Auger: The future of precision medicine

First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nuclear medicine and biology Ročník 96-97; s. 50 - 53
Hlavní autoři: Pirovano, Giacomo, Wilson, Thomas C., Reiner, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.05.2021
Elsevier BV
Témata:
ISSN:0969-8051, 1872-9614, 1872-9614
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies. [Display omitted]
AbstractList First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.
First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2–500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4–26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies. [Display omitted]
First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2-500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4-26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2-500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4-26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.
Author Reiner, Thomas
Pirovano, Giacomo
Wilson, Thomas C.
AuthorAffiliation 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
3 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
2 Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
AuthorAffiliation_xml – name: 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
– name: 3 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
– name: 2 Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
Author_xml – sequence: 1
  givenname: Giacomo
  surname: Pirovano
  fullname: Pirovano, Giacomo
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
– sequence: 2
  givenname: Thomas C.
  surname: Wilson
  fullname: Wilson, Thomas C.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
– sequence: 3
  givenname: Thomas
  surname: Reiner
  fullname: Reiner, Thomas
  email: reinert@mskcc.org
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33831745$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS3Uim4LXwEicYBLUv9JYhsJ0KpqaaVKXMrZciaT1kvWXuykUr89Xm1bwV7oyQe_93sz847JgQ8eCXnPaMUoa09XlZ9hjX3nQsUpZxUVFaX8FVkwJXmpW1YfkAXVrS4VbdgROU5pRbOzZvQ1ORJCCSbrZkE-LudbjJ-LmzsshnmaIxZhKDYRwSUXfJEzHDiPb8jhYMeEbx_fE_Lz4vzm7LK8_vH96mx5XULT6KkcFIKSiqOmHW2h5T3veo4guQYhW6Y7pSn0HVOAAgZla86ZpR1vBUjVduKEfN1xN3OXswH9FO1oNtGtbXwwwTrz7493d-Y23BuVd9OSZ8CnR0AMv2dMk1m7BDiO1mOYk-ENY1woxVmWftiTrsIcfV4vq-qat1LXW-C7vyd6HuXphlnwZSeAGFKKOBhwk53y9fKAbjSMmm1nZmWeOzPbzgwVJneW_XLP_xTxf-dy58TcyL3DaBI49JA7ywVOpg_uBYxvewwYnXdgx1_48CLCH3wLyoU
CitedBy_id crossref_primary_10_1016_j_apradiso_2022_110250
crossref_primary_10_1016_j_nucmedbio_2022_04_005
crossref_primary_10_1038_s41392_024_02041_6
crossref_primary_10_1016_j_nucmedbio_2022_04_008
crossref_primary_10_1002_smll_202502419
crossref_primary_10_1088_1402_4896_add812
crossref_primary_10_1063_5_0279034
crossref_primary_10_1016_j_ejmech_2025_117861
crossref_primary_10_3390_pharmaceutics15061733
crossref_primary_10_3390_ph17101314
crossref_primary_10_3390_molecules26247513
crossref_primary_10_1002_cplu_202400250
crossref_primary_10_1016_j_nucmedbio_2025_109043
crossref_primary_10_1007_s10967_022_08464_1
crossref_primary_10_1002_cmdc_202400438
crossref_primary_10_2967_jnumed_125_269751
crossref_primary_10_1088_1402_4896_ad3157
crossref_primary_10_1016_j_ccr_2025_216764
crossref_primary_10_3390_molecules29010265
crossref_primary_10_1002_med_22093
crossref_primary_10_3390_cancers14071821
crossref_primary_10_1016_j_addr_2025_115608
crossref_primary_10_1007_s40291_024_00702_4
crossref_primary_10_3390_ijms26135958
crossref_primary_10_1248_bpb_b25_00195
crossref_primary_10_1088_1367_2630_add6cd
crossref_primary_10_3390_cancers17121980
crossref_primary_10_3390_ph17020253
crossref_primary_10_1016_j_jqsrt_2024_109024
crossref_primary_10_1016_j_ejmp_2022_05_010
Cites_doi 10.1007/BF01326962
10.1016/j.nucmedbio.2014.03.026
10.2967/jnumed.106.037937
10.2967/jnumed.119.233965
10.1016/S1470-2045(17)30379-0
10.1016/j.nucmedbio.2020.12.001
10.1158/1078-0432.CCR-18-3295
10.1007/s00259-006-0187-2
10.1093/annonc/10.suppl_2.S23
10.3389/fphar.2018.00952
10.1186/s41181-019-0075-2
10.1007/s00259-008-0779-0
10.1089/ars.2015.6309
10.2307/3573291
10.3389/fphar.2018.00996
10.2967/jnumed.107.044073
10.1080/09553000802395535
10.1667/RR1359.1
10.1158/1078-0432.CCR-03-0465
10.1016/S1470-2045(19)30821-6
10.2967/jnumed.114.153502
10.1053/snuc/2002.31025
10.3171/2010.2.JNS091211
10.1038/265620a0
10.2967/jnumed.115.155929
10.1200/JCO.1996.14.6.1787
10.7150/thno.38882
10.3109/09553002.2015.1136854
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright Elsevier BV May/Jun 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier BV May/Jun 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
P64
7X8
5PM
DOI 10.1016/j.nucmedbio.2021.03.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1872-9614
EndPage 53
ExternalDocumentID PMC8164972
33831745
10_1016_j_nucmedbio_2021_03_002
S096980512100041X
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA204441
– fundername: NCI NIH HHS
  grantid: R43 CA228815
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4CK
4G.
53G
5RE
5VS
7-5
71M
8P~
8WZ
9JM
A6W
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSP
SSU
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
LCYCR
RIG
ZA5
9DU
AAYXX
CITATION
AFCTW
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c559t-f8ec8782e90b06c62d2bd2ec729c37619b890cdb18ce3cf8a4221a0b263c786b3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655462300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-8051
1872-9614
IngestDate Tue Sep 30 16:01:28 EDT 2025
Sun Sep 28 02:44:35 EDT 2025
Wed Aug 13 09:01:47 EDT 2025
Mon Jul 21 05:52:47 EDT 2025
Sat Nov 29 07:09:46 EST 2025
Tue Nov 18 21:53:11 EST 2025
Fri Feb 23 02:45:36 EST 2024
Tue Oct 14 19:30:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c559t-f8ec8782e90b06c62d2bd2ec729c37619b890cdb18ce3cf8a4221a0b263c786b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8164972
PMID 33831745
PQID 2544267942
PQPubID 2045423
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8164972
proquest_miscellaneous_2511238821
proquest_journals_2544267942
pubmed_primary_33831745
crossref_citationtrail_10_1016_j_nucmedbio_2021_03_002
crossref_primary_10_1016_j_nucmedbio_2021_03_002
elsevier_sciencedirect_doi_10_1016_j_nucmedbio_2021_03_002
elsevier_clinicalkey_doi_10_1016_j_nucmedbio_2021_03_002
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Nuclear medicine and biology
PublicationTitleAlternate Nucl Med Biol
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Welt, Scott, Divgi, Kemeny, Finn, Daghighian (bb0050) 1996; 14
Buchegger, Perillo-Adamer, Dupertuis, Delaloye (bb0040) 2006; 33
Reilly, Kassis (bb0140) 2010
Bavelaar, Lee, Gill, Falzone, Vallis (bb0020) 2018; 9
Limouris, Chatziioannou, Kontogeorgakos, Mourikis, Lyra, Dimitriou (bb0115) 2008; 35
Kassis, Adelstein (bb0135) 2005; 46
Pirovano, Jannetti, Carter, Sadique, Kossatz, Guru (bb0085) 2020
Pouget, Santoro, Raymond, Chouin, Bardiès, Bascoul-Mollevi (bb0195) 2008; 170
Sobolev (bb0160) 2018; 9
Hofer, Hughes (bb0015) 1971; 47
Macapinlac, Kemeny, Daghighian, Finn, Zhang, Humm (bb0095) 1996; 37
Auger (bb0010) 1923; 177
Costantini, Chan, Cai, Vallis, Reilly (bb0185) 2007; 48
Gill, Falzone, Du, Vallis (bb0060) 2017; 18
Li, Quang, Gracely, Kim, Emrich, Yaeger (bb0120) 2010; 113
Koumarianou, Slastnikova, Pruszynski, Rosenkranz, Vaidyanathan, Sobolev (bb0170) 2014; 41
Kiess, Minn, Chen, Hobbs, Sgouros, Mease (bb0045) 2015; 56
Krenning, De Jong, Kooij, Breeman, Bakker, De Herder (bb0100) 1999; 10
Bloomer, Adelstein (bb0080) 1977; 265
Capello, Krenning, WAP, Bernard, de Jong (bb0155) 2003; 44
Bailey, Costantini, Cai, Scollard, Chen, Reilly (bb0165) 2007; 48
Valkema, De Jong, Bakker, Breeman, Kooij, Lugtenburg (bb0105) 2002; 32
Vallis, Reilly, Scollard, Merante, Brade, Velauthapillai (bb0125) 2014; 4
Falzone, Fernández-Varea, Flux, Vallis (bb0030) 2015; 56
Meredith, Khazaeli, Plott, Spencer, Wheeler, Brady (bb0180) 1995; 36
Ladjohounlou, Lozza, Pichard, Constanzo, Karam, Le Fur (bb0200) 2019; 25
Kassis (bb0025) 2003; 44
Martin, Feinendegen (bb0070) 2016; 92
Meitner (bb0005) 1922; 9
Howell (bb0075) 2020
Michel, Castillo, Andrews, Mattes (bb0145) 2004; 10
Filosofov, Kurakina, Radchenko (bb0130) 2021; 94–95
Wilson, Jannetti, Guru, Pillarsetty, Reiner, Pirovano (bb0150) 2020; 0
Shen, Minn, Hobbs, Chen, Josefsson, Brummet (bb0090) 2020; 10
Rebischung, Hoffmann, Stefani, Desruet, Wang, Adelstein (bb0110) 2008; 84
Paillas, Ladjohounlou, Lozza, Pichard, Boudousq, Jarlier (bb0190) 2016; 25
Daghighian, Barendswaard, Welt, Humm, Scott, Willingham (bb0055) 1996; 37
Lee, Riad, Martorano, Mansfield, Samanta, Batra (bb0035) 2020; 61
Ku, Facca, Cai, Reilly (bb0065) 2019; 4
Herrmann, Schwaiger, Lewis, Solomon, McNeil, Baumann (bb0175) 2020; 21
Valkema (10.1016/j.nucmedbio.2021.03.002_bb0105) 2002; 32
Auger (10.1016/j.nucmedbio.2021.03.002_bb0010) 1923; 177
Falzone (10.1016/j.nucmedbio.2021.03.002_bb0030) 2015; 56
Bailey (10.1016/j.nucmedbio.2021.03.002_bb0165) 2007; 48
Gill (10.1016/j.nucmedbio.2021.03.002_bb0060) 2017; 18
Costantini (10.1016/j.nucmedbio.2021.03.002_bb0185) 2007; 48
Lee (10.1016/j.nucmedbio.2021.03.002_bb0035) 2020; 61
Paillas (10.1016/j.nucmedbio.2021.03.002_bb0190) 2016; 25
Bavelaar (10.1016/j.nucmedbio.2021.03.002_bb0020) 2018; 9
Daghighian (10.1016/j.nucmedbio.2021.03.002_bb0055) 1996; 37
Macapinlac (10.1016/j.nucmedbio.2021.03.002_bb0095) 1996; 37
Ladjohounlou (10.1016/j.nucmedbio.2021.03.002_bb0200) 2019; 25
Bloomer (10.1016/j.nucmedbio.2021.03.002_bb0080) 1977; 265
Capello (10.1016/j.nucmedbio.2021.03.002_bb0155) 2003; 44
Martin (10.1016/j.nucmedbio.2021.03.002_bb0070) 2016; 92
Krenning (10.1016/j.nucmedbio.2021.03.002_bb0100) 1999; 10
Vallis (10.1016/j.nucmedbio.2021.03.002_bb0125) 2014; 4
Meredith (10.1016/j.nucmedbio.2021.03.002_bb0180) 1995; 36
Howell (10.1016/j.nucmedbio.2021.03.002_bb0075) 2020
Wilson (10.1016/j.nucmedbio.2021.03.002_bb0150) 2020; 0
Kassis (10.1016/j.nucmedbio.2021.03.002_bb0135) 2005; 46
Michel (10.1016/j.nucmedbio.2021.03.002_bb0145) 2004; 10
Hofer (10.1016/j.nucmedbio.2021.03.002_bb0015) 1971; 47
Kiess (10.1016/j.nucmedbio.2021.03.002_bb0045) 2015; 56
Pouget (10.1016/j.nucmedbio.2021.03.002_bb0195) 2008; 170
Welt (10.1016/j.nucmedbio.2021.03.002_bb0050) 1996; 14
Herrmann (10.1016/j.nucmedbio.2021.03.002_bb0175) 2020; 21
Pirovano (10.1016/j.nucmedbio.2021.03.002_bb0085) 2020
Ku (10.1016/j.nucmedbio.2021.03.002_bb0065) 2019; 4
Limouris (10.1016/j.nucmedbio.2021.03.002_bb0115) 2008; 35
Koumarianou (10.1016/j.nucmedbio.2021.03.002_bb0170) 2014; 41
Kassis (10.1016/j.nucmedbio.2021.03.002_bb0025) 2003; 44
Meitner (10.1016/j.nucmedbio.2021.03.002_bb0005) 1922; 9
Buchegger (10.1016/j.nucmedbio.2021.03.002_bb0040) 2006; 33
Reilly (10.1016/j.nucmedbio.2021.03.002_bb0140) 2010
Rebischung (10.1016/j.nucmedbio.2021.03.002_bb0110) 2008; 84
Filosofov (10.1016/j.nucmedbio.2021.03.002_bb0130) 2021; 94–95
Li (10.1016/j.nucmedbio.2021.03.002_bb0120) 2010; 113
Sobolev (10.1016/j.nucmedbio.2021.03.002_bb0160) 2018; 9
Shen (10.1016/j.nucmedbio.2021.03.002_bb0090) 2020; 10
References_xml – volume: 10
  start-page: 5957
  year: 2004
  end-page: 5966
  ident: bb0145
  article-title: In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons
  publication-title: Clin Cancer Res
– volume: 14
  start-page: 1787
  year: 1996
  end-page: 1797
  ident: bb0050
  article-title: Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer
  publication-title: J Clin Oncol
– volume: 177
  start-page: 169
  year: 1923
  ident: bb0010
  article-title: Sur les rayons β secondaires produits dans un gaz par des rayons X
  publication-title: CR Acad Sci(F)
– volume: 36
  start-page: 2229
  year: 1995
  end-page: 2233
  ident: bb0180
  article-title: Initial clinical evaluation of Iodine-125-labeled chimeric 17-lA for metastatic colon cancer
  publication-title: J Nucl Med
– volume: 92
  start-page: 617
  year: 2016
  end-page: 632
  ident: bb0070
  article-title: The quest to exploit the Auger effect in cancer radiotherapy–a reflective review
  publication-title: Int J Radiat Biol
– start-page: 289
  year: 2010
  end-page: 348
  ident: bb0140
  article-title: Targeted Auger Electron Radiotherapy of Malignancies. Monoclonal Antibody and Peptide-targeted Radiotherapy of Cancer
– volume: 48
  start-page: 1357
  year: 2007
  end-page: 1368
  ident: bb0185
  article-title: 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer
  publication-title: J Nucl Med
– volume: 46
  start-page: 4S
  year: 2005
  end-page: 12S
  ident: bb0135
  article-title: Radiobiologic principles in radionuclide therapy
  publication-title: J Nucl Med
– volume: 35
  start-page: 1827
  year: 2008
  end-page: 1837
  ident: bb0115
  article-title: Selective hepatic arterial infusion of In-111-DTPA-Phe 1-octreotide in neuroendocrine liver metastases
  publication-title: Eur J Nucl Med Mol Imaging
– start-page: 2871
  year: 2020
  end-page: 2881
  ident: bb0085
  article-title: Targeted brain tumor radiotherapy using an auger emitter
  publication-title: Am Assoc Cancer Res
– volume: 94–95
  start-page: 1
  year: 2021
  end-page: 19
  ident: bb0130
  article-title: Potent candidates for targeted auger therapy: production and radiochemical considerations
  publication-title: Nucl Med Biol
– volume: 113
  start-page: 192
  year: 2010
  end-page: 198
  ident: bb0120
  article-title: A phase II study of anti–epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme
  publication-title: J Neurosurg
– volume: 41
  start-page: 441
  year: 2014
  end-page: 449
  ident: bb0170
  article-title: Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter–a potential Auger electron emitting EGFR-targeted radiotherapeutic
  publication-title: Nucl Med Biol
– volume: 265
  start-page: 620
  year: 1977
  end-page: 621
  ident: bb0080
  article-title: 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters
  publication-title: Nature
– volume: 44
  start-page: 98
  year: 2003
  end-page: 104
  ident: bb0155
  article-title: Peptide receptor radionuclide therapy in vitro using [111In-DTPA0] octreotide
  publication-title: J Nucl Med
– volume: 4
  start-page: 27
  year: 2019
  ident: bb0065
  article-title: Auger electrons for cancer therapy – a review
  publication-title: EJNMMI Radiopharm. Chem
– volume: 56
  start-page: 1401
  year: 2015
  end-page: 1407
  ident: bb0045
  article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen
  publication-title: J Nucl Med
– volume: 84
  start-page: 1123
  year: 2008
  end-page: 1129
  ident: bb0110
  article-title: First human treatment of resistant neoplastic meningitis by intrathecal administration of MTX Plus 125IUdR
  publication-title: Int J Radiat Biol
– volume: 10
  start-page: S23
  year: 1999
  end-page: S30
  ident: bb0100
  article-title: Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy
  publication-title: Ann Oncol
– volume: 21
  start-page: e146
  year: 2020
  end-page: e156
  ident: bb0175
  article-title: Radiotheranostics: a roadmap for future development
  publication-title: Lancet Oncol
– volume: 4
  start-page: 181
  year: 2014
  ident: bb0125
  article-title: Phase I trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of 111In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer
  publication-title: Am J Nucl Med Mol Imaging
– volume: 25
  start-page: 4775
  year: 2019
  end-page: 4790
  ident: bb0200
  article-title: Drugs that modify cholesterol metabolism alter the p38/JNK-mediated targeted and nontargeted response to alpha and Auger radioimmunotherapy
  publication-title: Clin Cancer Res
– volume: 61
  start-page: 850
  year: 2020
  end-page: 856
  ident: bb0035
  article-title: PARP-1-targeted auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma
  publication-title: J Nucl Med
– volume: 9
  start-page: 996
  year: 2018
  ident: bb0020
  article-title: Subcellular targeting of theranostic radionuclides
  publication-title: Front Pharmacol
– volume: 37
  start-page: 1052
  year: 1996
  end-page: 1057
  ident: bb0055
  article-title: Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody
  publication-title: J Nucl Med
– volume: 32
  start-page: 110
  year: 2002
  end-page: 122
  ident: bb0105
  article-title: Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience
  publication-title: Semin Nucl Med
– volume: 48
  start-page: 1562
  year: 2007
  end-page: 1570
  ident: bb0165
  article-title: Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron–emitting radiopharmaceutical 111In-DTPA–human epidermal growth factor
  publication-title: J Nucl Med
– volume: 44
  start-page: 1479
  year: 2003
  end-page: 1481
  ident: bb0025
  article-title: Cancer therapy with Auger electrons: are we almost there
  publication-title: J Nucl Med
– volume: 47
  start-page: 94
  year: 1971
  end-page: 101
  ident: bb0015
  article-title: Radiotoxicity of intranuclear tritium, 125 iodine and 131 iodine
  publication-title: Radiat Res
– volume: 33
  start-page: 1352
  year: 2006
  end-page: 1363
  ident: bb0040
  article-title: Auger radiation targeted into DNA: a therapy perspective
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 0
  start-page: 1
  year: 2020
  end-page: 7
  ident: bb0150
  article-title: Improved radiosynthesis of 123I-MAPi, an auger theranostic agent
  publication-title: Int J Radiat Biol
– start-page: 1
  year: 2020
  end-page: 26
  ident: bb0075
  article-title: Advancements in the use of Auger electrons in science and medicine during the period 2015–2019
  publication-title: Int J Radiat Biol
– volume: 56
  start-page: 1441
  year: 2015
  end-page: 1446
  ident: bb0030
  article-title: Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides
  publication-title: J Nucl Med
– volume: 25
  start-page: 467
  year: 2016
  end-page: 484
  ident: bb0190
  article-title: Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects
  publication-title: Antioxid Redox Signal
– volume: 170
  start-page: 192
  year: 2008
  end-page: 200
  ident: bb0195
  article-title: Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons
  publication-title: Radiat Res
– volume: 18
  start-page: e414
  year: 2017
  end-page: e423
  ident: bb0060
  article-title: Targeted radionuclide therapy in combined-modality regimens
  publication-title: Lancet Oncol
– volume: 9
  start-page: 952
  year: 2018
  ident: bb0160
  article-title: Modular nanotransporters for nuclear-targeted delivery of auger electron emitters
  publication-title: Front Pharmacol
– volume: 10
  start-page: 2888
  year: 2020
  ident: bb0090
  article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer
  publication-title: Theranostics
– volume: 9
  start-page: 131
  year: 1922
  end-page: 144
  ident: bb0005
  article-title: Über die entstehung der β-strahl-spektren radioaktiver substanzen
  publication-title: Zeitschrift für Physik
– volume: 37
  start-page: 25S
  year: 1996
  end-page: 29S
  ident: bb0095
  article-title: Pilot clinical trial of 5-[125I]iodo-2′-deoxyuridine in the treatment of colorectal cancer metastatic to the liver
  publication-title: J Nucl Med
– start-page: 289
  year: 2010
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0140
– volume: 9
  start-page: 131
  year: 1922
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0005
  article-title: Über die entstehung der β-strahl-spektren radioaktiver substanzen
  publication-title: Zeitschrift für Physik
  doi: 10.1007/BF01326962
– volume: 41
  start-page: 441
  year: 2014
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0170
  article-title: Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter–a potential Auger electron emitting EGFR-targeted radiotherapeutic
  publication-title: Nucl Med Biol
  doi: 10.1016/j.nucmedbio.2014.03.026
– volume: 48
  start-page: 1357
  year: 2007
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0185
  article-title: 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.106.037937
– volume: 61
  start-page: 850
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0035
  article-title: PARP-1-targeted auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.233965
– volume: 177
  start-page: 169
  year: 1923
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0010
  article-title: Sur les rayons β secondaires produits dans un gaz par des rayons X
  publication-title: CR Acad Sci(F)
– volume: 37
  start-page: 1052
  year: 1996
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0055
  article-title: Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody
  publication-title: J Nucl Med
– volume: 18
  start-page: e414
  year: 2017
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0060
  article-title: Targeted radionuclide therapy in combined-modality regimens
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(17)30379-0
– volume: 44
  start-page: 1479
  year: 2003
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0025
  article-title: Cancer therapy with Auger electrons: are we almost there
  publication-title: J Nucl Med
– volume: 94–95
  start-page: 1
  year: 2021
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0130
  article-title: Potent candidates for targeted auger therapy: production and radiochemical considerations
  publication-title: Nucl Med Biol
  doi: 10.1016/j.nucmedbio.2020.12.001
– volume: 25
  start-page: 4775
  year: 2019
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0200
  article-title: Drugs that modify cholesterol metabolism alter the p38/JNK-mediated targeted and nontargeted response to alpha and Auger radioimmunotherapy
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-3295
– volume: 33
  start-page: 1352
  year: 2006
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0040
  article-title: Auger radiation targeted into DNA: a therapy perspective
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-006-0187-2
– volume: 10
  start-page: S23
  year: 1999
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0100
  article-title: Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy
  publication-title: Ann Oncol
  doi: 10.1093/annonc/10.suppl_2.S23
– volume: 9
  start-page: 952
  year: 2018
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0160
  article-title: Modular nanotransporters for nuclear-targeted delivery of auger electron emitters
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00952
– volume: 4
  start-page: 27
  year: 2019
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0065
  article-title: Auger electrons for cancer therapy – a review
  publication-title: EJNMMI Radiopharm. Chem
  doi: 10.1186/s41181-019-0075-2
– volume: 37
  start-page: 25S
  year: 1996
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0095
  article-title: Pilot clinical trial of 5-[125I]iodo-2′-deoxyuridine in the treatment of colorectal cancer metastatic to the liver
  publication-title: J Nucl Med
– start-page: 1
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0075
  article-title: Advancements in the use of Auger electrons in science and medicine during the period 2015–2019
  publication-title: Int J Radiat Biol
– volume: 35
  start-page: 1827
  year: 2008
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0115
  article-title: Selective hepatic arterial infusion of In-111-DTPA-Phe 1-octreotide in neuroendocrine liver metastases
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-008-0779-0
– volume: 44
  start-page: 98
  year: 2003
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0155
  article-title: Peptide receptor radionuclide therapy in vitro using [111In-DTPA0] octreotide
  publication-title: J Nucl Med
– volume: 0
  start-page: 1
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0150
  article-title: Improved radiosynthesis of 123I-MAPi, an auger theranostic agent
  publication-title: Int J Radiat Biol
– volume: 25
  start-page: 467
  year: 2016
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0190
  article-title: Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2015.6309
– volume: 47
  start-page: 94
  year: 1971
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0015
  article-title: Radiotoxicity of intranuclear tritium, 125 iodine and 131 iodine
  publication-title: Radiat Res
  doi: 10.2307/3573291
– volume: 9
  start-page: 996
  year: 2018
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0020
  article-title: Subcellular targeting of theranostic radionuclides
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00996
– volume: 48
  start-page: 1562
  year: 2007
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0165
  article-title: Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron–emitting radiopharmaceutical 111In-DTPA–human epidermal growth factor
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.107.044073
– volume: 84
  start-page: 1123
  year: 2008
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0110
  article-title: First human treatment of resistant neoplastic meningitis by intrathecal administration of MTX Plus 125IUdR
  publication-title: Int J Radiat Biol
  doi: 10.1080/09553000802395535
– volume: 170
  start-page: 192
  year: 2008
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0195
  article-title: Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons
  publication-title: Radiat Res
  doi: 10.1667/RR1359.1
– volume: 36
  start-page: 2229
  year: 1995
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0180
  article-title: Initial clinical evaluation of Iodine-125-labeled chimeric 17-lA for metastatic colon cancer
  publication-title: J Nucl Med
– volume: 10
  start-page: 5957
  year: 2004
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0145
  article-title: In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-03-0465
– volume: 21
  start-page: e146
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0175
  article-title: Radiotheranostics: a roadmap for future development
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30821-6
– volume: 4
  start-page: 181
  year: 2014
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0125
  article-title: Phase I trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of 111In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer
  publication-title: Am J Nucl Med Mol Imaging
– volume: 56
  start-page: 1441
  year: 2015
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0030
  article-title: Monte Carlo evaluation of Auger electron-emitting theranostic radionuclides
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.114.153502
– volume: 32
  start-page: 110
  year: 2002
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0105
  article-title: Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience
  publication-title: Semin Nucl Med
  doi: 10.1053/snuc/2002.31025
– volume: 113
  start-page: 192
  year: 2010
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0120
  article-title: A phase II study of anti–epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme
  publication-title: J Neurosurg
  doi: 10.3171/2010.2.JNS091211
– volume: 265
  start-page: 620
  year: 1977
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0080
  article-title: 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters
  publication-title: Nature
  doi: 10.1038/265620a0
– start-page: 2871
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0085
  article-title: Targeted brain tumor radiotherapy using an auger emitter
  publication-title: Am Assoc Cancer Res
– volume: 56
  start-page: 1401
  year: 2015
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0045
  article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.155929
– volume: 14
  start-page: 1787
  year: 1996
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0050
  article-title: Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.1996.14.6.1787
– volume: 10
  start-page: 2888
  year: 2020
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0090
  article-title: Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer
  publication-title: Theranostics
  doi: 10.7150/thno.38882
– volume: 46
  start-page: 4S
  year: 2005
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0135
  article-title: Radiobiologic principles in radionuclide therapy
  publication-title: J Nucl Med
– volume: 92
  start-page: 617
  year: 2016
  ident: 10.1016/j.nucmedbio.2021.03.002_bb0070
  article-title: The quest to exploit the Auger effect in cancer radiotherapy–a reflective review
  publication-title: Int J Radiat Biol
  doi: 10.3109/09553002.2015.1136854
SSID ssj0016410
Score 2.4688826
SecondaryResourceType review_article
Snippet First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Alpha rays
Antibodies
Auger effect
Augers
Beta decay
Beta rays
Biomarkers
Electron capture
Electrons
Emission
Emissions
Emitters
Energy transfer
Humans
Internal conversion
Linear energy transfer (LET)
Neoplasms - radiotherapy
Neoplasms - therapy
Peptides
Precision Medicine
Radiation
Radiation therapy
Radioisotopes
Toxicity
Title Auger: The future of precision medicine
URI https://www.clinicalkey.com/#!/content/1-s2.0-S096980512100041X
https://dx.doi.org/10.1016/j.nucmedbio.2021.03.002
https://www.ncbi.nlm.nih.gov/pubmed/33831745
https://www.proquest.com/docview/2544267942
https://www.proquest.com/docview/2511238821
https://pubmed.ncbi.nlm.nih.gov/PMC8164972
Volume 96-97
WOSCitedRecordID wos000655462300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016410
  issn: 0969-8051
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1IINpr0gGJcVxhQkJB5QqsRJbGdvVbVxkZj2MKS-RbHjjFQsqdJ2Gn_P8bUtA20g8RJVdk4T-5yci88Nobe1Kn7LauB-lSjDlFZVCEIYhwkvaSrissywaTZBT0_ZZJKf2YzruW4nQNuWXV_ns_-KahgDZKvU2b9At_9TGIDfgHS4AtrheifEj5YXsnfBFCe6ZIgOdOttNx3jm3Hu9KlLvxWqf4R3tWufgi3Q5Lln03egd-uz1Q8NcNLLbu3UxmZumYCj9-Oh9-TIxubUrMUi2WMGHK-C-tx5IclBnNnqsNJwS0ZxmBOTBerYaU5CE3FrWaKpK2uFqykMfINtmxOE6bBdClgnrG6oXsFUn8XrELB7s0uNOGVagzWVreSYjy48-zJmYAXmFETzNqZZDtxue_TpePLZ-5dIqutU-EVtRP799i120Y575J9UmJsmyq-Rtmuqy_lj9MjaHMHI0MoTdE-2e-ih6UL6Yw_tOIKAQR0QLOZP0TtNRkcBEFFgiCjo6sATUeBgnqGvJ8fn44-hbaoRCjAeF2HNpGCgFso84hERBFeYV1gKMLJEos60OMsjUfGYCZmImpUpxnEZcUwSQRnhyXO01Xat3EeBxBGtKc9Bx5ZplvKylKDQ12lUiaymgg8QcftUCFtxXjU--V640MJp4fe6UHtdREkBez1AkQecmaIrt4Mwh4jC5RSDFCyAwm4HPfKgVu006uTdgA8c1gvLBOaFKvuHCUg6mH7jp4FvK2dc2cpuqe4BSycB-zYeoBeGSPxaHaENEN0gH3-Dqgm_OdM233RteEv4L_8Z8hXaXX3-B2hr0S_la_RAXC2aeX-I7tMJO7Rf00-Xe9pm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auger%3A+The+Future+of+Precision+Medicine&rft.jtitle=Nuclear+medicine+and+biology&rft.au=Pirovano%2C+Giacomo&rft.au=Wilson%2C+Thomas+C.&rft.au=Reiner%2C+Thomas&rft.date=2021-05-01&rft.issn=0969-8051&rft.eissn=1872-9614&rft.volume=96-97&rft.spage=50&rft.epage=53&rft_id=info:doi/10.1016%2Fj.nucmedbio.2021.03.002&rft_id=info%3Apmid%2F33831745&rft.externalDocID=PMC8164972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8051&client=summon