Facilitated diffusion with DNA coiling

When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 20; s. 8204
Hlavní autoři: Lomholt, Michael A, van den Broek, Bram, Kalisch, Svenja-Marei J, Wuite, Gijs J L, Metzler, Ralf
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 19.05.2009
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.
AbstractList When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.
When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.
Author Lomholt, Michael A
Kalisch, Svenja-Marei J
Metzler, Ralf
Wuite, Gijs J L
van den Broek, Bram
Author_xml – sequence: 1
  givenname: Michael A
  surname: Lomholt
  fullname: Lomholt, Michael A
  organization: Department of Physics and Chemistry, MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
– sequence: 2
  givenname: Bram
  surname: van den Broek
  fullname: van den Broek, Bram
– sequence: 3
  givenname: Svenja-Marei J
  surname: Kalisch
  fullname: Kalisch, Svenja-Marei J
– sequence: 4
  givenname: Gijs J L
  surname: Wuite
  fullname: Wuite, Gijs J L
– sequence: 5
  givenname: Ralf
  surname: Metzler
  fullname: Metzler, Ralf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19420219$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuLvVszfpyVvXN0nz8R6X1VVh0YueS9okGumXTYv47y2ygqcZmGF4Zk0Wbdc6Qi4pbCgoftO3Jm4AgTPkFOQJWVFAmskcYfHPL8k6xg8AQKHhjCwp5gwYxRW53psq1GE0o7OpDd5PMXRt-hXG9_T2aZtW3Zy2b-fk1Js6uoujJuR1f_eye8gOz_ePu-0hq4TAMTOohUEvLS1ReOXQMM8VF4jOgJdS6ZLlVFCVs5w57bSxChlajQKdl5wlM9Dvbj90n5OLY9GEWLm6Nq3rplhIxSRVM3tCro7FqWycLfohNGb4Lv6esR-cN0_1
CitedBy_id crossref_primary_10_1088_1478_3975_12_4_046012
crossref_primary_10_1016_j_bpj_2017_04_049
crossref_primary_10_1088_1751_8113_44_50_505002
crossref_primary_10_1038_s41467_019_12415_y
crossref_primary_10_1371_journal_pcbi_1002233
crossref_primary_10_1088_1367_2630_ac1e42
crossref_primary_10_1038_srep10072
crossref_primary_10_1038_nprot_2013_016
crossref_primary_10_1088_1751_8113_43_41_415002
crossref_primary_10_1002_wcms_1262
crossref_primary_10_1088_1742_5468_aac744
crossref_primary_10_1371_journal_pcbi_1002747
crossref_primary_10_1016_j_bpj_2017_04_038
crossref_primary_10_1088_1478_3975_abbe9a
crossref_primary_10_7554_eLife_27451
crossref_primary_10_1088_1367_2630_acc127
crossref_primary_10_1016_j_bpj_2022_01_001
crossref_primary_10_1016_j_jmb_2018_01_001
crossref_primary_10_1007_s10577_010_9172_5
crossref_primary_10_1016_j_bpj_2011_06_066
crossref_primary_10_5012_bkcs_2012_33_3_971
crossref_primary_10_1093_nar_gkaa1252
crossref_primary_10_1140_epjb_e2017_80372_4
crossref_primary_10_1016_j_ceb_2013_10_001
crossref_primary_10_1016_j_bpj_2017_01_018
crossref_primary_10_1088_1751_8121_aa53ee
crossref_primary_10_3390_genes8080192
crossref_primary_10_1007_s12551_016_0206_x
crossref_primary_10_1016_j_physa_2015_03_067
crossref_primary_10_1088_1742_5468_2011_06_P06022
crossref_primary_10_1088_1367_2630_17_11_113008
crossref_primary_10_1093_nar_gkw042
crossref_primary_10_1016_j_bpj_2012_03_060
crossref_primary_10_1016_j_jmb_2016_06_001
crossref_primary_10_1088_1751_8113_49_49_494003
crossref_primary_10_1088_1751_8113_42_43_434013
crossref_primary_10_1016_j_bpj_2017_12_037
crossref_primary_10_1016_j_sbi_2012_01_004
crossref_primary_10_1093_nar_gkt907
crossref_primary_10_1371_journal_pone_0053956
crossref_primary_10_1038_s41467_023_38790_1
crossref_primary_10_1016_j_bpj_2019_11_3388
crossref_primary_10_1093_nar_gkac260
crossref_primary_10_1088_1367_2630_17_4_043036
crossref_primary_10_1007_s10867_013_9310_3
crossref_primary_10_1016_j_jtbi_2016_01_005
crossref_primary_10_1073_pnas_1101555108
crossref_primary_10_1088_1751_8113_43_19_195003
crossref_primary_10_1088_1367_2630_abb1de
crossref_primary_10_1209_0295_5075_97_20008
crossref_primary_10_1103_PhysRevE_103_052404
crossref_primary_10_1016_j_jphotochemrev_2017_01_004
crossref_primary_10_1088_0034_4885_75_2_026601
crossref_primary_10_1002_cphc_201100112
crossref_primary_10_1088_1367_2630_ac8824
crossref_primary_10_1007_s12551_016_0240_8
crossref_primary_10_1088_1742_5468_2016_05_053501
crossref_primary_10_1002_bkcs_12808
crossref_primary_10_1016_j_bpj_2011_08_005
crossref_primary_10_1093_nar_gkt1327
crossref_primary_10_1016_j_physa_2012_01_028
crossref_primary_10_1016_j_bpj_2012_04_008
crossref_primary_10_1039_C7CP06922G
crossref_primary_10_1093_nar_gkx1220
crossref_primary_10_1088_1751_8113_42_43_434005
crossref_primary_10_1016_j_bpj_2013_03_030
crossref_primary_10_1074_jbc_M113_506550
crossref_primary_10_1016_j_bpj_2013_01_041
crossref_primary_10_1016_j_bpj_2010_02_055
crossref_primary_10_1016_j_physrep_2015_01_002
crossref_primary_10_1016_j_bpj_2010_04_026
crossref_primary_10_1007_s40042_021_00060_y
crossref_primary_10_1088_1751_8113_44_39_395005
crossref_primary_10_3390_ijms23126369
crossref_primary_10_1088_1367_2630_ad3841
crossref_primary_10_1021_acs_jpcb_5c02701
crossref_primary_10_1088_1367_2630_aced1d
crossref_primary_10_1016_j_bbagrm_2012_02_001
crossref_primary_10_1088_1742_5468_ac2a9d
crossref_primary_10_1088_1751_8113_49_39_394002
crossref_primary_10_1371_journal_pone_0108575
crossref_primary_10_1038_ncomms8445
crossref_primary_10_1039_C8CP02043D
crossref_primary_10_1088_1751_8121_aa5204
crossref_primary_10_1093_nar_gkv207
crossref_primary_10_1016_j_pbiomolbio_2010_07_002
crossref_primary_10_1088_1751_8121_ab15f5
crossref_primary_10_1371_journal_pone_0041027
crossref_primary_10_1038_srep17820
crossref_primary_10_1093_nar_gku078
crossref_primary_10_1016_j_pbiomolbio_2016_12_004
crossref_primary_10_1103_PhysRevResearch_3_013055
crossref_primary_10_1002_ijch_201400107
crossref_primary_10_1039_C6CP00307A
crossref_primary_10_1039_C6CP06102H
crossref_primary_10_1088_1751_8121_ac9c39
crossref_primary_10_1016_j_ijbiomac_2025_144377
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0903293106
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 19420219
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c559t-a985a9f6d1b95f7e9a2f373599ea0f6678b2415174242e8e8ad7929d8959ef632
IEDL.DBID 7X8
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266209000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 10:32:51 EST 2025
Thu Apr 03 07:06:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-a985a9f6d1b95f7e9a2f373599ea0f6678b2415174242e8e8ad7929d8959ef632
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0903293106
PMID 19420219
PQID 67261720
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67261720
pubmed_primary_19420219
PublicationCentury 2000
PublicationDate 2009-05-19
PublicationDateYYYYMMDD 2009-05-19
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-19
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
References 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31
16461402 - Biophys J. 2006 Apr 15;90(8):2731-44
15063724 - FEBS Lett. 2004 Apr 9;563(1-3):66-8
16907618 - Phys Rev Lett. 2006 Jul 28;97(4):048302
14973486 - Nature. 2004 Feb 19;427(6976):737-40
17677681 - Phys Rev Lett. 2007 May 18;98(20):200603
15797194 - Curr Opin Genet Dev. 2005 Apr;15(2):116-24
16606319 - Phys Rev Lett. 2006 Mar 10;96(9):098102
19039339 - Phys Chem Chem Phys. 2008 Dec 21;10(47):7059-72
10581237 - EMBO J. 1999 Dec 1;18(23):6630-41
16243975 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15883-8
10428968 - EMBO J. 1999 Aug 2;18(15):4299-307
15488529 - J Theor Biol. 2004 Dec 21;231(4):525-33
16486329 - Phys Rev Lett. 2005 Dec 31;95(26):260603
15178741 - Nucleic Acids Res. 2004;32(10):3040-52
4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17
15596498 - Biophys J. 2005 Mar;88(3):1608-15
17995231 - Phys Rev Lett. 2007 Oct 19;99(16):160602
9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13
2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8
18838672 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15738-42
18573081 - Annu Rev Biophys. 2008;37:247-63
7074207 - Biophys Chem. 1982 Apr;15(1):41-51
15908574 - Biophys J. 2005 Aug;89(2):895-902
17709750 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13948-53
15345543 - Biophys J. 2004 Sep;87(3):1640-9
9485362 - Biochemistry. 1998 Feb 24;37(8):2160-9
18851067 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909
17525339 - Science. 2007 May 25;316(5828):1191-4
18544605 - Nucleic Acids Res. 2008 Jul;36(12):4118-27
15465864 - Biophys J. 2004 Dec;87(6):4021-35
12628933 - EMBO J. 2003 Mar 17;22(6):1410-8
11101527 - EMBO J. 2000 Dec 1;19(23):6546-57
References_xml – reference: 16907618 - Phys Rev Lett. 2006 Jul 28;97(4):048302
– reference: 16486329 - Phys Rev Lett. 2005 Dec 31;95(26):260603
– reference: 15488529 - J Theor Biol. 2004 Dec 21;231(4):525-33
– reference: 12628933 - EMBO J. 2003 Mar 17;22(6):1410-8
– reference: 15596498 - Biophys J. 2005 Mar;88(3):1608-15
– reference: 11101527 - EMBO J. 2000 Dec 1;19(23):6546-57
– reference: 10428968 - EMBO J. 1999 Aug 2;18(15):4299-307
– reference: 15178741 - Nucleic Acids Res. 2004;32(10):3040-52
– reference: 9485362 - Biochemistry. 1998 Feb 24;37(8):2160-9
– reference: 9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13
– reference: 19039339 - Phys Chem Chem Phys. 2008 Dec 21;10(47):7059-72
– reference: 15465864 - Biophys J. 2004 Dec;87(6):4021-35
– reference: 15797194 - Curr Opin Genet Dev. 2005 Apr;15(2):116-24
– reference: 16243975 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15883-8
– reference: 16606319 - Phys Rev Lett. 2006 Mar 10;96(9):098102
– reference: 17525339 - Science. 2007 May 25;316(5828):1191-4
– reference: 14973486 - Nature. 2004 Feb 19;427(6976):737-40
– reference: 18838672 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15738-42
– reference: 17995231 - Phys Rev Lett. 2007 Oct 19;99(16):160602
– reference: 17709750 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13948-53
– reference: 16461402 - Biophys J. 2006 Apr 15;90(8):2731-44
– reference: 15908574 - Biophys J. 2005 Aug;89(2):895-902
– reference: 15345543 - Biophys J. 2004 Sep;87(3):1640-9
– reference: 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31
– reference: 17677681 - Phys Rev Lett. 2007 May 18;98(20):200603
– reference: 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17
– reference: 18544605 - Nucleic Acids Res. 2008 Jul;36(12):4118-27
– reference: 18851067 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909
– reference: 7074207 - Biophys Chem. 1982 Apr;15(1):41-51
– reference: 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8
– reference: 15063724 - FEBS Lett. 2004 Apr 9;563(1-3):66-8
– reference: 10581237 - EMBO J. 1999 Dec 1;18(23):6630-41
– reference: 18573081 - Annu Rev Biophys. 2008;37:247-63
SSID ssj0009580
Score 2.4088578
Snippet When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8204
SubjectTerms Diffusion
DNA - chemistry
DNA-Binding Proteins - metabolism
Models, Molecular
Nucleic Acid Conformation
Protein Binding
Title Facilitated diffusion with DNA coiling
URI https://www.ncbi.nlm.nih.gov/pubmed/19420219
https://www.proquest.com/docview/67261720
Volume 106
WOSCitedRecordID wos000266209000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5ZkAIBtO8_DgJCVVAxQBRB5C6RY5jS12SQlp-P3YeEgtiYMkWKTqf7_vuLvcdwGVEWcSM07ejWpA4ViFBnlHCbbAMGDUmw3pQ-IUniZjNcNqDu24Wxv1W2cXEOlDnpXI18hHjTjs89O8XH8TtjHK91XaBxhr0I0tknE_zmfghuSsaLQIMCIvR74R9eDRaFLK6dRUKC3aBz35nlzXKTLb_9307sNWyS2_cuMMAerrYhUF7fyvvuhWZvtmDq4lUjUC3zj23JWXlymaeK8t6j8nYU-XcDarvw_vk6e3hmbQ7E4iyucGSSBRUomF5kCE1XKMMTcQjiqilb5iFpsxhts1DLDZroYXMuWVIuUCK2rAoPID1oiz0EXgyRMXRxLFlBZbWxZnN_HgWiExJowOph3DRWSK1PukaDbLQ5apKO1sM4bAxZrpopDPSAOPQsgo8_vPdE9hsGjeUBHgKfWNvoz6DDfW1nFef5_VR22cyff0G0wSwdw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facilitated+diffusion+with+DNA+coiling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lomholt%2C+Michael+A&rft.au=van+den+Broek%2C+Bram&rft.au=Kalisch%2C+Svenja-Marei+J&rft.au=Wuite%2C+Gijs+J+L&rft.date=2009-05-19&rft.eissn=1091-6490&rft.volume=106&rft.issue=20&rft.spage=8204&rft_id=info:doi/10.1073%2Fpnas.0903293106&rft_id=info%3Apmid%2F19420219&rft_id=info%3Apmid%2F19420219&rft.externalDocID=19420219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon