Constructing Large 2D Lattices Out of DNA-Tiles
The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and...
Uložené v:
| Vydané v: | Molecules (Basel, Switzerland) Ročník 26; číslo 6; s. 1502 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
10.03.2021
MDPI |
| Predmet: | |
| ISSN: | 1420-3049, 1420-3049 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices. |
|---|---|
| AbstractList | The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices. The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices. |
| Author | Toppari, J. Jussi Sokołowska, Karolina Parikka, Johannes M. Markešević, Nemanja |
| AuthorAffiliation | Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; johannes.m.parikka@jyu.fi (J.M.P.); karolina.x.sokolowska@jyu.fi (K.S.); nemanja.n.markesevic@jyu.fi (N.M.) |
| AuthorAffiliation_xml | – name: Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; johannes.m.parikka@jyu.fi (J.M.P.); karolina.x.sokolowska@jyu.fi (K.S.); nemanja.n.markesevic@jyu.fi (N.M.) |
| Author_xml | – sequence: 1 givenname: Johannes M. surname: Parikka fullname: Parikka, Johannes M. – sequence: 2 givenname: Karolina surname: Sokołowska fullname: Sokołowska, Karolina – sequence: 3 givenname: Nemanja surname: Markešević fullname: Markešević, Nemanja – sequence: 4 givenname: J. Jussi orcidid: 0000-0002-1698-5591 surname: Toppari fullname: Toppari, J. Jussi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33801952$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctuFDEQRS0URB7wAWxQS2zYNCk_294gRRMekUZkE9ZWtds9eNTTDrYbib_Hw4QoCRIrl-xzb91ynZKjOc6ekNcU3nNu4HwXJ--WyWemQFEJ7Bk5oYJBy0GYowf1MTnNeQvAqKDyBTnmXAM1kp2Q81Wcc0mLK2HeNGtMG9-wy1qUEpzPzfVSmjg2l18v2ptQO70kz0ecsn91d56Rb58-3qy-tOvrz1eri3XrpDSlVcwI3TmDIzLGezoOA-uV6FQPfeeU0gbG0RuDYOhQWaTdgAKV1zA4Lhk_I1cH3yHi1t6msMP0y0YM9s9FTBuLqUacvEXRc4ZCCq1rUyd61VFAqpVgKJGp6vXh4HW79Ds_OD-XhNMj08cvc_huN_Gn1QCgOK8G7-4MUvyx-FzsLmTnpwlnH5dsmQRdx-4AKvr2CbqNS5rrV-0pqrVSnajUm4eJ7qP83UsF6AFwKeac_HiPULD73dt_dl813RONCwVLiPuhwvQf5W9y_rMk |
| CitedBy_id | crossref_primary_10_1021_jacs_4c02772 crossref_primary_10_1016_j_hybadv_2025_100480 crossref_primary_10_1021_jacs_1c09503 crossref_primary_10_1002_anie_202416948 crossref_primary_10_1002_smll_202205933 crossref_primary_10_1002_cplu_202100548 crossref_primary_10_1002_jemt_24737 crossref_primary_10_1002_ange_202416948 crossref_primary_10_3390_molecules27134224 crossref_primary_10_1002_chem_202404108 crossref_primary_10_1080_00268976_2025_2472020 crossref_primary_10_3390_molecules28093686 crossref_primary_10_1039_D5LF00169B crossref_primary_10_1088_1361_6528_ad2ac5 crossref_primary_10_1039_D2NR06001A |
| Cites_doi | 10.1002/anie.201305765 10.1021/acs.langmuir.8b01843 10.1039/C6CS00745G 10.1126/science.aaf4388 10.1038/nnano.2016.116 10.1038/nnano.2011.102 10.1021/nl052210l 10.1021/nl502626s 10.1002/anie.200503797 10.1021/nn800316c 10.1021/ac402493u 10.1021/acs.nanolett.6b04146 10.1021/ja0665141 10.1021/ja055614o 10.1021/acsnano.8b01669 10.1021/acs.chemrev.7b00063 10.1007/s12274-020-2672-5 10.1021/acsami.8b22691 10.1002/chem.200903057 10.1039/C5CC08185H 10.1021/acs.langmuir.6b01961 10.1021/nn302896c 10.1021/acs.langmuir.8b00793 10.1021/acsnano.7b06012 10.1039/c2cc32204h 10.1021/acsami.6b10535 10.1038/nnano.2009.450 10.1021/acs.chemrev.8b00570 10.1021/acsami.8b16047 10.1126/science.1070821 10.1073/pnas.1117813109 10.1126/science.1228638 10.1021/acs.nanolett.6b03015 10.1038/srep45591 10.1021/bi00064a003 10.1038/nnano.2011.187 10.1126/science.aad2080 10.1016/S0006-3495(03)74673-6 10.1021/nl050084f 10.1002/anie.201105846 10.1038/nature18287 10.1021/ja993393e 10.1021/acs.accounts.7b00389 10.1002/anie.201403965 10.1021/acs.chemrev.7b00663 10.1073/pnas.1408869112 10.1021/nl048635+ 10.1021/nn506014s 10.1002/anie.200603919 10.1002/cbic.201600034 10.1002/cbic.201700545 10.1002/anie.201801983 10.1021/jacs.8b07180 10.1039/c0cc01167c 10.1038/nnano.2016.256 10.1021/bm401425k 10.1093/nar/gkw670 10.1021/ar5001082 10.1007/s11051-018-4225-3 10.1002/anie.201005911 10.1038/nbt874 10.1039/C5CC06092C 10.1126/science.1165831 10.1007/s11047-009-9147-7 10.1126/science.aah5974 10.1021/nl060994c 10.1016/j.chempr.2017.02.009 10.1021/ja9900398 10.1002/admi.201901265 10.1371/journal.pbio.0020424 10.1021/la026942u 10.1038/nmeth.1570 10.1093/nar/14.24.9745 10.1116/1.3646900 10.1016/0022-5193(82)90002-9 10.1038/nature10889 10.3390/ijms13067149 10.1126/sciadv.aap8978 10.1007/s41365-019-0639-6 10.1038/nmat4571 10.1007/s12274-020-2985-4 10.1126/science.1174251 10.1038/nnano.2009.220 10.1126/science.1214081 10.1039/C9FD00023B 10.1038/ncomms9052 10.1021/ja106292x 10.1016/j.mattod.2015.01.018 10.1038/srep08442 10.1002/smll.200900442 10.1016/j.chempr.2018.02.005 10.1021/nl1033073 10.1021/nl201603a 10.1021/jacs.8b10609 10.1039/c0cc05306f 10.1073/pnas.0305860101 10.1016/S0006-3495(93)81263-3 10.1021/ja0568446 10.1021/nn500108k 10.1021/acsnano.5b00161 10.1021/nl050175c 10.1039/C8NR09844A 10.1021/jacs.7b06572 10.1021/bm050230b 10.1038/nchem.2540 10.1126/science.1225624 10.1021/ja4109819 10.1021/nl0515495 10.1038/nmat4031 10.1126/science.1232252 10.1021/nn1031627 10.1126/science.1089389 10.1021/ja0541938 10.1002/anie.201106198 10.1021/jacs.9b09093 10.1021/nl050108i 10.1002/admi.201800437 10.1021/ja906475w 10.1002/anie.200501089 10.1021/nl304147f 10.1021/nl501064b 10.1023/A:1021145208328 10.1021/acsami.8b03585 10.1039/D0NR01252A 10.1126/science.1260901 10.1007/978-1-59745-218-2_8 10.1038/nchem.1070 10.1021/nl101262u 10.1088/2399-7532/ab80d5 10.1002/adma.201806294 10.1021/ja0693441 10.1021/ar400299m 10.1021/acsnano.9b02562 10.1021/la101343k 10.1021/ja982824a 10.1038/nmat2877 10.1002/cbic.201900073 10.1002/anie.200463027 10.1021/jacs.6b03966 10.1126/science.1157312 10.1039/C7TC01015J 10.1002/cphc.200600260 10.1126/science.1250944 10.1088/0957-4484/22/27/275301 10.1021/acs.chemrev.6b00825 10.1021/bi00237a005 10.1016/j.tibtech.2015.08.001 10.1073/pnas.0808736106 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/molecules26061502 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1420-3049 |
| ExternalDocumentID | oai_doaj_org_article_a4b32a45488948c4b6710a18642a5a26 PMC8000633 33801952 10_3390_molecules26061502 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Jane ja Aatos Erkon Säätiö grantid: 2019 |
| GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFFHD AFKRA AFPKN AFRAH AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c559t-629487c9afa223b1fdd2b6476b0b7c66890ffe99a091d294a17da4a6e80dc3523 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-3049 |
| IngestDate | Fri Oct 03 12:44:00 EDT 2025 Tue Nov 04 01:53:52 EST 2025 Mon Sep 08 17:21:42 EDT 2025 Tue Oct 07 07:22:20 EDT 2025 Thu Apr 03 06:59:19 EDT 2025 Sat Nov 29 07:15:02 EST 2025 Tue Nov 18 22:02:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | complexity lattice hierarchy DNA self-assembly DNA nanotechnology DNA origami lithography |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c559t-629487c9afa223b1fdd2b6476b0b7c66890ffe99a091d294a17da4a6e80dc3523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1698-5591 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2501886674?pq-origsite=%requestingapplication% |
| PMID | 33801952 |
| PQID | 2501886674 |
| PQPubID | 2032355 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a4b32a45488948c4b6710a18642a5a26 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000633 proquest_miscellaneous_2508559700 proquest_journals_2501886674 pubmed_primary_33801952 crossref_primary_10_3390_molecules26061502 crossref_citationtrail_10_3390_molecules26061502 |
| PublicationCentury | 2000 |
| PublicationDate | 20210310 |
| PublicationDateYYYYMMDD | 2021-03-10 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210310 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Molecules (Basel, Switzerland) |
| PublicationTitleAlternate | Molecules |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Liu (ref_69) 2005; 127 Seeman (ref_8) 2018; 3 Tikhomirov (ref_110) 2017; 552 Suzuki (ref_42) 2015; 6 Ma (ref_85) 1986; 14 Julin (ref_41) 2018; 20 He (ref_98) 2006; 128 Wagenbauer (ref_30) 2017; 552 Wei (ref_103) 2005; 6 Brassat (ref_138) 2018; 34 Hong (ref_39) 2017; 117 Xiao (ref_151) 2002; 4 Shaali (ref_140) 2017; 5 Song (ref_163) 2019; 13 Yin (ref_51) 2008; 321 Tikhomirov (ref_77) 2016; 12 Teschome (ref_94) 2016; 32 Winfree (ref_67) 1998; 394 Kempter (ref_127) 2019; 13 Liu (ref_111) 2016; 8 Jungmann (ref_35) 2011; 22 Rajendran (ref_109) 2010; 5 Benson (ref_54) 2015; 523 Chao (ref_146) 2015; 18 Wang (ref_87) 2016; 44 Cigler (ref_159) 2010; 9 Sun (ref_58) 2015; 51 Woo (ref_107) 2011; 3 Liu (ref_157) 2016; 351 Hong (ref_97) 2018; 140 Evans (ref_46) 2017; 46 Burns (ref_130) 2013; 13 Zhou (ref_19) 2017; 50 Choi (ref_23) 2018; 10 Kielar (ref_114) 2018; 10 Wang (ref_60) 2010; 46 Liu (ref_89) 2004; 101 Rafat (ref_64) 2014; 53 Seeman (ref_48) 1993; 32 Lund (ref_72) 2005; 127 Xin (ref_117) 2020; 12 Bujold (ref_26) 2018; 4 Kan (ref_122) 2015; 5 Malo (ref_80) 2005; 44 Yan (ref_79) 2003; 301 Gopinath (ref_142) 2016; 535 Barish (ref_76) 2009; 106 Sato (ref_125) 2018; 5 Shih (ref_102) 2004; 427 Hung (ref_133) 2009; 5 Avakyan (ref_128) 2017; 139 Roller (ref_17) 2016; 16 Alivisatos (ref_148) 1996; 382 Fusil (ref_123) 2003; 19 Gao (ref_136) 2010; 26 Shen (ref_150) 2018; 34 He (ref_99) 2005; 127 Mirkin (ref_147) 1996; 382 ref_74 Schulman (ref_75) 2012; 109 Gopinath (ref_135) 2014; 8 Zhao (ref_78) 2011; 11 Yang (ref_161) 2014; 47 Dietz (ref_50) 2009; 325 Seeman (ref_47) 2005; 303 Woo (ref_65) 2014; 5 Kocabey (ref_129) 2015; 9 Mao (ref_104) 1999; 121 Jiang (ref_126) 2014; 8 Ramakrishnan (ref_116) 2016; 8 Marchi (ref_28) 2014; 14 Weiss (ref_145) 2008; 2 Park (ref_70) 2006; 45 Park (ref_154) 2005; 5 Pinto (ref_153) 2005; 5 Hawkes (ref_141) 2019; 219 Rothemund (ref_11) 2006; 440 Liu (ref_66) 2017; 18 Kuzyk (ref_20) 2014; 13 Pibiri (ref_143) 2014; 14 Castro (ref_29) 2011; 8 Liu (ref_34) 2010; 50 Endo (ref_113) 2014; 47 Li (ref_32) 2010; 132 Kuzyk (ref_18) 2012; 483 Shen (ref_44) 2018; 4 Seeman (ref_9) 1982; 99 Grzybowski (ref_3) 2016; 11 Baker (ref_106) 2018; 12 Wang (ref_61) 2016; 138 Hu (ref_160) 2019; 31 Langecker (ref_25) 2012; 338 Veneziano (ref_55) 2016; 352 Knowles (ref_4) 2011; 6 Liu (ref_118) 2019; 30 Sacca (ref_15) 2011; 51 Wei (ref_52) 2012; 485 Wang (ref_84) 1991; 30 Bartnik (ref_24) 2019; 142 Tikhomirov (ref_101) 2018; 140 Endo (ref_105) 2010; 16 Ban (ref_56) 2013; 15 Kershner (ref_132) 2009; 4 Evans (ref_45) 2013; 8141 Suzuki (ref_62) 2018; 57 Sharma (ref_155) 2009; 323 ref_162 Le (ref_152) 2004; 4 Pfeifer (ref_36) 2018; 12 Liu (ref_88) 2005; 44 Kallenbach (ref_83) 1983; 305 Linko (ref_22) 2015; 33 Zadegan (ref_96) 2012; 13 Aryal (ref_165) 2020; 13 Wang (ref_86) 2007; 129 Yun (ref_139) 2011; 51 Duguid (ref_120) 1993; 65 Sun (ref_71) 2009; 131 Gerdon (ref_137) 2009; 5 Seeman (ref_10) 2010; 10 Mathieu (ref_91) 2005; 5 Lu (ref_112) 2020; 7 Gan (ref_92) 2013; 85 Xin (ref_40) 2020; 13 Madsen (ref_6) 2019; 119 Liu (ref_68) 1999; 121 LaBean (ref_49) 2000; 122 Penzo (ref_134) 2011; 29 Han (ref_53) 2013; 339 Ding (ref_95) 2010; 10 Zhang (ref_27) 2012; 48 Burns (ref_131) 2013; 52 Iinuma (ref_57) 2014; 344 Tian (ref_156) 2016; 15 Douglas (ref_21) 2012; 335 Lin (ref_38) 2006; 7 Endo (ref_108) 2011; 47 Liu (ref_115) 2019; 11 Tapio (ref_13) 2020; 3 Yang (ref_37) 2012; 6 Zheng (ref_82) 2009; 461 Williams (ref_158) 2007; 46 Tigges (ref_33) 2016; 16 Dong (ref_43) 2019; 20 Suzuki (ref_124) 2014; 136 Fusil (ref_121) 2003; 85 Douglas (ref_12) 2009; 459 Patitz (ref_73) 2009; 9 Zheng (ref_81) 2006; 6 Zhou (ref_119) 2017; 117 Jones (ref_149) 2015; 347 Pinheiro (ref_5) 2011; 6 Nickels (ref_7) 2016; 354 Hu (ref_164) 2018; 119 Wang (ref_59) 2016; 52 Whitesides (ref_1) 2002; 295 Wang (ref_14) 2017; 2 Marras (ref_63) 2015; 112 Huang (ref_144) 2017; 7 Pfeifer (ref_31) 2016; 17 Acuna (ref_16) 2012; 338 Julin (ref_93) 2019; 11 Zhang (ref_2) 2003; 21 Park (ref_90) 2005; 5 Zhang (ref_100) 2006; 6 |
| References_xml | – volume: 52 start-page: 12069 year: 2013 ident: ref_131 article-title: Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305765 – volume: 34 start-page: 14911 year: 2018 ident: ref_150 article-title: DNA origami nanophotonics and plasmonics at interfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01843 – volume: 46 start-page: 3808 year: 2017 ident: ref_46 article-title: Physical principles for DNA tile self-assembly publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00745G – volume: 352 start-page: 1534 year: 2016 ident: ref_55 article-title: Designer nanoscale DNA assemblies programmed from the top down publication-title: Science doi: 10.1126/science.aaf4388 – volume: 305 start-page: 829 year: 1983 ident: ref_83 article-title: An immobile nucleic acid junction constructed from oligonucleotides publication-title: Nat. Cell Biol. – volume: 11 start-page: 585 year: 2016 ident: ref_3 article-title: The nanotechnology of life-inspired systems publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.116 – volume: 6 start-page: 469 year: 2011 ident: ref_4 article-title: Nanomechanics of functional and pathological amyloid materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.102 – volume: 6 start-page: 248 year: 2006 ident: ref_100 article-title: Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface publication-title: Nano Lett. doi: 10.1021/nl052210l – volume: 14 start-page: 5740 year: 2014 ident: ref_28 article-title: Toward larger DNA origami publication-title: Nano Lett. doi: 10.1021/nl502626s – volume: 45 start-page: 735 year: 2006 ident: ref_70 article-title: Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503797 – volume: 2 start-page: 1089 year: 2008 ident: ref_145 article-title: A conversation with Prof. Ned Seeman: Founder of DNA nanotechnology publication-title: ACS Nano doi: 10.1021/nn800316c – volume: 85 start-page: 11427 year: 2013 ident: ref_92 article-title: Six-helix bundle and triangle DNA origami insulator-based dielectro-phoresis publication-title: Anal. Chem. doi: 10.1021/ac402493u – volume: 16 start-page: 7870 year: 2016 ident: ref_33 article-title: 3D DNA origami cuboids as monodisperse patchy nanoparticles for switchable hierarchical self-assembly publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04146 – volume: 128 start-page: 15978 year: 2006 ident: ref_98 article-title: Highly connected two-dimensional crystals of DNA six-point-stars publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0665141 – volume: 127 start-page: 17140 year: 2005 ident: ref_69 article-title: Self-assembly of symmetric finite-size DNA nanoarrays publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055614o – volume: 12 start-page: 5791 year: 2018 ident: ref_106 article-title: Dimensions and global twist of single-layer DNA origami measured by small-angle X-ray scattering publication-title: ACS Nano doi: 10.1021/acsnano.8b01669 – volume: 117 start-page: 8272 year: 2017 ident: ref_119 article-title: Metal sensing by DNA publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00063 – volume: 13 start-page: 1419 year: 2020 ident: ref_165 article-title: DNA origami mediated electrically connected metal-semiconductor junctions publication-title: Nano Res. doi: 10.1007/s12274-020-2672-5 – volume: 11 start-page: 13853 year: 2019 ident: ref_115 article-title: Patterning nanoparticles with DNA molds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22691 – volume: 16 start-page: 5362 year: 2010 ident: ref_105 article-title: Programmed-assembly system using DNA jigsaw pieces publication-title: Chem. A Eur. J. doi: 10.1002/chem.200903057 – volume: 52 start-page: 1610 year: 2016 ident: ref_59 article-title: Control of DNA origami inter-tile connection with vertical linkers publication-title: Chem. Commun. doi: 10.1039/C5CC08185H – volume: 32 start-page: 10159 year: 2016 ident: ref_94 article-title: Temperature-dependent charge transport through individually contacted DNA origami-based au nanowires publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01961 – volume: 6 start-page: 8209 year: 2012 ident: ref_37 article-title: DNA Origami with double-stranded DNA as a unified scaffold publication-title: ACS Nano doi: 10.1021/nn302896c – volume: 34 start-page: 14757 year: 2018 ident: ref_138 article-title: On the Adsorption of DNA origami nanostructures in nanohole arrays publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00793 – volume: 12 start-page: 44 year: 2018 ident: ref_36 article-title: Hierarchical assembly of DNA filaments with designer elastic properties publication-title: ACS Nano doi: 10.1021/acsnano.7b06012 – volume: 459 start-page: 414 year: 2009 ident: ref_12 article-title: Self-assembly of DNA into nanoscale three-dimensional shapes publication-title: Nat. Cell Biol. – volume: 48 start-page: 6405 year: 2012 ident: ref_27 article-title: Folding super-sized DNA origami with scaffold strands from long-range PCR publication-title: Chem. Commun. doi: 10.1039/c2cc32204h – volume: 8 start-page: 31239 year: 2016 ident: ref_116 article-title: Regular nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10535 – volume: 5 start-page: 121 year: 2009 ident: ref_133 article-title: Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.450 – volume: 119 start-page: 6384 year: 2019 ident: ref_6 article-title: Chemistries for DNA nanotechnology publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00570 – volume: 10 start-page: 44844 year: 2018 ident: ref_114 article-title: Dynamics of DNA origami lattice formation at solid-liquid interfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16047 – volume: 295 start-page: 2418 year: 2002 ident: ref_1 article-title: Self-assembly at all scales publication-title: Science doi: 10.1126/science.1070821 – volume: 109 start-page: 6405 year: 2012 ident: ref_75 article-title: Robust self-replication of combinatorial information via crystal growth and scission publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117813109 – volume: 338 start-page: 506 year: 2012 ident: ref_16 article-title: Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas publication-title: Science doi: 10.1126/science.1228638 – volume: 16 start-page: 5962 year: 2016 ident: ref_17 article-title: Plasmon–exciton coupling using DNA templates publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03015 – volume: 7 start-page: srep45591 year: 2017 ident: ref_144 article-title: DNA-mediated patterning of single quantum dot nanoarrays: A reusable platform for single-molecule control publication-title: Sci. Rep. doi: 10.1038/srep45591 – volume: 32 start-page: 3211 year: 1993 ident: ref_48 article-title: DNA double-crossover molecules publication-title: Biochemistry doi: 10.1021/bi00064a003 – volume: 6 start-page: 763 year: 2011 ident: ref_5 article-title: Challenges and opportunities for structural DNA nanotechnology publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.187 – volume: 461 start-page: 74 year: 2009 ident: ref_82 article-title: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal publication-title: Nat. Cell Biol. – volume: 523 start-page: 441 year: 2015 ident: ref_54 article-title: DNA rendering of polyhedral meshes at the nanoscale publication-title: Nat. Cell Biol. – volume: 351 start-page: 582 year: 2016 ident: ref_157 article-title: Diamond family of nanoparticle superlattices publication-title: Science doi: 10.1126/science.aad2080 – volume: 13 start-page: 996 year: 2019 ident: ref_127 article-title: Single particle tracking and super-resolution imaging of membrane-assisted stop-and-go diffusion and lattice assembly of DNA origami publication-title: ACS Nano – volume: 85 start-page: 2507 year: 2003 ident: ref_121 article-title: Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)74673-6 – volume: 5 start-page: 1 year: 2014 ident: ref_65 article-title: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion publication-title: Nat. Commun. – volume: 5 start-page: 661 year: 2005 ident: ref_91 article-title: Six-helix bundles designed from DNA publication-title: Nano Lett. doi: 10.1021/nl050084f – volume: 51 start-page: 58 year: 2011 ident: ref_15 article-title: DNA origami: The art of folding DNA publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201105846 – volume: 535 start-page: 401 year: 2016 ident: ref_142 article-title: Engineering and mapping nanocavity emission via precision placement of DNA origami publication-title: Nature doi: 10.1038/nature18287 – volume: 122 start-page: 1848 year: 2000 ident: ref_49 article-title: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993393e – volume: 50 start-page: 2906 year: 2017 ident: ref_19 article-title: DNA-nanotechnology-enabled chiral plasmonics: From static to dynamic publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00389 – volume: 53 start-page: 7665 year: 2014 ident: ref_64 article-title: Surface-assisted large-scale ordering of DNA origami tiles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403965 – volume: 119 start-page: 6459 year: 2018 ident: ref_164 article-title: DNA nanotechnology-enabled drug delivery systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00663 – volume: 112 start-page: 713 year: 2015 ident: ref_63 article-title: Programmable motion of DNA origami mechanisms publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1408869112 – volume: 4 start-page: 2343 year: 2004 ident: ref_152 article-title: DNA-Templated self-assembly of metallic nanocomponent arrays on a surface publication-title: Nano Lett. doi: 10.1021/nl048635+ – volume: 8 start-page: 12030 year: 2014 ident: ref_135 article-title: Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays publication-title: ACS Nano doi: 10.1021/nn506014s – volume: 46 start-page: 3051 year: 2007 ident: ref_158 article-title: Self-assembled peptide nanoarrays: An approach to studying protein-protein interactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200603919 – volume: 17 start-page: 1063 year: 2016 ident: ref_31 article-title: From nano to macro through hierarchical self-assembly: The DNA paradigm publication-title: ChemBioChem doi: 10.1002/cbic.201600034 – volume: 18 start-page: 2404 year: 2017 ident: ref_66 article-title: Regulating DNA self-assembly by DNA-surface interactions publication-title: ChemBioChem doi: 10.1002/cbic.201700545 – volume: 427 start-page: 618 year: 2004 ident: ref_102 article-title: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron publication-title: Nat. Cell Biol. – volume: 57 start-page: 7061 year: 2018 ident: ref_62 article-title: Complexing DNA origami frameworks through sequential self-assembly based on directed docking publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801983 – volume: 140 start-page: 14670 year: 2018 ident: ref_97 article-title: Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07180 – volume: 8141 start-page: 61 year: 2013 ident: ref_45 article-title: DNA sticky end design and assignment for robust algorithmic self-assembly publication-title: Comput. Vis. – volume: 46 start-page: 4905 year: 2010 ident: ref_60 article-title: Blunt-ended DNA stacking interactions in a 3-helix motif publication-title: Chem. Commun. doi: 10.1039/c0cc01167c – volume: 12 start-page: 251 year: 2016 ident: ref_77 article-title: Programmable disorder in random DNA tilings publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.256 – volume: 15 start-page: 143 year: 2013 ident: ref_56 article-title: Strength of DNA sticky end links publication-title: Biomacromolecules doi: 10.1021/bm401425k – volume: 44 start-page: 7989 year: 2016 ident: ref_87 article-title: Self-assembly of fully addressable DNA nanostructures from double crossover tiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw670 – volume: 47 start-page: 1902 year: 2014 ident: ref_161 article-title: DNA materials: Bridging nanotechnology and biotechnology publication-title: Acc. Chem. Res. doi: 10.1021/ar5001082 – volume: 552 start-page: 78 year: 2017 ident: ref_30 article-title: Gigadalton-scale shape-programmable DNA assemblies publication-title: Nat. Cell Biol. – volume: 20 start-page: 119 year: 2018 ident: ref_41 article-title: DNA nanostructure-directed assembly of metal nanoparticle superlat-tices publication-title: J. Nanopart. Res. doi: 10.1007/s11051-018-4225-3 – volume: 50 start-page: 264 year: 2010 ident: ref_34 article-title: Crystalline two-dimensional DNA-origami arrays publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005911 – volume: 21 start-page: 1171 year: 2003 ident: ref_2 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nat. Biotechnol. doi: 10.1038/nbt874 – volume: 485 start-page: 623 year: 2012 ident: ref_52 article-title: Complex shapes self-assembled from single-stranded DNA tiles publication-title: Nat. Cell Biol. – volume: 51 start-page: 16247 year: 2015 ident: ref_58 article-title: DNA polygonal cavities with tunable shapes and sizes publication-title: Chem. Commun. doi: 10.1039/C5CC06092C – volume: 323 start-page: 112 year: 2009 ident: ref_155 article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles publication-title: Science doi: 10.1126/science.1165831 – volume: 9 start-page: 135 year: 2009 ident: ref_73 article-title: Self-assembly of discrete self-similar fractals publication-title: Nat. Comput. doi: 10.1007/s11047-009-9147-7 – volume: 354 start-page: 305 year: 2016 ident: ref_7 article-title: Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp publication-title: Science doi: 10.1126/science.aah5974 – volume: 3 start-page: 1 year: 2018 ident: ref_8 article-title: DNA nanotechnology publication-title: Nat. Rev. Mater. – volume: 6 start-page: 1502 year: 2006 ident: ref_81 article-title: Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs publication-title: Nano Lett. doi: 10.1021/nl060994c – volume: 2 start-page: 359 year: 2017 ident: ref_14 article-title: The beauty and utility of DNA origami publication-title: Chem doi: 10.1016/j.chempr.2017.02.009 – volume: 121 start-page: 5437 year: 1999 ident: ref_104 article-title: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9900398 – volume: 7 start-page: 1 year: 2020 ident: ref_112 article-title: Atomic scale understanding of the epitaxy of perovskite oxides on flexible mica substrate publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901265 – ident: ref_74 doi: 10.1371/journal.pbio.0020424 – volume: 19 start-page: 2536 year: 2003 ident: ref_123 article-title: Reversible binding of DNA on NiCl2-treated mica by varying the ionic strength publication-title: Langmuir doi: 10.1021/la026942u – volume: 8 start-page: 221 year: 2011 ident: ref_29 article-title: A primer to scaffolded DNA origami publication-title: Nat. Methods doi: 10.1038/nmeth.1570 – volume: 14 start-page: 9745 year: 1986 ident: ref_85 article-title: Three-arm nucleic acid junctions are flexible publication-title: Nucleic Acids Res. doi: 10.1093/nar/14.24.9745 – volume: 29 start-page: 6 year: 2011 ident: ref_134 article-title: Selective placement of DNA origami on substrates patterned by nanoimprint Lithography publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3646900 – volume: 99 start-page: 237 year: 1982 ident: ref_9 article-title: Nucleic acid junctions and lattices publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(82)90002-9 – volume: 483 start-page: 311 year: 2012 ident: ref_18 article-title: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response publication-title: Nature doi: 10.1038/nature10889 – volume: 394 start-page: 539 year: 1998 ident: ref_67 article-title: Design and self-assembly of two-dimensional DNA crystals publication-title: Nat. Cell Biol. – volume: 13 start-page: 7149 year: 2012 ident: ref_96 article-title: Structural DNA nanotechnology: From design to applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13067149 – volume: 4 start-page: eaap8978 year: 2018 ident: ref_44 article-title: Plasmonic Nanostructures through DNA-assisted lithography publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8978 – volume: 30 start-page: 111 year: 2019 ident: ref_118 article-title: Effect of concentration and adsorption time on the formation of a large-scale origami pattern publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-019-0639-6 – volume: 15 start-page: 654 year: 2016 ident: ref_156 article-title: Lattice engineering through nanoparticle–DNA frameworks publication-title: Nat. Mater. doi: 10.1038/nmat4571 – volume: 13 start-page: 3142 year: 2020 ident: ref_40 article-title: Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange publication-title: Nano Res. doi: 10.1007/s12274-020-2985-4 – volume: 325 start-page: 725 year: 2009 ident: ref_50 article-title: Folding DNA into twisted and curved nanoscale shapes publication-title: Science doi: 10.1126/science.1174251 – volume: 4 start-page: 557 year: 2009 ident: ref_132 article-title: Placement and orientation of individual DNA shapes on lithographically patterned surfaces publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.220 – volume: 335 start-page: 831 year: 2012 ident: ref_21 article-title: A Logic-Gated Nanorobot for targeted transport of molecular payloads publication-title: Science doi: 10.1126/science.1214081 – volume: 219 start-page: 203 year: 2019 ident: ref_141 article-title: Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control publication-title: Faraday Discuss. doi: 10.1039/C9FD00023B – volume: 6 start-page: 8052 year: 2015 ident: ref_42 article-title: Lipid-bilayer-assisted two-dimensional self-assembly of dna origami nanostructures publication-title: Nat. Commun. doi: 10.1038/ncomms9052 – volume: 132 start-page: 13545 year: 2010 ident: ref_32 article-title: Molecular behavior of DNA origami in higher-order self-assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106292x – volume: 18 start-page: 326 year: 2015 ident: ref_146 article-title: DNA-based plasmonic nanostructures publication-title: Mater. Today doi: 10.1016/j.mattod.2015.01.018 – volume: 5 start-page: srep08442 year: 2015 ident: ref_122 article-title: Study of DNA adsorption on mica surfaces using a surface force apparatus publication-title: Sci. Rep. doi: 10.1038/srep08442 – volume: 5 start-page: 1942 year: 2009 ident: ref_137 article-title: Controlled delivery of DNA origami on patterned surfaces publication-title: Small doi: 10.1002/smll.200900442 – volume: 4 start-page: 495 year: 2018 ident: ref_26 article-title: DNA nanostructures at the interface with biology publication-title: Chem doi: 10.1016/j.chempr.2018.02.005 – volume: 10 start-page: 5065 year: 2010 ident: ref_95 article-title: Interconnecting gold islands with DNA origami nanotubes publication-title: Nano Lett. doi: 10.1021/nl1033073 – volume: 11 start-page: 2997 year: 2011 ident: ref_78 article-title: Organizing DNA origami tiles into larger structures using preformed scaffold frames publication-title: Nano Lett. doi: 10.1021/nl201603a – volume: 140 start-page: 17361 year: 2018 ident: ref_101 article-title: Triangular DNA origami tilings publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10609 – volume: 47 start-page: 3213 year: 2011 ident: ref_108 article-title: Two-dimensional DNA origami assemblies using a four-way connector publication-title: Chem. Commun. doi: 10.1039/c0cc05306f – volume: 101 start-page: 717 year: 2004 ident: ref_89 article-title: DNA Nanotubes Self-Assembled from Triple-Crossover Tiles as Templates for conductive nanowires publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305860101 – volume: 65 start-page: 1916 year: 1993 ident: ref_120 article-title: Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81263-3 – volume: 127 start-page: 17606 year: 2005 ident: ref_72 article-title: Self-assembling a molecular pegboard publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0568446 – volume: 8 start-page: 5641 year: 2014 ident: ref_126 article-title: DNA–Cholesterol barges as programmable membrane-exploring agents publication-title: ACS Nano doi: 10.1021/nn500108k – volume: 9 start-page: 3530 year: 2015 ident: ref_129 article-title: Membrane-assisted growth of DNA origami nanostructure arrays publication-title: ACS Nano doi: 10.1021/acsnano.5b00161 – volume: 5 start-page: 729 year: 2005 ident: ref_154 article-title: Programmable DMA self-assemblies for nanoscale organization of ligands and proteins publication-title: Nano Lett. doi: 10.1021/nl050175c – volume: 11 start-page: 4546 year: 2019 ident: ref_93 article-title: DNA origami directed 3D nanoparticle superlattice: Via electrostatic assembly publication-title: Nanoscale doi: 10.1039/C8NR09844A – volume: 139 start-page: 12027 year: 2017 ident: ref_128 article-title: Long-range ordering of blunt-ended DNA tiles on supported lipid bilayers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06572 – volume: 6 start-page: 2528 year: 2005 ident: ref_103 article-title: A new triple crossover triangle (TXT) motif for DNA self-assembly publication-title: Biomacromolecules doi: 10.1021/bm050230b – volume: 8 start-page: 867 year: 2016 ident: ref_111 article-title: Self-organized architectures from assorted DNA-framed nanoparticles publication-title: Nat. Chem. doi: 10.1038/nchem.2540 – volume: 338 start-page: 932 year: 2012 ident: ref_25 article-title: Synthetic lipid membrane channels formed by designed DNA nanostructures publication-title: Science doi: 10.1126/science.1225624 – volume: 136 start-page: 1714 year: 2014 ident: ref_124 article-title: Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4109819 – volume: 5 start-page: 2399 year: 2005 ident: ref_153 article-title: Sequence-encoded self-assembly of mul-tiple-nanocomponent arrays by 2D DNA scaffolding publication-title: Nano Lett. doi: 10.1021/nl0515495 – volume: 13 start-page: 862 year: 2014 ident: ref_20 article-title: Reconfigurable 3D plasmonic metamolecules publication-title: Nat. Mater. doi: 10.1038/nmat4031 – volume: 339 start-page: 1412 year: 2013 ident: ref_53 article-title: DNA gridiron nanostructures based on four-arm junctions publication-title: Science doi: 10.1126/science.1232252 – volume: 5 start-page: 665 year: 2010 ident: ref_109 article-title: Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces publication-title: ACS Nano doi: 10.1021/nn1031627 – volume: 301 start-page: 1882 year: 2003 ident: ref_79 article-title: DNA-templated self-assembly of protein arrays and highly conductive nanowires publication-title: Science doi: 10.1126/science.1089389 – volume: 127 start-page: 12202 year: 2005 ident: ref_99 article-title: Self-assembly of hexagonal DNA two-dimensional (2D) arrays publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0541938 – volume: 51 start-page: 912 year: 2011 ident: ref_139 article-title: DNA origami nanopatterning on chemically modified graphene publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106198 – volume: 142 start-page: 815 year: 2019 ident: ref_24 article-title: A DNA origami platform for single-pair förster resonance energy transfer investigation of DNA–DNA interactions and ligation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09093 – volume: 5 start-page: 693 year: 2005 ident: ref_90 article-title: Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires publication-title: Nano Lett. doi: 10.1021/nl050108i – volume: 5 start-page: 1 year: 2018 ident: ref_125 article-title: Environment-dependent self-assembly of DNA origami lattices on phase-separated lipid membranes publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800437 – volume: 131 start-page: 13248 year: 2009 ident: ref_71 article-title: Surface-mediated DNA self-assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906475w – volume: 44 start-page: 4333 year: 2005 ident: ref_88 article-title: Aptamer-directed self-assembly of protein arrays on a DNA nanostructure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200501089 – volume: 13 start-page: 2351 year: 2013 ident: ref_130 article-title: Self-assembled DNA nanopores that span lipid bilayers publication-title: Nano Lett. doi: 10.1021/nl304147f – volume: 14 start-page: 3499 year: 2014 ident: ref_143 article-title: Single-molecule positioning in zeromode waveguides by DNA origami nanoadapters publication-title: Nano Lett. doi: 10.1021/nl501064b – volume: 4 start-page: 313 year: 2002 ident: ref_151 article-title: Selfassembly of metallic NA-noparticle arrays by DNA scaffolding publication-title: J. Nanopart. Res. doi: 10.1023/A:1021145208328 – volume: 10 start-page: 23295 year: 2018 ident: ref_23 article-title: DNA origami-based förster resonance energy-transfer nanoarrays and their application as ratiometric sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03585 – volume: 12 start-page: 9733 year: 2020 ident: ref_117 article-title: Dynamics of lattice defects in mixed DNA origami monolayers publication-title: Nanoscale doi: 10.1039/D0NR01252A – volume: 347 start-page: 1260901 year: 2015 ident: ref_149 article-title: Programmable materials and the nature of the DNA bond publication-title: Science doi: 10.1126/science.1260901 – ident: ref_162 doi: 10.1007/978-1-59745-218-2_8 – volume: 3 start-page: 620 year: 2011 ident: ref_107 article-title: Programmable molecular recognition based on the geometry of DNA nanostructures publication-title: Nat. Chem. doi: 10.1038/nchem.1070 – volume: 382 start-page: 607 year: 1996 ident: ref_147 article-title: A DNA-based method for rationally assembling nanoparticles into macroscopic materials publication-title: Nat. Cell Biol. – volume: 10 start-page: 1971 year: 2010 ident: ref_10 article-title: Structural DNA Nanotechnology: Growing along with nano letters publication-title: Nano Lett. doi: 10.1021/nl101262u – volume: 552 start-page: 67 year: 2017 ident: ref_110 article-title: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns publication-title: Nat. Cell Biol. – volume: 3 start-page: 032001 year: 2020 ident: ref_13 article-title: The potential of DNA origami to build multifunctional materials publication-title: Multifunct. Mater. doi: 10.1088/2399-7532/ab80d5 – volume: 31 start-page: 1806294 year: 2019 ident: ref_160 article-title: From DNA nanotechnology to material systems engineering publication-title: Adv. Mater. doi: 10.1002/adma.201806294 – volume: 129 start-page: 8169 year: 2007 ident: ref_86 article-title: Assembly and characterization of 8-arm and 12-arm DNA branched junctions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0693441 – volume: 47 start-page: 1645 year: 2014 ident: ref_113 article-title: Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy publication-title: Acc. Chem. Res. doi: 10.1021/ar400299m – volume: 13 start-page: 6256 year: 2019 ident: ref_163 article-title: Nucleic acid databases and molecular-scale computing publication-title: ACS Nano doi: 10.1021/acsnano.9b02562 – volume: 440 start-page: 297 year: 2006 ident: ref_11 article-title: Folding DNA to create nanoscale shapes and patterns publication-title: Nat. Cell Biol. – volume: 26 start-page: 12680 year: 2010 ident: ref_136 article-title: Guided deposition of individual DNA nanostructures on silicon substrates publication-title: Langmuir doi: 10.1021/la101343k – volume: 121 start-page: 917 year: 1999 ident: ref_68 article-title: Modifying the surface features of two-dimensional DNA crystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982824a – volume: 9 start-page: 918 year: 2010 ident: ref_159 article-title: DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles publication-title: Nat. Mater. doi: 10.1038/nmat2877 – volume: 20 start-page: 2422 year: 2019 ident: ref_43 article-title: DNA Origami as scaffolds for self-assembly of lipids and proteins publication-title: ChemBioChem doi: 10.1002/cbic.201900073 – volume: 303 start-page: 143 year: 2005 ident: ref_47 article-title: Structural DNA nanotechnology: An overview publication-title: Breast Cancer – volume: 44 start-page: 3057 year: 2005 ident: ref_80 article-title: Engineering a 2D protein-DNA crystal publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200463027 – volume: 138 start-page: 7733 year: 2016 ident: ref_61 article-title: Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03966 – volume: 321 start-page: 824 year: 2008 ident: ref_51 article-title: Programming DNA tube circumferences publication-title: Science doi: 10.1126/science.1157312 – volume: 5 start-page: 7637 year: 2017 ident: ref_140 article-title: Site-selective immobilization of functionalized DNA origami on nano-patterned teflon AF publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01015J – volume: 7 start-page: 1641 year: 2006 ident: ref_38 article-title: DNA tile based self-assembly: Building complex nanoarchitectures publication-title: ChemPhysChem doi: 10.1002/cphc.200600260 – volume: 344 start-page: 65 year: 2014 ident: ref_57 article-title: Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT publication-title: Science doi: 10.1126/science.1250944 – volume: 22 start-page: 275301 year: 2011 ident: ref_35 article-title: DNA origami-based nanoribbons: Assembly, length distribution, and twist publication-title: Nanotechnology doi: 10.1088/0957-4484/22/27/275301 – volume: 117 start-page: 12584 year: 2017 ident: ref_39 article-title: DNA origami: Scaffolds for creating higher order structures publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00825 – volume: 382 start-page: 609 year: 1996 ident: ref_148 article-title: Organization of ‘nanocrystal molecules’ using DNA publication-title: Nat. Cell Biol. – volume: 30 start-page: 5667 year: 1991 ident: ref_84 article-title: Assembly and characterization of five-arm and six-arm DNA branched junctions publication-title: Biochemistry doi: 10.1021/bi00237a005 – volume: 33 start-page: 586 year: 2015 ident: ref_22 article-title: DNA Nanostructures as smart drug-delivery vehicles and molecular devices publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.08.001 – volume: 106 start-page: 6054 year: 2009 ident: ref_76 article-title: An information-bearing seed for nucleating algorithmic self-assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808736106 |
| SSID | ssj0021415 |
| Score | 2.4337394 |
| SecondaryResourceType | review_article |
| Snippet | The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1502 |
| SubjectTerms | complexity Deoxyribonucleic acid Design DNA DNA - chemical synthesis DNA - chemistry DNA nanotechnology DNA origami DNA self-assembly hierarchy Hydrogen bonds lattice Nanoparticles Nanostructures - chemistry Nanotechnology Nanotechnology - methods Proteins Review |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EBL2Ib-uLCp6Esm0a0-Toa_Egq4cV9lamSaoL2hW76-930nQXV0Uv3kozhXQm7XwfmXwDcIKqZKyUJko5xhGnBBRJjSrilgktuClSL-J6m_V6cjBQ959afbmaMC8P7B3XQV6kDDkBa6m41LwQlBMxkYSb8QxZI7YdZ2pKplqqlVBe8nuYKZH6zotvNWtrQu9OAZ3NZaFGrP8nhPm1UPJT5umuwWoLGcNzP9V1WLDVBixfTju1bULHdd30OrDVY3jrartDdkUXY1fZVod3k3E4KsOr3nnUp59AvQUP3ev-5U3UNkKINAH-cSQYvXqmFZZIziyS0hhWCJ6JIi4yLYRUcVlapZCSvyFbTDKDHIWVsdGEsNJtWKxGld2F0LjslEhp3aFYInfEl1AINMoQFpOYBhBPHZPrViXcNat4zoktOF_m33wZwOnskVcvkfGb8YXz9szQqVs3NyjmeRvz_K-YB3AwjVXefnJ1zpw0oRQi4wEcz4YpEm4HBCs7mjQ20lGoOA5gx4d2NhPi6u7wJM0wmwv63FTnR6rhUyPILRukl-79x7vtwwpzZTNNyeABLNLqsYewpN_Hw_rtqFnlH9Px_uU priority: 102 providerName: Directory of Open Access Journals |
| Title | Constructing Large 2D Lattices Out of DNA-Tiles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33801952 https://www.proquest.com/docview/2501886674 https://www.proquest.com/docview/2508559700 https://pubmed.ncbi.nlm.nih.gov/PMC8000633 https://doaj.org/article/a4b32a45488948c4b6710a18642a5a26 |
| Volume | 26 |
| WOSCitedRecordID | wos000645394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1420-3049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021415 issn: 1420-3049 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXSR64V0IlFWQOCFZm3Vcxz6hPgVSWVaoSMspcmynVIKkNFt-PzOON7CAeuISRclEsjNjz3z2-BuAV0bXnNfKsVyYjAl0QExZo5nwXFopXJX3JK6nxXyulku9iMeju5hWuZ4Tw0Tdsz1T3jZOwlPXWloxn3LioVNSFuLN5XdGNaRorzUW1NiCMRFvZSMYL969X3weANgMvVW_s5kj1J9-6wvQ-g5jeuJF5xu-KVD4_yvu_DN98jd_dHLv__bkPtyNcWm63xvSA7jlm4dw53BdDu4RTKm0Z08225ynp5RAnvIjvFlR-lyXfrhepW2dHs332RnONN1j-HRyfHb4lsVqC8wiqlgxyTWCF6tNbVBj1ax2jldSFLLKqsJKqXRW115rgxGGQ1kzK5wRRnqVOYthXL4Do6Zt_FNIHblA7JWnk7eIIBGUGSmN0w4DPmXyBLL1fy5tpCKnihhfS4QkpJryL9Uk8Hr45LLn4bhJ-ICUNwgShXZ40F6dl3FElkZUOTcCEZvCjltRSQy2zEwhIDN7hssEdtfqK-O47spf2krg5fAaNUHbLKbx7XWQUYTTsiyBJ72lDC3Jc0UnNLGFxYYNbTR1801z8SWwfqsQTubPbm7Wc9jmlHUTMg53YYR24V_AbftjddFdTWCrWBbhqiYwPjieLz5OwirEJA6Vn9NyH9M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58H4ECgQJLkjRZm3j2AeESpeqq26XPSxSOQXHdtpKJSnNFsSf4jcykxcsoN564BYlTjTxfJmZLx7PADw3OmcsVy7iwsSRQAcUKWt0JDyTVgqX8aaI6zSZzdTBgZ6vwY9uLwylVXY2sTbUrrT0j3zIqPKckjIRb06_RNQ1ilZXuxYaDSz2_PdvSNmq15Mx6vcFYzvvFtu7UdtVILIYPS8jyTQG6Vab3KBk2Sh3jmVSJDKLs8RKqXSc515rg57U4VgzSpwRRnoVO4vhCsfnXoF1gWCPB7A-n-zPP_YUb4T-sFk75VzHw89Ni1tfIWugyutsxfvVTQL-Fdn-maD5m8fbufG_zdVNuN7G1uFW8zHcgjVf3IaN7a6l3R0YUnvSpmBucRhOKQk-ZGM8WFIKYBW-P1-GZR6OZ1vRAq1ldRc-XIq892BQlIV_AKEjN46z6Gn3MLJgJJZGSuO0w6BVGR5A3GkytW05derqcZIirSLlp38pP4CX_S2nTS2Riwa_JXj0A6kMeH2iPDtMW6uSGpFxZgSyToUvbkUmMWA0I4Wk0rwyTAaw2QEkbW1Tlf5CRwDP-suoCVoqMoUvz-sxirhmHAdwv8FiLwnninaZooTJCkpXRF29Uhwf1ZXLVR0S84cXi_UUNnYX-9N0OpntPYJrjLKI6gzKTRggRvxjuGq_Lo-rsyft5xfCp8tG8U8lEmzQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvB-BAkGCC1K0Wds49gGhttsVVVdhhYrUW-rYTqkESWm2IP4av46ZvGAB9dYDtyh2oon9eWa-eDwD8NzogrFCuYgLE0cCDVCkrNGR8ExaKVzO2ySu8yRN1cGBXqzBj_4sDIVV9jqxUdSusvSPfMwo85ySMhHjoguLWExnb06-RFRBinZa-3IaLUT2_PdvSN_q17tTnOsXjM129rffRl2FgciiJ72MJNPosFttCoNS5pPCOZZLkcg8zhMrpdJxUXitDVpVh33NJHFGGOlV7Cy6LhzfewnWE46kZwTrWzvp4v1A9yZoG9t9VM51PP7clrv1NTIIysLOVixhUzDgX17un8Gav1m_2Y3_edxuwvXO5w4320VyC9Z8eRuubvel7u7AmMqWtol0y6NwTsHxIZvixZJCA-vw3dkyrIpwmm5G-6hF67vw4ULkvQejsir9AwgdmXccUU-nipEdI-E0UhqnHTqzyvAA4n5WM9ulWadqH58ypFsEhOwvIATwcnjkpM0xcl7nLYLK0JHSgzc3qtOjrNM2mRE5Z0YgG1X44VbkEh1JM1FINs0rw2QAGz1Ysk5n1dkvpATwbGjGmaAtJFP66qzpo4iDxnEA91tcDpJwruj0KUqYrCB2RdTVlvL4Y5PRXDWuMn94vlhP4QpCN5vvpnuP4Bqj4KImsHIDRggR_xgu26_L4_r0SbcSQzi8aBD_BKxpdWo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Large+2D+Lattices+Out+of+DNA-Tiles&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Parikka%2C+Johannes+M.&rft.au=Soko%C5%82owska%2C+Karolina&rft.au=Marke%C5%A1evi%C4%87%2C+Nemanja&rft.au=Toppari%2C+J.+Jussi&rft.date=2021-03-10&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=26&rft.issue=6&rft.spage=1502&rft_id=info:doi/10.3390%2Fmolecules26061502&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules26061502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |