MF-Storm: a maximum flow-based job scheduler for stream processing engines on computational clusters to increase throughput

A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tas...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 8; p. e1077
Main Authors: Muhammad, Asif, Abdul Qadir, Muhammad
Format: Journal Article
Language:English
Published: San Diego PeerJ. Ltd 26.09.2022
PeerJ, Inc
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tasks) on a computational cluster which helps execution and coordination of these applications. It is observed that there is a gap in the optimal mapping of a computational and communicational load of a streaming application on the underlying computational and communication power of the resources (cluster). Frequently communicated tasks are scheduled at different processing nodes with relatively slow communicating links. This increases network latency with a decrease in resource utilization. Hence, reduces the achieved throughput of the cluster significantly. MF-Storm, a max-flow min-cut based job scheduler is presented to achieve a near-optimum schedule to maximize throughput. It schedules a streaming application by considering the processing, communication demands, available computational and communicational resources in a heterogeneous cluster, dynamically with minimized scheduling cost. To keep the scheduling cost minimum, the scheduler is built in a pipeline with two major stages: in the first stage, the application's tasks graph is partitioned using the max-flow min-cut algorithm to minimize inter-partition traffic, and in the second stage, these partitions are assigned to computing nodes according to the computational power of the cluster's nodes. Extensive experiments were done to evaluate the performance of MF-Storm using different topologies with multiple scenarios on a physical cluster implementation. Results showed on average 148% improvement in throughput with 30% less computational resources as compared to different state-of-the-art schedulers.
AbstractList Background A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tasks) on a computational cluster which helps execution and coordination of these applications. It is observed that there is a gap in the optimal mapping of a computational and communicational load of a streaming application on the underlying computational and communication power of the resources (cluster). Frequently communicated tasks are scheduled at different processing nodes with relatively slow communicating links. This increases network latency with a decrease in resource utilization. Hence, reduces the achieved throughput of the cluster significantly. Methods MF-Storm, a max-flow min-cut based job scheduler is presented to achieve a near-optimum schedule to maximize throughput. It schedules a streaming application by considering the processing, communication demands, available computational and communicational resources in a heterogeneous cluster, dynamically with minimized scheduling cost. To keep the scheduling cost minimum, the scheduler is built in a pipeline with two major stages: in the first stage, the application’s tasks graph is partitioned using the max-flow min-cut algorithm to minimize inter-partition traffic, and in the second stage, these partitions are assigned to computing nodes according to the computational power of the cluster’s nodes. Results Extensive experiments were done to evaluate the performance of MF-Storm using different topologies with multiple scenarios on a physical cluster implementation. Results showed on average 148% improvement in throughput with 30% less computational resources as compared to different state-of-the-art schedulers.
A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tasks) on a computational cluster which helps execution and coordination of these applications. It is observed that there is a gap in the optimal mapping of a computational and communicational load of a streaming application on the underlying computational and communication power of the resources (cluster). Frequently communicated tasks are scheduled at different processing nodes with relatively slow communicating links. This increases network latency with a decrease in resource utilization. Hence, reduces the achieved throughput of the cluster significantly.BackgroundA scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tasks) on a computational cluster which helps execution and coordination of these applications. It is observed that there is a gap in the optimal mapping of a computational and communicational load of a streaming application on the underlying computational and communication power of the resources (cluster). Frequently communicated tasks are scheduled at different processing nodes with relatively slow communicating links. This increases network latency with a decrease in resource utilization. Hence, reduces the achieved throughput of the cluster significantly.MF-Storm, a max-flow min-cut based job scheduler is presented to achieve a near-optimum schedule to maximize throughput. It schedules a streaming application by considering the processing, communication demands, available computational and communicational resources in a heterogeneous cluster, dynamically with minimized scheduling cost. To keep the scheduling cost minimum, the scheduler is built in a pipeline with two major stages: in the first stage, the application's tasks graph is partitioned using the max-flow min-cut algorithm to minimize inter-partition traffic, and in the second stage, these partitions are assigned to computing nodes according to the computational power of the cluster's nodes.MethodsMF-Storm, a max-flow min-cut based job scheduler is presented to achieve a near-optimum schedule to maximize throughput. It schedules a streaming application by considering the processing, communication demands, available computational and communicational resources in a heterogeneous cluster, dynamically with minimized scheduling cost. To keep the scheduling cost minimum, the scheduler is built in a pipeline with two major stages: in the first stage, the application's tasks graph is partitioned using the max-flow min-cut algorithm to minimize inter-partition traffic, and in the second stage, these partitions are assigned to computing nodes according to the computational power of the cluster's nodes.Extensive experiments were done to evaluate the performance of MF-Storm using different topologies with multiple scenarios on a physical cluster implementation. Results showed on average 148% improvement in throughput with 30% less computational resources as compared to different state-of-the-art schedulers.ResultsExtensive experiments were done to evaluate the performance of MF-Storm using different topologies with multiple scenarios on a physical cluster implementation. Results showed on average 148% improvement in throughput with 30% less computational resources as compared to different state-of-the-art schedulers.
A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization of computational and communicational resources. A Stream Processing Engine (SPE) is deployed to run streaming applications (computational tasks) on a computational cluster which helps execution and coordination of these applications. It is observed that there is a gap in the optimal mapping of a computational and communicational load of a streaming application on the underlying computational and communication power of the resources (cluster). Frequently communicated tasks are scheduled at different processing nodes with relatively slow communicating links. This increases network latency with a decrease in resource utilization. Hence, reduces the achieved throughput of the cluster significantly. MF-Storm, a max-flow min-cut based job scheduler is presented to achieve a near-optimum schedule to maximize throughput. It schedules a streaming application by considering the processing, communication demands, available computational and communicational resources in a heterogeneous cluster, dynamically with minimized scheduling cost. To keep the scheduling cost minimum, the scheduler is built in a pipeline with two major stages: in the first stage, the application's tasks graph is partitioned using the max-flow min-cut algorithm to minimize inter-partition traffic, and in the second stage, these partitions are assigned to computing nodes according to the computational power of the cluster's nodes. Extensive experiments were done to evaluate the performance of MF-Storm using different topologies with multiple scenarios on a physical cluster implementation. Results showed on average 148% improvement in throughput with 30% less computational resources as compared to different state-of-the-art schedulers.
ArticleNumber e1077
Audience Academic
Author Muhammad, Asif
Abdul Qadir, Muhammad
Author_xml – sequence: 1
  givenname: Asif
  orcidid: 0000-0001-9215-4100
  surname: Muhammad
  fullname: Muhammad, Asif
– sequence: 2
  givenname: Muhammad
  surname: Abdul Qadir
  fullname: Abdul Qadir, Muhammad
BookMark eNptks1vFCEYxiemJtbao3cSL3qYOswHDB5MmsbqJjUmVs_kHXiZZTMDKzC1xn9etluj2xQOfP2e5w3wPC-OnHdYFC9pdcY55W-3iGFTqnhGK86fFMd1w1nZCVEf_Td_VpzGuKmqinY0N3Fc_P58WV4nH-Z3BMgMt3ZeZmIm_7McIKImGz-QqNaolwkDMT6QmALCTLbBK4zRupGgG63DSLwjys_bJUGy3sFE1LTEhCGS5Il1KusikrQOfhnXGXtRPDUwRTy9H0-K75cfvl18Kq--fFxdnF-VqutEKpVue8DKcK0G3RvaaVpDIwyjDdYDgkIteNspGDqW122Pipm2gaZijW503ZwUq72v9rCR22BnCL-kByvvNnwYJYRk1YRy0HXPOWto1_YtBwG9UWig5wYY01hlr_d7r-0yzKgVuhRgOjA9PHF2LUd_I0XHu75l2eD1vUHwPxaMSc42KpwmcOiXKGteM1FTVnUZffUA3fgl5IfdUbTP3yj69h81Qr6AdcbnumpnKs85FaxuRb0re_YIlbvG2aocJWPz_oHgzYEgMwlv0whLjHJ1_fWQbfasCj7GgEYquw9BLmInSSu5y6i8y6hUUe4ymlXlA9XfV3yc_wPwl-8Y
CitedBy_id crossref_primary_10_7717_peerj_cs_2767
crossref_primary_10_1016_j_future_2024_107673
crossref_primary_10_1016_j_future_2025_108036
Cites_doi 10.1016/j.future.2018.07.011
10.14778/3184470.3184474
10.1145/2904080
10.1080/17445760.2019.1585848
