPX0FuV1_YNPMi_rxZVudfO5V9CUkLT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+fire+feedback+in+a+transitional+forest+of+southeastern+Amazonia&rft.jtitle=Global+change+biology&rft.au=BALCH%2C+JENNIFER+K.&rft.au=NEPSTAD%2C+DANIEL+C.&rft.au=BRANDO%2C+PAULO+M.&rft.au=CURRAN%2C+LISA+M.&rft.date=2008-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=14&rft.issue=10&rft.spage=2276&rft.epage=2287&rft_id=info:doi/10.1111%2Fj.1365-2486.2008.01655.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2486_2008_01655_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon