Auger: The future of precision medicine
First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), int...
Uloženo v:
| Vydáno v: | Nuclear medicine and biology Ročník 96-97; s. 50 - 53 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
01.05.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0969-8051, 1872-9614, 1872-9614 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.
[Display omitted] |
|---|---|
| AbstractList | First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies. First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies. [Display omitted] First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2-500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4-26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2-500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4-26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies. |
| Author | Reiner, Thomas Pirovano, Giacomo Wilson, Thomas C. |
| AuthorAffiliation | 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA 3 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA 2 Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA |
| AuthorAffiliation_xml | – name: 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA – name: 3 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA – name: 2 Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA |
| Author_xml | – sequence: 1 givenname: Giacomo surname: Pirovano fullname: Pirovano, Giacomo organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA – sequence: 2 givenname: Thomas C. surname: Wilson fullname: Wilson, Thomas C. organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA – sequence: 3 givenname: Thomas surname: Reiner fullname: Reiner, Thomas email: reinert@mskcc.org organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33831745$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v1DAQxS3Uim4LXwEicYBLUv9JYhsJ0KpqaaVKXMrZciaT1kvWXuykUr89Xm1bwV7oyQe_93sz847JgQ8eCXnPaMUoa09XlZ9hjX3nQsUpZxUVFaX8FVkwJXmpW1YfkAXVrS4VbdgROU5pRbOzZvQ1ORJCCSbrZkE-LudbjJ-LmzsshnmaIxZhKDYRwSUXfJEzHDiPb8jhYMeEbx_fE_Lz4vzm7LK8_vH96mx5XULT6KkcFIKSiqOmHW2h5T3veo4guQYhW6Y7pSn0HVOAAgZla86ZpR1vBUjVduKEfN1xN3OXswH9FO1oNtGtbXwwwTrz7493d-Y23BuVd9OSZ8CnR0AMv2dMk1m7BDiO1mOYk-ENY1woxVmWftiTrsIcfV4vq-qat1LXW-C7vyd6HuXphlnwZSeAGFKKOBhwk53y9fKAbjSMmm1nZmWeOzPbzgwVJneW_XLP_xTxf-dy58TcyL3DaBI49JA7ywVOpg_uBYxvewwYnXdgx1_48CLCH3wLyoU |
| CitedBy_id | crossref_primary_10_1016_j_apradiso_2022_110250 crossref_primary_10_1016_j_nucmedbio_2022_04_005 crossref_primary_10_1038_s41392_024_02041_6 crossref_primary_10_1016_j_nucmedbio_2022_04_008 crossref_primary_10_1002_smll_202502419 crossref_primary_10_1088_1402_4896_add812 crossref_primary_10_1063_5_0279034 crossref_primary_10_1016_j_ejmech_2025_117861 crossref_primary_10_3390_pharmaceutics15061733 crossref_primary_10_3390_ph17101314 crossref_primary_10_3390_molecules26247513 crossref_primary_10_1002_cplu_202400250 crossref_primary_10_1016_j_nucmedbio_2025_109043 crossref_primary_10_1007_s10967_022_08464_1 crossref_primary_10_1002_cmdc_202400438 crossref_primary_10_2967_jnumed_125_269751 crossref_primary_10_1088_1402_4896_ad3157 crossref_primary_10_1016_j_ccr_2025_216764 crossref_primary_10_3390_molecules29010265 crossref_primary_10_1002_med_22093 crossref_primary_10_3390_cancers14071821 crossref_primary_10_1016_j_addr_2025_115608 crossref_primary_10_1007_s40291_024_00702_4 crossref_primary_10_3390_ijms26135958 crossref_primary_10_1248_bpb_b25_00195 crossref_primary_10_1088_1367_2630_add6cd crossref_primary_10_3390_cancers17121980 crossref_primary_10_3390_ph17020253 crossref_primary_10_1016_j_jqsrt_2024_109024 crossref_primary_10_1016_j_ejmp_2022_05_010 |
| Cites_doi | 10.1007/BF01326962 10.1016/j.nucmedbio.2014.03.026 10.2967/jnumed.106.037937 10.2967/jnumed.119.233965 10.1016/S1470-2045(17)30379-0 10.1016/j.nucmedbio.2020.12.001 10.1158/1078-0432.CCR-18-3295 10.1007/s00259-006-0187-2 10.1093/annonc/10.suppl_2.S23 10.3389/fphar.2018.00952 10.1186/s41181-019-0075-2 10.1007/s00259-008-0779-0 10.1089/ars.2015.6309 10.2307/3573291 10.3389/fphar.2018.00996 10.2967/jnumed.107.044073 10.1080/09553000802395535 10.1667/RR1359.1 10.1158/1078-0432.CCR-03-0465 10.1016/S1470-2045(19)30821-6 10.2967/jnumed.114.153502 10.1053/snuc/2002.31025 10.3171/2010.2.JNS091211 10.1038/265620a0 10.2967/jnumed.115.155929 10.1200/JCO.1996.14.6.1787 10.7150/thno.38882 10.3109/09553002.2015.1136854 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. Copyright Elsevier BV May/Jun 2021 |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier BV May/Jun 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 P64 7X8 5PM |
| DOI | 10.1016/j.nucmedbio.2021.03.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1872-9614 |
| EndPage | 53 |
| ExternalDocumentID | PMC8164972 33831745 10_1016_j_nucmedbio_2021_03_002 S096980512100041X |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA204441 – fundername: NCI NIH HHS grantid: R43 CA228815 – fundername: NCI NIH HHS grantid: P30 CA008748 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 8P~ 8WZ 9JM A6W AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ABZDS ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGGZJ OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SDF SDG SEL SES SEW SPCBC SSH SSP SSU SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AAIAV AATCM ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW DOVZS LCYCR RIG ZA5 9DU AAYXX CITATION AFCTW AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 P64 7X8 5PM |
| ID | FETCH-LOGICAL-c559t-f8ec8782e90b06c62d2bd2ec729c37619b890cdb18ce3cf8a4221a0b263c786b3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655462300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0969-8051 1872-9614 |
| IngestDate | Tue Sep 30 16:01:28 EDT 2025 Sun Sep 28 02:44:35 EDT 2025 Wed Aug 13 09:01:47 EDT 2025 Mon Jul 21 05:52:47 EDT 2025 Sat Nov 29 07:09:46 EST 2025 Tue Nov 18 21:53:11 EST 2025 Fri Feb 23 02:45:36 EST 2024 Tue Oct 14 19:30:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2021 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c559t-f8ec8782e90b06c62d2bd2ec729c37619b890cdb18ce3cf8a4221a0b263c786b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8164972 |
| PMID | 33831745 |
| PQID | 2544267942 |
| PQPubID | 2045423 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8164972 proquest_miscellaneous_2511238821 proquest_journals_2544267942 pubmed_primary_33831745 crossref_citationtrail_10_1016_j_nucmedbio_2021_03_002 crossref_primary_10_1016_j_nucmedbio_2021_03_002 elsevier_sciencedirect_doi_10_1016_j_nucmedbio_2021_03_002 elsevier_clinicalkey_doi_10_1016_j_nucmedbio_2021_03_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Nuclear medicine and biology |
| PublicationTitleAlternate | Nucl Med Biol |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Welt, Scott, Divgi, Kemeny, Finn, Daghighian (bb0050) 1996; 14 Buchegger, Perillo-Adamer, Dupertuis, Delaloye (bb0040) 2006; 33 Reilly, Kassis (bb0140) 2010 Bavelaar, Lee, Gill, Falzone, Vallis (bb0020) 2018; 9 Limouris, Chatziioannou, Kontogeorgakos, Mourikis, Lyra, Dimitriou (bb0115) 2008; 35 Kassis, Adelstein (bb0135) 2005; 46 Pirovano, Jannetti, Carter, Sadique, Kossatz, Guru (bb0085) 2020 Pouget, Santoro, Raymond, Chouin, Bardiès, Bascoul-Mollevi (bb0195) 2008; 170 Sobolev (bb0160) 2018; 9 Hofer, Hughes (bb0015) 1971; 47 Macapinlac, Kemeny, Daghighian, Finn, Zhang, Humm (bb0095) 1996; 37 Auger (bb0010) 1923; 177 Costantini, Chan, Cai, Vallis, Reilly (bb0185) 2007; 48 Gill, Falzone, Du, Vallis (bb0060) 2017; 18 Li, Quang, Gracely, Kim, Emrich, Yaeger (bb0120) 2010; 113 Koumarianou, Slastnikova, Pruszynski, Rosenkranz, Vaidyanathan, Sobolev (bb0170) 2014; 41 Kiess, Minn, Chen, Hobbs, Sgouros, Mease (bb0045) 2015; 56 Krenning, De Jong, Kooij, Breeman, Bakker, De Herder (bb0100) 1999; 10 Bloomer, Adelstein (bb0080) 1977; 265 Capello, Krenning, WAP, Bernard, de Jong (bb0155) 2003; 44 Bailey, Costantini, Cai, Scollard, Chen, Reilly (bb0165) 2007; 48 Valkema, De Jong, Bakker, Breeman, Kooij, Lugtenburg (bb0105) 2002; 32 Vallis, Reilly, Scollard, Merante, Brade, Velauthapillai (bb0125) 2014; 4 Falzone, Fernández-Varea, Flux, Vallis (bb0030) 2015; 56 Meredith, Khazaeli, Plott, Spencer, Wheeler, Brady (bb0180) 1995; 36 Ladjohounlou, Lozza, Pichard, Constanzo, Karam, Le Fur (bb0200) 2019; 25 Kassis (bb0025) 2003; 44 Martin, Feinendegen (bb0070) 2016; 92 Meitner (bb0005) 1922; 9 Howell (bb0075) 2020 Michel, Castillo, Andrews, Mattes (bb0145) 2004; 10 Filosofov, Kurakina, Radchenko (bb0130) 2021; 94–95 Wilson, Jannetti, Guru, Pillarsetty, Reiner, Pirovano (bb0150) 2020; 0 Shen, Minn, Hobbs, Chen, Josefsson, Brummet (bb0090) 2020; 10 Rebischung, Hoffmann, Stefani, Desruet, Wang, Adelstein (bb0110) 2008; 84 Paillas, Ladjohounlou, Lozza, Pichard, Boudousq, Jarlier (bb0190) 2016; 25 Daghighian, Barendswaard, Welt, Humm, Scott, Willingham (bb0055) 1996; 37 Lee, Riad, Martorano, Mansfield, Samanta, Batra (bb0035) 2020; 61 Ku, Facca, Cai, Reilly (bb0065) 2019; 4 Herrmann, Schwaiger, Lewis, Solomon, McNeil, Baumann (bb0175) 2020; 21 Valkema (10.1016/j.nucmedbio.2021.03.002_bb0105) 2002; 32 Auger (10.1016/j.nucmedbio.2021.03.002_bb0010) 1923; 177 Falzone (10.1016/j.nucmedbio.2021.03.002_bb0030) 2015; 56 Bailey (10.1016/j.nucmedbio.2021.03.002_bb0165) 2007; 48 Gill (10.1016/j.nucmedbio.2021.03.002_bb0060) 2017; 18 Costantini (10.1016/j.nucmedbio.2021.03.002_bb0185) 2007; 48 Lee (10.1016/j.nucmedbio.2021.03.002_bb0035) 2020; 61 Paillas (10.1016/j.nucmedbio.2021.03.002_bb0190) 2016; 25 Bavelaar (10.1016/j.nucmedbio.2021.03.002_bb0020) 2018; 9 Daghighian (10.1016/j.nucmedbio.2021.03.002_bb0055) 1996; 37 Macapinlac (10.1016/j.nucmedbio.2021.03.002_bb0095) 1996; 37 Ladjohounlou (10.1016/j.nucmedbio.2021.03.002_bb0200) 2019; 25 Bloomer (10.1016/j.nucmedbio.2021.03.002_bb0080) 1977; 265 Capello (10.1016/j.nucmedbio.2021.03.002_bb0155) 2003; 44 Martin (10.1016/j.nucmedbio.2021.03.002_bb0070) 2016; 92 Krenning (10.1016/j.nucmedbio.2021.03.002_bb0100) 1999; 10 Vallis (10.1016/j.nucmedbio.2021.03.002_bb0125) 2014; 4 Meredith (10.1016/j.nucmedbio.2021.03.002_bb0180) 1995; 36 Howell (10.1016/j.nucmedbio.2021.03.002_bb0075) 2020 Wilson (10.1016/j.nucmedbio.2021.03.002_bb0150) 2020; 0 Kassis (10.1016/j.nucmedbio.2021.03.002_bb0135) 2005; 46 Michel (10.1016/j.nucmedbio.2021.03.002_bb0145) 2004; 10 Hofer (10.1016/j.nucmedbio.2021.03.002_bb0015) 1971; 47 Kiess (10.1016/j.nucmedbio.2021.03.002_bb0045) 2015; 56 Pouget (10.1016/j.nucmedbio.2021.03.002_bb0195) 2008; 170 Welt (10.1016/j.nucmedbio.2021.03.002_bb0050) 1996; 14 Herrmann (10.1016/j.nucmedbio.2021.03.002_bb0175) 2020; 21 Pirovano (10.1016/j.nucmedbio.2021.03.002_bb0085) 2020 Ku (10.1016/j.nucmedbio.2021.03.002_bb0065) 2019; 4 Limouris (10.1016/j.nucmedbio.2021.03.002_bb0115) 2008; 35 Koumarianou (10.1016/j.nucmedbio.2021.03.002_bb0170) 2014; 41 Kassis (10.1016/j.nucmedbio.2021.03.002_bb0025) 2003; 44 Meitner (10.1016/j.nucmedbio.2021.03.002_bb0005) 1922; 9 Buchegger (10.1016/j.nucmedbio.2021.03.002_bb0040) 2006; 33 Reilly (10.1016/j.nucmedbio.2021.03.002_bb0140) 2010 Rebischung (10.1016/j.nucmedbio.2021.03.002_bb0110) 2008; 84 Filosofov (10.1016/j.nucmedbio.2021.03.002_bb0130) 2021; 94–95 Li (10.1016/j.nucmedbio.2021.03.002_bb0120) 2010; 113 Sobolev (10.1016/j.nucmedbio.2021.03.002_bb0160) 2018; 9 Shen (10.1016/j.nucmedbio.2021.03.002_bb0090) 2020; 10 |
| References_xml | – volume: 10 start-page: 5957 year: 2004 end-page: 5966 ident: bb0145 article-title: In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons publication-title: Clin Cancer Res – volume: 14 start-page: 1787 year: 1996 end-page: 1797 ident: bb0050 article-title: Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer publication-title: J Clin Oncol – volume: 177 start-page: 169 year: 1923 ident: bb0010 article-title: Sur les rayons β secondaires produits dans un gaz par des rayons X publication-title: CR Acad Sci(F) – volume: 36 start-page: 2229 year: 1995 end-page: 2233 ident: bb0180 article-title: Initial clinical evaluation of Iodine-125-labeled chimeric 17-lA for metastatic colon cancer publication-title: J Nucl Med – volume: 92 start-page: 617 year: 2016 end-page: 632 ident: bb0070 article-title: The quest to exploit the Auger effect in cancer radiotherapy–a reflective review publication-title: Int J Radiat Biol – start-page: 289 year: 2010 end-page: 348 ident: bb0140 article-title: Targeted Auger Electron Radiotherapy of Malignancies. Monoclonal Antibody and Peptide-targeted Radiotherapy of Cancer – volume: 48 start-page: 1357 year: 2007 end-page: 1368 ident: bb0185 article-title: 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer publication-title: J Nucl Med – volume: 46 start-page: 4S year: 2005 end-page: 12S ident: bb0135 article-title: Radiobiologic principles in radionuclide therapy publication-title: J Nucl Med – volume: 35 start-page: 1827 year: 2008 end-page: 1837 ident: bb0115 article-title: Selective hepatic arterial infusion of In-111-DTPA-Phe 1-octreotide in neuroendocrine liver metastases publication-title: Eur J Nucl Med Mol Imaging – start-page: 2871 year: 2020 end-page: 2881 ident: bb0085 article-title: Targeted brain tumor radiotherapy using an auger emitter publication-title: Am Assoc Cancer Res – volume: 94–95 start-page: 1 year: 2021 end-page: 19 ident: bb0130 article-title: Potent candidates for targeted auger therapy: production and radiochemical considerations publication-title: Nucl Med Biol – volume: 113 start-page: 192 year: 2010 end-page: 198 ident: bb0120 article-title: A phase II study of anti–epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme publication-title: J Neurosurg – volume: 41 start-page: 441 year: 2014 end-page: 449 ident: bb0170 article-title: Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter–a potential Auger electron emitting EGFR-targeted radiotherapeutic publication-title: Nucl Med Biol – volume: 265 start-page: 620 year: 1977 end-page: 621 ident: bb0080 article-title: 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters publication-title: Nature – volume: 44 start-page: 98 year: 2003 end-page: 104 ident: bb0155 article-title: Peptide receptor radionuclide therapy in vitro using [111In-DTPA0] octreotide publication-title: J Nucl Med – volume: 4 start-page: 27 year: 2019 ident: bb0065 article-title: Auger electrons for cancer therapy – a review publication-title: EJNMMI Radiopharm. Chem – volume: 56 start-page: 1401 year: 2015 end-page: 1407 ident: bb0045 article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen publication-title: J Nucl Med – volume: 84 start-page: 1123 year: 2008 end-page: 1129 ident: bb0110 article-title: First human treatment of resistant neoplastic meningitis by intrathecal administration of MTX Plus 125IUdR publication-title: Int J Radiat Biol – volume: 10 start-page: S23 year: 1999 end-page: S30 ident: bb0100 article-title: Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy publication-title: Ann Oncol – volume: 21 start-page: e146 year: 2020 end-page: e156 ident: bb0175 article-title: Radiotheranostics: a roadmap for future development publication-title: Lancet Oncol – volume: 4 start-page: 181 year: 2014 ident: bb0125 article-title: Phase I trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of 111In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer publication-title: Am J Nucl Med Mol Imaging – volume: 25 start-page: 4775 year: 2019 end-page: 4790 ident: bb0200 article-title: Drugs that modify cholesterol metabolism alter the p38/JNK-mediated targeted and nontargeted response to alpha and Auger radioimmunotherapy publication-title: Clin Cancer Res – volume: 61 start-page: 850 year: 2020 end-page: 856 ident: bb0035 article-title: PARP-1-targeted auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma publication-title: J Nucl Med – volume: 9 start-page: 996 year: 2018 ident: bb0020 article-title: Subcellular targeting of theranostic radionuclides publication-title: Front Pharmacol – volume: 37 start-page: 1052 year: 1996 end-page: 1057 ident: bb0055 article-title: Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody publication-title: J Nucl Med – volume: 32 start-page: 110 year: 2002 end-page: 122 ident: bb0105 article-title: Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience publication-title: Semin Nucl Med – volume: 48 start-page: 1562 year: 2007 end-page: 1570 ident: bb0165 article-title: Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron–emitting radiopharmaceutical 111In-DTPA–human epidermal growth factor publication-title: J Nucl Med – volume: 44 start-page: 1479 year: 2003 end-page: 1481 ident: bb0025 article-title: Cancer therapy with Auger electrons: are we almost there publication-title: J Nucl Med – volume: 47 start-page: 94 year: 1971 end-page: 101 ident: bb0015 article-title: Radiotoxicity of intranuclear tritium, 125 iodine and 131 iodine publication-title: Radiat Res – volume: 33 start-page: 1352 year: 2006 end-page: 1363 ident: bb0040 article-title: Auger radiation targeted into DNA: a therapy perspective publication-title: Eur J Nucl Med Mol Imaging – volume: 0 start-page: 1 year: 2020 end-page: 7 ident: bb0150 article-title: Improved radiosynthesis of 123I-MAPi, an auger theranostic agent publication-title: Int J Radiat Biol – start-page: 1 year: 2020 end-page: 26 ident: bb0075 article-title: Advancements in the use of Auger electrons in science and medicine during the period 2015–2019 publication-title: Int J Radiat Biol – volume: 56 start-page: 1441 year: 2015 end-page: 1446 ident: bb0030 article-title: Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides publication-title: J Nucl Med – volume: 25 start-page: 467 year: 2016 end-page: 484 ident: bb0190 article-title: Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects publication-title: Antioxid Redox Signal – volume: 170 start-page: 192 year: 2008 end-page: 200 ident: bb0195 article-title: Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons publication-title: Radiat Res – volume: 18 start-page: e414 year: 2017 end-page: e423 ident: bb0060 article-title: Targeted radionuclide therapy in combined-modality regimens publication-title: Lancet Oncol – volume: 9 start-page: 952 year: 2018 ident: bb0160 article-title: Modular nanotransporters for nuclear-targeted delivery of auger electron emitters publication-title: Front Pharmacol – volume: 10 start-page: 2888 year: 2020 ident: bb0090 article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer publication-title: Theranostics – volume: 9 start-page: 131 year: 1922 end-page: 144 ident: bb0005 article-title: Über die entstehung der β-strahl-spektren radioaktiver substanzen publication-title: Zeitschrift für Physik – volume: 37 start-page: 25S year: 1996 end-page: 29S ident: bb0095 article-title: Pilot clinical trial of 5-[125I]iodo-2′-deoxyuridine in the treatment of colorectal cancer metastatic to the liver publication-title: J Nucl Med – start-page: 289 year: 2010 ident: 10.1016/j.nucmedbio.2021.03.002_bb0140 – volume: 9 start-page: 131 year: 1922 ident: 10.1016/j.nucmedbio.2021.03.002_bb0005 article-title: Über die entstehung der β-strahl-spektren radioaktiver substanzen publication-title: Zeitschrift für Physik doi: 10.1007/BF01326962 – volume: 41 start-page: 441 year: 2014 ident: 10.1016/j.nucmedbio.2021.03.002_bb0170 article-title: Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter–a potential Auger electron emitting EGFR-targeted radiotherapeutic publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2014.03.026 – volume: 48 start-page: 1357 year: 2007 ident: 10.1016/j.nucmedbio.2021.03.002_bb0185 article-title: 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer publication-title: J Nucl Med doi: 10.2967/jnumed.106.037937 – volume: 61 start-page: 850 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0035 article-title: PARP-1-targeted auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma publication-title: J Nucl Med doi: 10.2967/jnumed.119.233965 – volume: 177 start-page: 169 year: 1923 ident: 10.1016/j.nucmedbio.2021.03.002_bb0010 article-title: Sur les rayons β secondaires produits dans un gaz par des rayons X publication-title: CR Acad Sci(F) – volume: 37 start-page: 1052 year: 1996 ident: 10.1016/j.nucmedbio.2021.03.002_bb0055 article-title: Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody publication-title: J Nucl Med – volume: 18 start-page: e414 year: 2017 ident: 10.1016/j.nucmedbio.2021.03.002_bb0060 article-title: Targeted radionuclide therapy in combined-modality regimens publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30379-0 – volume: 44 start-page: 1479 year: 2003 ident: 10.1016/j.nucmedbio.2021.03.002_bb0025 article-title: Cancer therapy with Auger electrons: are we almost there publication-title: J Nucl Med – volume: 94–95 start-page: 1 year: 2021 ident: 10.1016/j.nucmedbio.2021.03.002_bb0130 article-title: Potent candidates for targeted auger therapy: production and radiochemical considerations publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2020.12.001 – volume: 25 start-page: 4775 year: 2019 ident: 10.1016/j.nucmedbio.2021.03.002_bb0200 article-title: Drugs that modify cholesterol metabolism alter the p38/JNK-mediated targeted and nontargeted response to alpha and Auger radioimmunotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-3295 – volume: 33 start-page: 1352 year: 2006 ident: 10.1016/j.nucmedbio.2021.03.002_bb0040 article-title: Auger radiation targeted into DNA: a therapy perspective publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-006-0187-2 – volume: 10 start-page: S23 year: 1999 ident: 10.1016/j.nucmedbio.2021.03.002_bb0100 article-title: Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy publication-title: Ann Oncol doi: 10.1093/annonc/10.suppl_2.S23 – volume: 9 start-page: 952 year: 2018 ident: 10.1016/j.nucmedbio.2021.03.002_bb0160 article-title: Modular nanotransporters for nuclear-targeted delivery of auger electron emitters publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00952 – volume: 4 start-page: 27 year: 2019 ident: 10.1016/j.nucmedbio.2021.03.002_bb0065 article-title: Auger electrons for cancer therapy – a review publication-title: EJNMMI Radiopharm. Chem doi: 10.1186/s41181-019-0075-2 – volume: 37 start-page: 25S year: 1996 ident: 10.1016/j.nucmedbio.2021.03.002_bb0095 article-title: Pilot clinical trial of 5-[125I]iodo-2′-deoxyuridine in the treatment of colorectal cancer metastatic to the liver publication-title: J Nucl Med – start-page: 1 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0075 article-title: Advancements in the use of Auger electrons in science and medicine during the period 2015–2019 publication-title: Int J Radiat Biol – volume: 35 start-page: 1827 year: 2008 ident: 10.1016/j.nucmedbio.2021.03.002_bb0115 article-title: Selective hepatic arterial infusion of In-111-DTPA-Phe 1-octreotide in neuroendocrine liver metastases publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-008-0779-0 – volume: 44 start-page: 98 year: 2003 ident: 10.1016/j.nucmedbio.2021.03.002_bb0155 article-title: Peptide receptor radionuclide therapy in vitro using [111In-DTPA0] octreotide publication-title: J Nucl Med – volume: 0 start-page: 1 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0150 article-title: Improved radiosynthesis of 123I-MAPi, an auger theranostic agent publication-title: Int J Radiat Biol – volume: 25 start-page: 467 year: 2016 ident: 10.1016/j.nucmedbio.2021.03.002_bb0190 article-title: Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects publication-title: Antioxid Redox Signal doi: 10.1089/ars.2015.6309 – volume: 47 start-page: 94 year: 1971 ident: 10.1016/j.nucmedbio.2021.03.002_bb0015 article-title: Radiotoxicity of intranuclear tritium, 125 iodine and 131 iodine publication-title: Radiat Res doi: 10.2307/3573291 – volume: 9 start-page: 996 year: 2018 ident: 10.1016/j.nucmedbio.2021.03.002_bb0020 article-title: Subcellular targeting of theranostic radionuclides publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00996 – volume: 48 start-page: 1562 year: 2007 ident: 10.1016/j.nucmedbio.2021.03.002_bb0165 article-title: Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron–emitting radiopharmaceutical 111In-DTPA–human epidermal growth factor publication-title: J Nucl Med doi: 10.2967/jnumed.107.044073 – volume: 84 start-page: 1123 year: 2008 ident: 10.1016/j.nucmedbio.2021.03.002_bb0110 article-title: First human treatment of resistant neoplastic meningitis by intrathecal administration of MTX Plus 125IUdR publication-title: Int J Radiat Biol doi: 10.1080/09553000802395535 – volume: 170 start-page: 192 year: 2008 ident: 10.1016/j.nucmedbio.2021.03.002_bb0195 article-title: Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons publication-title: Radiat Res doi: 10.1667/RR1359.1 – volume: 36 start-page: 2229 year: 1995 ident: 10.1016/j.nucmedbio.2021.03.002_bb0180 article-title: Initial clinical evaluation of Iodine-125-labeled chimeric 17-lA for metastatic colon cancer publication-title: J Nucl Med – volume: 10 start-page: 5957 year: 2004 ident: 10.1016/j.nucmedbio.2021.03.002_bb0145 article-title: In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-03-0465 – volume: 21 start-page: e146 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0175 article-title: Radiotheranostics: a roadmap for future development publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30821-6 – volume: 4 start-page: 181 year: 2014 ident: 10.1016/j.nucmedbio.2021.03.002_bb0125 article-title: Phase I trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of 111In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer publication-title: Am J Nucl Med Mol Imaging – volume: 56 start-page: 1441 year: 2015 ident: 10.1016/j.nucmedbio.2021.03.002_bb0030 article-title: Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides publication-title: J Nucl Med doi: 10.2967/jnumed.114.153502 – volume: 32 start-page: 110 year: 2002 ident: 10.1016/j.nucmedbio.2021.03.002_bb0105 article-title: Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience publication-title: Semin Nucl Med doi: 10.1053/snuc/2002.31025 – volume: 113 start-page: 192 year: 2010 ident: 10.1016/j.nucmedbio.2021.03.002_bb0120 article-title: A phase II study of anti–epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme publication-title: J Neurosurg doi: 10.3171/2010.2.JNS091211 – volume: 265 start-page: 620 year: 1977 ident: 10.1016/j.nucmedbio.2021.03.002_bb0080 article-title: 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters publication-title: Nature doi: 10.1038/265620a0 – start-page: 2871 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0085 article-title: Targeted brain tumor radiotherapy using an auger emitter publication-title: Am Assoc Cancer Res – volume: 56 start-page: 1401 year: 2015 ident: 10.1016/j.nucmedbio.2021.03.002_bb0045 article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen publication-title: J Nucl Med doi: 10.2967/jnumed.115.155929 – volume: 14 start-page: 1787 year: 1996 ident: 10.1016/j.nucmedbio.2021.03.002_bb0050 article-title: Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer publication-title: J Clin Oncol doi: 10.1200/JCO.1996.14.6.1787 – volume: 10 start-page: 2888 year: 2020 ident: 10.1016/j.nucmedbio.2021.03.002_bb0090 article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer publication-title: Theranostics doi: 10.7150/thno.38882 – volume: 46 start-page: 4S year: 2005 ident: 10.1016/j.nucmedbio.2021.03.002_bb0135 article-title: Radiobiologic principles in radionuclide therapy publication-title: J Nucl Med – volume: 92 start-page: 617 year: 2016 ident: 10.1016/j.nucmedbio.2021.03.002_bb0070 article-title: The quest to exploit the Auger effect in cancer radiotherapy–a reflective review publication-title: Int J Radiat Biol doi: 10.3109/09553002.2015.1136854 |
| SSID | ssj0016410 |
| Score | 2.4688826 |
| SecondaryResourceType | review_article |
| Snippet | First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 50 |
| SubjectTerms | Alpha rays Antibodies Auger effect Augers Beta decay Beta rays Biomarkers Electron capture Electrons Emission Emissions Emitters Energy transfer Humans Internal conversion Linear energy transfer (LET) Neoplasms - radiotherapy Neoplasms - therapy Peptides Precision Medicine Radiation Radiation therapy Radioisotopes Toxicity |
| Title | Auger: The future of precision medicine |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S096980512100041X https://dx.doi.org/10.1016/j.nucmedbio.2021.03.002 https://www.ncbi.nlm.nih.gov/pubmed/33831745 https://www.proquest.com/docview/2544267942 https://www.proquest.com/docview/2511238821 https://pubmed.ncbi.nlm.nih.gov/PMC8164972 |
| Volume | 96-97 |
| WOSCitedRecordID | wos000655462300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9614 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016410 issn: 0969-8051 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1IINpr0gGJcVxhQkJB5QqsRJbGdvVbVxkZj2MKS-RbHjjFQsqdJ2Gn_P8bUtA20g8RJVdk4T-5yci88Nobe1Kn7LauB-lSjDlFZVCEIYhwkvaSrissywaTZBT0_ZZJKf2YzruW4nQNuWXV_ns_-KahgDZKvU2b9At_9TGIDfgHS4AtrheifEj5YXsnfBFCe6ZIgOdOttNx3jm3Hu9KlLvxWqf4R3tWufgi3Q5Lln03egd-uz1Q8NcNLLbu3UxmZumYCj9-Oh9-TIxubUrMUi2WMGHK-C-tx5IclBnNnqsNJwS0ZxmBOTBerYaU5CE3FrWaKpK2uFqykMfINtmxOE6bBdClgnrG6oXsFUn8XrELB7s0uNOGVagzWVreSYjy48-zJmYAXmFETzNqZZDtxue_TpePLZ-5dIqutU-EVtRP799i120Y575J9UmJsmyq-Rtmuqy_lj9MjaHMHI0MoTdE-2e-ih6UL6Yw_tOIKAQR0QLOZP0TtNRkcBEFFgiCjo6sATUeBgnqGvJ8fn44-hbaoRCjAeF2HNpGCgFso84hERBFeYV1gKMLJEos60OMsjUfGYCZmImpUpxnEZcUwSQRnhyXO01Xat3EeBxBGtKc9Bx5ZplvKylKDQ12lUiaymgg8QcftUCFtxXjU--V640MJp4fe6UHtdREkBez1AkQecmaIrt4Mwh4jC5RSDFCyAwm4HPfKgVu006uTdgA8c1gvLBOaFKvuHCUg6mH7jp4FvK2dc2cpuqe4BSycB-zYeoBeGSPxaHaENEN0gH3-Dqgm_OdM233RteEv4L_8Z8hXaXX3-B2hr0S_la_RAXC2aeX-I7tMJO7Rf00-Xe9pm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auger%3A+The+Future+of+Precision+Medicine&rft.jtitle=Nuclear+medicine+and+biology&rft.au=Pirovano%2C+Giacomo&rft.au=Wilson%2C+Thomas+C.&rft.au=Reiner%2C+Thomas&rft.date=2021-05-01&rft.issn=0969-8051&rft.eissn=1872-9614&rft.volume=96-97&rft.spage=50&rft.epage=53&rft_id=info:doi/10.1016%2Fj.nucmedbio.2021.03.002&rft_id=info%3Apmid%2F33831745&rft.externalDocID=PMC8164972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8051&client=summon |