10.1016/j.jnca.2017.03.007
10.1016/j.ins.2015.03.027
10.1016/j.procs.2017.05.249
10.1007/s11227-019-03060-9
10.1007/s10586-020-03117-y
10.1109/ACCESS.2019.2930652
10.1007/s10922-021-09632-6
10.1007/s11227-020-03223-z
10.1002/cpe.4334
10.7717/peerj-cs.932
10.1145/3355399
10.1007/s11227-018-2435-1
10.1007/s11227-020-03289-9
ContentType Journal Article
Copyright COPYRIGHT 2022 PeerJ. Ltd.
2022 Muhammad and Abdul Qadir. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Muhammad and Abdul Qadir.
2022 Muhammad and Abdul Qadir 2022 Muhammad and Abdul Qadir
Copyright_xml – notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Muhammad and Abdul Qadir. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Muhammad and Abdul Qadir.
– notice: 2022 Muhammad and Abdul Qadir 2022 Muhammad and Abdul Qadir
DBID AAYXX
CITATION
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1077
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_bd287763154847a9a8fcefa87fa66de0
PMC9575846
A719624926
10_7717_peerj_cs_1077
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c559t-cd48ae0f7dcbd8f15d12a39f613e2beaced9745cab562be48ec6f43a3063d3d23
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863117100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:46:17 EDT 2025
Tue Nov 04 02:07:07 EST 2025
Fri Sep 05 11:06:55 EDT 2025
Mon Jul 14 08:18:44 EDT 2025
Tue Nov 11 10:04:11 EST 2025
Tue Nov 04 17:25:43 EST 2025
Thu Nov 13 15:52:40 EST 2025
Tue Nov 18 22:27:07 EST 2025
Sat Nov 29 03:45:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-cd48ae0f7dcbd8f15d12a39f613e2beaced9745cab562be48ec6f43a3063d3d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9215-4100
OpenAccessLink https://www.proquest.com/docview/2718000984?pq-origsite=%requestingapplication%
PQID 2718000984
PQPubID 2045934
PageCount e1077
ParticipantIDs doaj_primary_oai_doaj_org_article_bd287763154847a9a8fcefa87fa66de0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9575846
proquest_miscellaneous_2726921605
proquest_journals_2718000984
gale_infotracmisc_A719624926
gale_infotracacademiconefile_A719624926
gale_incontextgauss_ISR_A719624926
crossref_citationtrail_10_7717_peerj_cs_1077
crossref_primary_10_7717_peerj_cs_1077
PublicationCentury 2000
PublicationDate 2022-09-26
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-26
  day: 26
PublicationDecade 2020
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Twitter (10.7717/peerj-cs.1077/ref-38) 2014
Farooq (10.7717/peerj-cs.1077/ref-10) 2022; 30
Storm A (10.7717/peerj-cs.1077/ref-34) 2014
Aniello (10.7717/peerj-cs.1077/ref-2) 2013
Karanth (10.7717/peerj-cs.1077/ref-19) 2014
Khalid (10.7717/peerj-cs.1077/ref-20) 2018; 74
Zhang (10.7717/peerj-cs.1077/ref-44) 2017
Elahi (10.7717/peerj-cs.1077/ref-4) 2022; 8
Falt (10.7717/peerj-cs.1077/ref-8) 2011
GitHub (10.7717/peerj-cs.1077/ref-15) 2014
Eskandari (10.7717/peerj-cs.1077/ref-7) 2018b; 89
Weng (10.7717/peerj-cs.1077/ref-41) 2017
Qian (10.7717/peerj-cs.1077/ref-32) 2017; 2016
Muhammad (10.7717/peerj-cs.1077/ref-28) 2021; 77
Muhammad (10.7717/peerj-cs.1077/ref-29) 2021; 24
Foundation AS (10.7717/peerj-cs.1077/ref-12) 2018
Tahir (10.7717/peerj-cs.1077/ref-36) 2019; 2019
Fan (10.7717/peerj-cs.1077/ref-9) 2016
Madsen (10.7717/peerj-cs.1077/ref-27) 2015
Liu (10.7717/peerj-cs.1077/ref-24) 2018
Peng (10.7717/peerj-cs.1077/ref-31) 2015
GitHub (10.7717/peerj-cs.1077/ref-16) 2019
Sun (10.7717/peerj-cs.1077/ref-35) 2015; 319
Liu (10.7717/peerj-cs.1077/ref-26) 2017
Fischer (10.7717/peerj-cs.1077/ref-11) 2015; 2015
Cardellini (10.7717/peerj-cs.1077/ref-3) 2018; 30
Nasiri (10.7717/peerj-cs.1077/ref-30) 2020
Tantalaki (10.7717/peerj-cs.1077/ref-37) 2020; 35
Xu (10.7717/peerj-cs.1077/ref-42) 2014
Eskandari (10.7717/peerj-cs.1077/ref-5) 2016
Ghaderi (10.7717/peerj-cs.1077/ref-14) 2016; 1
Ullah (10.7717/peerj-cs.1077/ref-39) 2019; 7
Foundation AS, Apache Software Foundation (10.7717/peerj-cs.1077/ref-13) 2015
Kamburugamuve (10.7717/peerj-cs.1077/ref-18) 2016
Li (10.7717/peerj-cs.1077/ref-21) 2018; 11
Liu (10.7717/peerj-cs.1077/ref-23) 2017
Gulzar Ahmad (10.7717/peerj-cs.1077/ref-17) 2020; 76
Liu (10.7717/peerj-cs.1077/ref-25) 2020; 53
van der Veen (10.7717/peerj-cs.1077/ref-40) 2015
Li (10.7717/peerj-cs.1077/ref-22) 2017; 87
Smirnov (10.7717/peerj-cs.1077/ref-33) 2017; 108
Al-Sinayyid (10.7717/peerj-cs.1077/ref-1) 2020; 76
Eskandari (10.7717/peerj-cs.1077/ref-6) 2018a
Xue (10.7717/peerj-cs.1077/ref-43) 2015; 2015
References_xml – year: 2019
  ident: 10.7717/peerj-cs.1077/ref-16
  article-title: Exclamation topology
– start-page: 1
  year: 2016
  ident: 10.7717/peerj-cs.1077/ref-5
  article-title: P-scheduler: adaptive hierarchical scheduling in Apache Storm
– year: 2015
  ident: 10.7717/peerj-cs.1077/ref-13
  article-title: Apache Flink: stateful computations over data streams
– year: 2011
  ident: 10.7717/peerj-cs.1077/ref-8
  article-title: Task scheduling in data stream processing
– start-page: 149
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-31
  article-title: R-storm: resource-aware scheduling in storm
– start-page: 13
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-27
  article-title: Dynamic resource management in a massively parallel stream processing engine
– volume: 89
  start-page: 617
  issue: 8
  year: 2018b
  ident: 10.7717/peerj-cs.1077/ref-7
  article-title: T3-Scheduler: a topology and Traffic aware two-level Scheduler for stream processing systems in a heterogeneous cluster
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.07.011
– volume: 11
  start-page: 705
  issue: 6
  year: 2018
  ident: 10.7717/peerj-cs.1077/ref-21
  article-title: Model-free control for distributed stream data processing using deep reinforcement learning
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3184470.3184474
– volume: 2016
  start-page: 623
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-32
  article-title: S-Storm: a slot-aware scheduling strategy for even scheduler in storm
– volume: 1
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.7717/peerj-cs.1077/ref-14
  article-title: Scheduling storms and streams in the cloud
  publication-title: ACM Transactions on Modeling and Performance Evaluation of Computing Systems
  doi: 10.1145/2904080
– volume: 35
  start-page: 571
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.1077/ref-37
  article-title: A review on big data real-time stream processing and its scheduling techniques
  publication-title: International Journal of Parallel, Emergent and Distributed Systems
  doi: 10.1080/17445760.2019.1585848
– volume: 87
  start-page: 100
  issue: 12
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-22
  article-title: Real-time scheduling based on optimized topology and communication traffic in distributed real-time computation platform of storm
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2017.03.007
– volume: 319
  start-page: 92
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-35
  article-title: Re-Stream: real-time and energy-efficient resource scheduling in big data stream computing environments
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.03.027
– volume: 2015
  start-page: 154
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-43
  article-title: When computing meets heterogeneous cluster: workload assignment in graph computation
– year: 2014
  ident: 10.7717/peerj-cs.1077/ref-19
  article-title: Mastering hadoop
– start-page: 1363
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-41
  article-title: AdaStorm: Resource efficient storm with adaptive configuration
– start-page: 571
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-26
  article-title: E-Storm: replication-based state management in distributed stream processing systems
– volume: 108
  start-page: 2240
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-33
  article-title: Performance-aware scheduling of streaming applications using genetic algorithm
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.05.249
– year: 2018
  ident: 10.7717/peerj-cs.1077/ref-12
  article-title: Apache Spark™ – Unified analytics engine for big data
– volume: 76
  start-page: 708
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1077/ref-17
  article-title: Use case-based evaluation of workflow optimization strategy in real-time computation system
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-019-03060-9
– start-page: 485
  year: 2018
  ident: 10.7717/peerj-cs.1077/ref-24
  article-title: D-Storm: dynamic resource-efficient scheduling of stream processing applications
– year: 2014
  ident: 10.7717/peerj-cs.1077/ref-34
  article-title: Storm documentation
– start-page: 372
  year: 2017
  ident: 10.7717/peerj-cs.1077/ref-44
  article-title: The real-time scheduling strategy based on traffic and load balancing in storm
– volume: 2019
  start-page: 160
  year: 2019
  ident: 10.7717/peerj-cs.1077/ref-36
  article-title: MCD: mutually connected community detection using clustering coefficient approach in social networks
– volume: 24
  start-page: 417
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1077/ref-29
  article-title: TOP-Storm: a topology-based resource-aware scheduler for stream processing engine
  publication-title: Cluster Computing
  doi: 10.1007/s10586-020-03117-y
– volume: 7
  year: 2019
  ident: 10.7717/peerj-cs.1077/ref-39
  article-title: Energy-efficient harvested-aware clustering and cooperative routing protocol for WBAN (E-HARP)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930652
– start-page: 207
  year: 2013
  ident: 10.7717/peerj-cs.1077/ref-2
  article-title: Adaptive online scheduling in storm
– volume: 2015
  start-page: 124
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-11
  article-title: Workload scheduling in distributed stream processors using graph partitioning
– year: 2020
  ident: 10.7717/peerj-cs.1077/ref-30
  article-title: A scheduling algorithm to maximize storm throughput in heterogeneous cluster
– volume: 30
  start-page: 183
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1077/ref-10
  article-title: A novel cooperative micro-caching algorithm based on fuzzy inference through NFV in ultra-dense IoT networks
  publication-title: Journal of Network and Systems Management
  doi: 10.1007/s10922-021-09632-6
– volume: 76
  start-page: 9609
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1077/ref-1
  article-title: Job scheduler for streaming applications in heterogeneous distributed processing systems
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-020-03223-z
– year: 2017
  ident: 10.7717/peerj-cs.1077/ref-23
  article-title: Energy usage proling and topology-based scheduling for clusters
– year: 2014
  ident: 10.7717/peerj-cs.1077/ref-38
  article-title: Apache Heron
– start-page: 535
  year: 2014
  ident: 10.7717/peerj-cs.1077/ref-42
  article-title: T-storm: traffic-aware online scheduling in storm
– start-page: 154
  year: 2015
  ident: 10.7717/peerj-cs.1077/ref-40
  article-title: Dynamically scaling apache storm for the analysis of streaming data
– year: 2014
  ident: 10.7717/peerj-cs.1077/ref-15
  article-title: Storm isolation scheduler
– start-page: 234
  year: 2018a
  ident: 10.7717/peerj-cs.1077/ref-6
  article-title: Poster: iterative scheduling for distributed stream processing systems
– volume: 30
  start-page: e4334
  issue: 9
  year: 2018
  ident: 10.7717/peerj-cs.1077/ref-3
  article-title: Optimal operator deployment and replication for elastic distributed data stream processing
  publication-title: Concurrency Computation
  doi: 10.1002/cpe.4334
– volume-title: Survey of distributed stream processing
  year: 2016
  ident: 10.7717/peerj-cs.1077/ref-18
– volume: 8
  start-page: e932
  issue: 9
  year: 2022
  ident: 10.7717/peerj-cs.1077/ref-4
  article-title: An evolutionary algorithm for multi-objective optimization of freshwater consumption in textile dyeing industry
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.932
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.1077/ref-25
  article-title: Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions
  publication-title: ACM Computing Surveys
  doi: 10.1145/3355399
– start-page: 309
  year: 2016
  ident: 10.7717/peerj-cs.1077/ref-9
  article-title: Adaptive task scheduling in storm
– volume: 74
  start-page: 5399
  issue: 10
  year: 2018
  ident: 10.7717/peerj-cs.1077/ref-20
  article-title: E-OSched: a load balancing scheduler for heterogeneous multicores
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-018-2435-1
– volume: 77
  start-page: 1059
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1077/ref-28
  article-title: A3-Storm: topology-, traffic-, and resource-aware storm scheduler for heterogeneous clusters
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-020-03289-9
SSID ssj0001511119
Score 2.2241437
Snippet A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal utilization...
Background A scheduling algorithm tries to schedule multiple computational tasks on a cluster of multiple computing nodes to maximize throughput with optimal...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e1077
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
APACHE storm
Artificial Intelligence
Bandwidths
Clusters
Communication
Computation
Distributed and Parallel Computing
Experiments
Heterogeneous cluster
Job scheduler
Literature reviews
Mutual funds
Network latency
Nodes
Optimization
Resource utilization
Resource-aware
Schedules
Scheduling
Social networks
Software
Stream processing engines
Task scheduling
Topology
Workloads
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hqgcuvBGGghaE4IJVv3fdW0FEcKBCFKTeVvukqWI7imNaqX--M-tNFIMQF47JjhN7Z3bn-5Kdbwh5zcqCwbKpYxjWQFByHUOeL-NMJSbJAeCqUvlmE-zkhJ-d1V93Wn3hmbBRHnicuENlANPDIkBoDR9bS-60dZIzJ6vKWM_WE1bvkKmxPhi3gnoU1WRAWQ6X1q4uYt0DXWVskoS8Vv-fO_LvpyR30s7sHrkT8CI9Hu_zPrll2wfk7qYXAw1L8yG5_jKLT4E_N0dU0kZezZuhoW7RXcaYpwy96BQFIguJZQGXAVKlWCUiG7ocKwUgg1HrtQl72rVU-y8IPxRSvRhQT6Gn647OW8SZvaWhww-YPSI_Zh-_f_gUh8YKsQYCsY61Kbi0iWNGK8NdWpo0k3ntILXbTMFWbA3QjFJLBehI2YJbXbkil0AvcpObLH9M9tqutU8I5ZlNuXXcpJUsUmVUIZNC6zw1rmLwIiLvNjMtdFAdx-YXCwHsAx0jvGOE7gU6JiJvtubLUW7jb4bv0W1bI1TJ9m9A7IgQO-JfsRORV-h0gToYLR60-SmHvhefT7-JYwZbk1dTjMjbYOQ6uHMtQ90CPD9KZ00sDyaWsFD1dHgTWyJsFL3IABsgzuVFRF5uh_FKPPzW2m5Am6yqsxSIZ0TYJCYnjz8daefnXiy8BjwOGPPp_5ivZ-R2htUf-KdcdUD21qvBPif7-td63q9e-BV4AyVQPj0
  priority: 102
  providerName: Directory of Open Access Journals
Title MF-Storm: a maximum flow-based job scheduler for stream processing engines on computational clusters to increase throughput
URI https://www.proquest.com/docview/2718000984
https://www.proquest.com/docview/2726921605
https://pubmed.ncbi.nlm.nih.gov/PMC9575846
https://doaj.org/article/bd287763154847a9a8fcefa87fa66de0
Volume 8
WOSCitedRecordID wos000863117100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYxgMvjKsWGJVBCF6w1lyd8II21IoJtao2kAovluPL6NQmpWkBCYnfzjmu2xEQvPASKfGJkuhcP8f-DiFPeZpwcJuCwbACgBIrBnk-ZVHZ1d0YCtwyLV2zCT4c5uNxMfITbo1fVrmJiS5Q61rhHPlRBEEUC4I8eTX_zLBrFP5d9S00dsgesiRg64ZR-vFqjiXFgFCsqTU5AJejuTGLS6YaAK2ct1KRY-z_My7_vlbyl-TT3__f175Fbvqykx6v7eQ2uWaqO2R_09KBeg-_S74P-uwcYPjsJZV0Jr9NZqsZtdP6K8N0p-llXVLAw5CfpnAbFLwUN5vIGZ2vNxxAIqTGURw2tK6ocg_w841UTVdIy9DQZU0nFZarjaG-URCI3SPv-713r98w35-BKcAhS6Z0kkvTtVyrUuc2THUYybiwUCGYqISIbjSglVTJEoqs0iS5UZlNYgkoJdaxjuL7ZLeqK3NAaB6ZMDc212Emk7DUZSK7iVJxqG3G4SQgLzaqEsqTl2MPjakAEIOaFU6zQjUCNRuQZ1vx-Zq142-CJ6j3rRCSbbsL9eJCeN8VpQZYCXEY0R1YdiFzq4yVObcyy7TpBuQJWo1AOo0K1-tcyFXTiNPzM3HMIcI5UsaAPPdCtoY3V9Jvf4DvRwauluRhSxL8XbWHN5YmfLxpxJWZBeTxdhjvxDV0lalXKBNlRRQCfg0Ibxl16_PbI9Xkk-McL6Csh1L1wb8f_pDciHB7CP61yw7J7nKxMo_IdfVlOWkWHbLDx3mH7J30hqOzjpv9gONbzuA4-NHrOOeF8dHpYPThJxUOUuA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF5VBQleKKcwFFgQxwur-t41EkLliBqljRAtUt-2e7mkSuwQJxTEf-I3MuPYKQbBWx94dHYsH5n55pv17jeEPOZJzCFsMgbDBgqUyDDI8wkLtW_9CAiuTnTdbIIPh-LwMHu_Rn60e2FwWWWLiTVQ29LgHPlWCCCKhEDEr6afGXaNwq-rbQuNpVsM3LdTKNmql_238P8-CcPeu4M3O6zpKsAMsOc5MzYWyvk5t0ZbkQeJDUIVZTnkNRdqwCFngWMnRmmgBtrFwpk0jyMF3DqykUWhA4D8C3EkOMbVgLOzOZ0EAShbSnlyKJS2ps7NTpipoEjmvJP66g4Bf-aB39dm_pLsehv_22u6Sq40tJpuL-PgGllzxXWy0basoA2C3SDf93psfw48_QVVdKK-jiaLCc3H5SnDdG7pSakp1PuQf8dwGhB6iptp1IROlxsqINFTV0s4VrQsqKkv0MynUjNeoOxEReclHRVIxytHm0ZIYHaTfDyXV3CLrBdl4W4TKkIXCJcLG6QqDrTVsfJjY6LA5imHA488b11DmkacHXuEjCUUaehJsvYkaSqJnuSRpyvz6VKV5G-Gr9HPVkYoJl7_UM6OZYNNUlsomyHPYPUKkZspkRuXK8FzlabW-R55hF4qUS6kwPVIx2pRVbK__0Fuc0DwWnTSI88ao7yEOzeq2d4Bz48KYx3LzY4l4JnpDreeLRs8reSZW3vk4WoYz8Q1goUrF2gTplkYQH3uEd4Jos7jd0eK0adaUz2DsgWo-J1_X_wBubRzsLcrd_vDwV1yOcStMPiFMt0k6_PZwt0jF82X-aia3a-BgZKj8w6xnxwXq-M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSEulKcwFFgQjwtW4ufaSAgVSkRUiCIKUsVl2WdJldghjimIf8avY8ZZpxgEtx44OjuWH5n55pv17jeE3GdJzCBsch-GFRQokfIhzyd-KPu6HwHBlYlsmk2w0Sg7OMjHG-RHuxcGl1W2mNgAtS4VzpH3QgBRJARZ3LNuWcR4d_Bs_tnHDlL4pbVtp7FykT3z7RjKt-rpcBf-6wdhOHj57sUr33UY8BUw6aWvdJwJ07dMK6kzGyQ6CEWUW8hxJpSASUYD306UkEATpIkzo1IbRwJ4dqQjjaIHAP9nGNSYuJxwnHw4md9JEIzylawng6KpNzdmceSrCgpmxjppsOkW8GdO-H2d5i-Jb7D1P7-yi-SCo9t0ZxUfl8iGKS6TrbaVBXXIdoV8fzPw95fA359QQWfi62RWz6idlsc-pnlNj0pJK_BvXU_hNCD6FDfZiBmdrzZaAAGgppF2rGhZUNVcwM2zUjWtUY6iosuSTgqk6ZWhrkESmF0l70_lFVwjm0VZmOuEZqEJMmMzHaQiDqSWsejHSkWBtimDA488bt2EKyfajr1DphyKN_Qq3ngVVxVHr_LIw7X5fKVW8jfD5-hzayMUGW9-KBeH3GEWlxrKacg_WNVCROcis8pYkTEr0lSbvkfuocdylBEp0LsORV1VfLj_lu8wQPZGjNIjj5yRLeHOlXDbPuD5UXmsY7ndsQScU93h1su5w9mKn7i4R-6uh_FMXDtYmLJGmzDNwwDqdo-wTkB1Hr87Ukw-NVrrOZQzQNFv_Pvid8g5iCz-ejjau0nOh7hDBj9cpttkc7mozS1yVn1ZTqrF7QYjKPl42hH2ExlztQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MF-Storm%3A+a+maximum+flow-based+job+scheduler+for+stream+processing+engines+on+computational+clusters+to+increase+throughput&rft.jtitle=PeerJ.+Computer+science&rft.au=Muhammad%2C+Asif&rft.au=Abdul+Qadir%2C+Muhammad&rft.date=2022-09-26&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e1077&rft_id=info:doi/10.7717%2Fpeerj-cs.1077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon