Facilitated diffusion with DNA coiling
When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If th...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 20; s. 8204 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
19.05.2009
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins. |
|---|---|
| AbstractList | When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins. When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins. |
| Author | Lomholt, Michael A Kalisch, Svenja-Marei J Metzler, Ralf Wuite, Gijs J L van den Broek, Bram |
| Author_xml | – sequence: 1 givenname: Michael A surname: Lomholt fullname: Lomholt, Michael A organization: Department of Physics and Chemistry, MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark – sequence: 2 givenname: Bram surname: van den Broek fullname: van den Broek, Bram – sequence: 3 givenname: Svenja-Marei J surname: Kalisch fullname: Kalisch, Svenja-Marei J – sequence: 4 givenname: Gijs J L surname: Wuite fullname: Wuite, Gijs J L – sequence: 5 givenname: Ralf surname: Metzler fullname: Metzler, Ralf |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19420219$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LxDAYhIOsuLvVszfpyVvXN0nz8R6X1VVh0YueS9okGumXTYv47y2ygqcZmGF4Zk0Wbdc6Qi4pbCgoftO3Jm4AgTPkFOQJWVFAmskcYfHPL8k6xg8AQKHhjCwp5gwYxRW53psq1GE0o7OpDd5PMXRt-hXG9_T2aZtW3Zy2b-fk1Js6uoujJuR1f_eye8gOz_ePu-0hq4TAMTOohUEvLS1ReOXQMM8VF4jOgJdS6ZLlVFCVs5w57bSxChlajQKdl5wlM9Dvbj90n5OLY9GEWLm6Nq3rplhIxSRVM3tCro7FqWycLfohNGb4Lv6esR-cN0_1 |
| CitedBy_id | crossref_primary_10_1088_1478_3975_12_4_046012 crossref_primary_10_1016_j_bpj_2017_04_049 crossref_primary_10_1088_1751_8113_44_50_505002 crossref_primary_10_1038_s41467_019_12415_y crossref_primary_10_1371_journal_pcbi_1002233 crossref_primary_10_1088_1367_2630_ac1e42 crossref_primary_10_1038_srep10072 crossref_primary_10_1038_nprot_2013_016 crossref_primary_10_1088_1751_8113_43_41_415002 crossref_primary_10_1002_wcms_1262 crossref_primary_10_1088_1742_5468_aac744 crossref_primary_10_1371_journal_pcbi_1002747 crossref_primary_10_1016_j_bpj_2017_04_038 crossref_primary_10_1088_1478_3975_abbe9a crossref_primary_10_7554_eLife_27451 crossref_primary_10_1088_1367_2630_acc127 crossref_primary_10_1016_j_bpj_2022_01_001 crossref_primary_10_1016_j_jmb_2018_01_001 crossref_primary_10_1007_s10577_010_9172_5 crossref_primary_10_1016_j_bpj_2011_06_066 crossref_primary_10_5012_bkcs_2012_33_3_971 crossref_primary_10_1093_nar_gkaa1252 crossref_primary_10_1140_epjb_e2017_80372_4 crossref_primary_10_1016_j_ceb_2013_10_001 crossref_primary_10_1016_j_bpj_2017_01_018 crossref_primary_10_1088_1751_8121_aa53ee crossref_primary_10_3390_genes8080192 crossref_primary_10_1007_s12551_016_0206_x crossref_primary_10_1016_j_physa_2015_03_067 crossref_primary_10_1088_1742_5468_2011_06_P06022 crossref_primary_10_1088_1367_2630_17_11_113008 crossref_primary_10_1093_nar_gkw042 crossref_primary_10_1016_j_bpj_2012_03_060 crossref_primary_10_1016_j_jmb_2016_06_001 crossref_primary_10_1088_1751_8113_49_49_494003 crossref_primary_10_1088_1751_8113_42_43_434013 crossref_primary_10_1016_j_bpj_2017_12_037 crossref_primary_10_1016_j_sbi_2012_01_004 crossref_primary_10_1093_nar_gkt907 crossref_primary_10_1371_journal_pone_0053956 crossref_primary_10_1038_s41467_023_38790_1 crossref_primary_10_1016_j_bpj_2019_11_3388 crossref_primary_10_1093_nar_gkac260 crossref_primary_10_1088_1367_2630_17_4_043036 crossref_primary_10_1007_s10867_013_9310_3 crossref_primary_10_1016_j_jtbi_2016_01_005 crossref_primary_10_1073_pnas_1101555108 crossref_primary_10_1088_1751_8113_43_19_195003 crossref_primary_10_1088_1367_2630_abb1de crossref_primary_10_1209_0295_5075_97_20008 crossref_primary_10_1103_PhysRevE_103_052404 crossref_primary_10_1016_j_jphotochemrev_2017_01_004 crossref_primary_10_1088_0034_4885_75_2_026601 crossref_primary_10_1002_cphc_201100112 crossref_primary_10_1088_1367_2630_ac8824 crossref_primary_10_1007_s12551_016_0240_8 crossref_primary_10_1088_1742_5468_2016_05_053501 crossref_primary_10_1002_bkcs_12808 crossref_primary_10_1016_j_bpj_2011_08_005 crossref_primary_10_1093_nar_gkt1327 crossref_primary_10_1016_j_physa_2012_01_028 crossref_primary_10_1016_j_bpj_2012_04_008 crossref_primary_10_1039_C7CP06922G crossref_primary_10_1093_nar_gkx1220 crossref_primary_10_1088_1751_8113_42_43_434005 crossref_primary_10_1016_j_bpj_2013_03_030 crossref_primary_10_1074_jbc_M113_506550 crossref_primary_10_1016_j_bpj_2013_01_041 crossref_primary_10_1016_j_bpj_2010_02_055 crossref_primary_10_1016_j_physrep_2015_01_002 crossref_primary_10_1016_j_bpj_2010_04_026 crossref_primary_10_1007_s40042_021_00060_y crossref_primary_10_1088_1751_8113_44_39_395005 crossref_primary_10_3390_ijms23126369 crossref_primary_10_1088_1367_2630_ad3841 crossref_primary_10_1021_acs_jpcb_5c02701 crossref_primary_10_1088_1367_2630_aced1d crossref_primary_10_1016_j_bbagrm_2012_02_001 crossref_primary_10_1088_1742_5468_ac2a9d crossref_primary_10_1088_1751_8113_49_39_394002 crossref_primary_10_1371_journal_pone_0108575 crossref_primary_10_1038_ncomms8445 crossref_primary_10_1039_C8CP02043D crossref_primary_10_1088_1751_8121_aa5204 crossref_primary_10_1093_nar_gkv207 crossref_primary_10_1016_j_pbiomolbio_2010_07_002 crossref_primary_10_1088_1751_8121_ab15f5 crossref_primary_10_1371_journal_pone_0041027 crossref_primary_10_1038_srep17820 crossref_primary_10_1093_nar_gku078 crossref_primary_10_1016_j_pbiomolbio_2016_12_004 crossref_primary_10_1103_PhysRevResearch_3_013055 crossref_primary_10_1002_ijch_201400107 crossref_primary_10_1039_C6CP00307A crossref_primary_10_1039_C6CP06102H crossref_primary_10_1088_1751_8121_ac9c39 crossref_primary_10_1016_j_ijbiomac_2025_144377 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0903293106 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 19420219 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c559t-a985a9f6d1b95f7e9a2f373599ea0f6678b2415174242e8e8ad7929d8959ef632 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 167 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266209000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Nov 09 10:32:51 EST 2025 Thu Apr 03 07:06:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c559t-a985a9f6d1b95f7e9a2f373599ea0f6678b2415174242e8e8ad7929d8959ef632 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1073/pnas.0903293106 |
| PMID | 19420219 |
| PQID | 67261720 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67261720 pubmed_primary_19420219 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-05-19 |
| PublicationDateYYYYMMDD | 2009-05-19 |
| PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-19 day: 19 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2009 |
| References | 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31 16461402 - Biophys J. 2006 Apr 15;90(8):2731-44 15063724 - FEBS Lett. 2004 Apr 9;563(1-3):66-8 16907618 - Phys Rev Lett. 2006 Jul 28;97(4):048302 14973486 - Nature. 2004 Feb 19;427(6976):737-40 17677681 - Phys Rev Lett. 2007 May 18;98(20):200603 15797194 - Curr Opin Genet Dev. 2005 Apr;15(2):116-24 16606319 - Phys Rev Lett. 2006 Mar 10;96(9):098102 19039339 - Phys Chem Chem Phys. 2008 Dec 21;10(47):7059-72 10581237 - EMBO J. 1999 Dec 1;18(23):6630-41 16243975 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15883-8 10428968 - EMBO J. 1999 Aug 2;18(15):4299-307 15488529 - J Theor Biol. 2004 Dec 21;231(4):525-33 16486329 - Phys Rev Lett. 2005 Dec 31;95(26):260603 15178741 - Nucleic Acids Res. 2004;32(10):3040-52 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17 15596498 - Biophys J. 2005 Mar;88(3):1608-15 17995231 - Phys Rev Lett. 2007 Oct 19;99(16):160602 9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8 18838672 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15738-42 18573081 - Annu Rev Biophys. 2008;37:247-63 7074207 - Biophys Chem. 1982 Apr;15(1):41-51 15908574 - Biophys J. 2005 Aug;89(2):895-902 17709750 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13948-53 15345543 - Biophys J. 2004 Sep;87(3):1640-9 9485362 - Biochemistry. 1998 Feb 24;37(8):2160-9 18851067 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909 17525339 - Science. 2007 May 25;316(5828):1191-4 18544605 - Nucleic Acids Res. 2008 Jul;36(12):4118-27 15465864 - Biophys J. 2004 Dec;87(6):4021-35 12628933 - EMBO J. 2003 Mar 17;22(6):1410-8 11101527 - EMBO J. 2000 Dec 1;19(23):6546-57 |
| References_xml | – reference: 16907618 - Phys Rev Lett. 2006 Jul 28;97(4):048302 – reference: 16486329 - Phys Rev Lett. 2005 Dec 31;95(26):260603 – reference: 15488529 - J Theor Biol. 2004 Dec 21;231(4):525-33 – reference: 12628933 - EMBO J. 2003 Mar 17;22(6):1410-8 – reference: 15596498 - Biophys J. 2005 Mar;88(3):1608-15 – reference: 11101527 - EMBO J. 2000 Dec 1;19(23):6546-57 – reference: 10428968 - EMBO J. 1999 Aug 2;18(15):4299-307 – reference: 15178741 - Nucleic Acids Res. 2004;32(10):3040-52 – reference: 9485362 - Biochemistry. 1998 Feb 24;37(8):2160-9 – reference: 9581503 - Trends Biochem Sci. 1998 Mar;23(3):109-13 – reference: 19039339 - Phys Chem Chem Phys. 2008 Dec 21;10(47):7059-72 – reference: 15465864 - Biophys J. 2004 Dec;87(6):4021-35 – reference: 15797194 - Curr Opin Genet Dev. 2005 Apr;15(2):116-24 – reference: 16243975 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15883-8 – reference: 16606319 - Phys Rev Lett. 2006 Mar 10;96(9):098102 – reference: 17525339 - Science. 2007 May 25;316(5828):1191-4 – reference: 14973486 - Nature. 2004 Feb 19;427(6976):737-40 – reference: 18838672 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15738-42 – reference: 17995231 - Phys Rev Lett. 2007 Oct 19;99(16):160602 – reference: 17709750 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13948-53 – reference: 16461402 - Biophys J. 2006 Apr 15;90(8):2731-44 – reference: 15908574 - Biophys J. 2005 Aug;89(2):895-902 – reference: 15345543 - Biophys J. 2004 Sep;87(3):1640-9 – reference: 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31 – reference: 17677681 - Phys Rev Lett. 2007 May 18;98(20):200603 – reference: 4924006 - J Mol Biol. 1970 Nov 14;53(3):401-17 – reference: 18544605 - Nucleic Acids Res. 2008 Jul;36(12):4118-27 – reference: 18851067 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909 – reference: 7074207 - Biophys Chem. 1982 Apr;15(1):41-51 – reference: 2642903 - J Biol Chem. 1989 Jan 15;264(2):675-8 – reference: 15063724 - FEBS Lett. 2004 Apr 9;563(1-3):66-8 – reference: 10581237 - EMBO J. 1999 Dec 1;18(23):6630-41 – reference: 18573081 - Annu Rev Biophys. 2008;37:247-63 |
| SSID | ssj0009580 |
| Score | 2.4088578 |
| Snippet | When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 8204 |
| SubjectTerms | Diffusion DNA - chemistry DNA-Binding Proteins - metabolism Models, Molecular Nucleic Acid Conformation Protein Binding |
| Title | Facilitated diffusion with DNA coiling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19420219 https://www.proquest.com/docview/67261720 |
| Volume | 106 |
| WOSCitedRecordID | wos000266209000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5ZkAIBtO8_DgJCVVAxQBRB5C6RY5jS12SQlp-P3YeEgtiYMkWKTqf7_vuLvcdwGVEWcSM07ejWpA4ViFBnlHCbbAMGDUmw3pQ-IUniZjNcNqDu24Wxv1W2cXEOlDnpXI18hHjTjs89O8XH8TtjHK91XaBxhr0I0tknE_zmfghuSsaLQIMCIvR74R9eDRaFLK6dRUKC3aBz35nlzXKTLb_9307sNWyS2_cuMMAerrYhUF7fyvvuhWZvtmDq4lUjUC3zj23JWXlymaeK8t6j8nYU-XcDarvw_vk6e3hmbQ7E4iyucGSSBRUomF5kCE1XKMMTcQjiqilb5iFpsxhts1DLDZroYXMuWVIuUCK2rAoPID1oiz0EXgyRMXRxLFlBZbWxZnN_HgWiExJowOph3DRWSK1PukaDbLQ5apKO1sM4bAxZrpopDPSAOPQsgo8_vPdE9hsGjeUBHgKfWNvoz6DDfW1nFef5_VR22cyff0G0wSwdw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facilitated+diffusion+with+DNA+coiling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lomholt%2C+Michael+A&rft.au=van+den+Broek%2C+Bram&rft.au=Kalisch%2C+Svenja-Marei+J&rft.au=Wuite%2C+Gijs+J+L&rft.date=2009-05-19&rft.eissn=1091-6490&rft.volume=106&rft.issue=20&rft.spage=8204&rft_id=info:doi/10.1073%2Fpnas.0903293106&rft_id=info%3Apmid%2F19420219&rft_id=info%3Apmid%2F19420219&rft.externalDocID=19420219 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |