Constructing Large 2D Lattices Out of DNA-Tiles

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecules (Basel, Switzerland) Ročník 26; číslo 6; s. 1502
Hlavní autori: Parikka, Johannes M., Sokołowska, Karolina, Markešević, Nemanja, Toppari, J. Jussi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 10.03.2021
MDPI
Predmet:
ISSN:1420-3049, 1420-3049
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.
AbstractList The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.
The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.
Author Toppari, J. Jussi
Sokołowska, Karolina
Parikka, Johannes M.
Markešević, Nemanja
AuthorAffiliation Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; johannes.m.parikka@jyu.fi (J.M.P.); karolina.x.sokolowska@jyu.fi (K.S.); nemanja.n.markesevic@jyu.fi (N.M.)
AuthorAffiliation_xml – name: Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; johannes.m.parikka@jyu.fi (J.M.P.); karolina.x.sokolowska@jyu.fi (K.S.); nemanja.n.markesevic@jyu.fi (N.M.)
Author_xml – sequence: 1
  givenname: Johannes M.
  surname: Parikka
  fullname: Parikka, Johannes M.
– sequence: 2
  givenname: Karolina
  surname: Sokołowska
  fullname: Sokołowska, Karolina
– sequence: 3
  givenname: Nemanja
  surname: Markešević
  fullname: Markešević, Nemanja
– sequence: 4
  givenname: J. Jussi
  orcidid: 0000-0002-1698-5591
  surname: Toppari
  fullname: Toppari, J. Jussi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33801952$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URB7wAWxQS2zYNCk_294gRRMekUZkE9ZWtds9eNTTDrYbib_Hw4QoCRIrl-xzb91ynZKjOc6ekNcU3nNu4HwXJ--WyWemQFEJ7Bk5oYJBy0GYowf1MTnNeQvAqKDyBTnmXAM1kp2Q81Wcc0mLK2HeNGtMG9-wy1qUEpzPzfVSmjg2l18v2ptQO70kz0ecsn91d56Rb58-3qy-tOvrz1eri3XrpDSlVcwI3TmDIzLGezoOA-uV6FQPfeeU0gbG0RuDYOhQWaTdgAKV1zA4Lhk_I1cH3yHi1t6msMP0y0YM9s9FTBuLqUacvEXRc4ZCCq1rUyd61VFAqpVgKJGp6vXh4HW79Ds_OD-XhNMj08cvc_huN_Gn1QCgOK8G7-4MUvyx-FzsLmTnpwlnH5dsmQRdx-4AKvr2CbqNS5rrV-0pqrVSnajUm4eJ7qP83UsF6AFwKeac_HiPULD73dt_dl813RONCwVLiPuhwvQf5W9y_rMk
CitedBy_id crossref_primary_10_1021_jacs_4c02772
crossref_primary_10_1016_j_hybadv_2025_100480
crossref_primary_10_1021_jacs_1c09503
crossref_primary_10_1002_anie_202416948
crossref_primary_10_1002_smll_202205933
crossref_primary_10_1002_cplu_202100548
crossref_primary_10_1002_jemt_24737
crossref_primary_10_1002_ange_202416948
crossref_primary_10_3390_molecules27134224
crossref_primary_10_1002_chem_202404108
crossref_primary_10_1080_00268976_2025_2472020
crossref_primary_10_3390_molecules28093686
crossref_primary_10_1039_D5LF00169B
crossref_primary_10_1088_1361_6528_ad2ac5
crossref_primary_10_1039_D2NR06001A
Cites_doi 10.1002/anie.201305765
10.1021/acs.langmuir.8b01843
10.1039/C6CS00745G
10.1126/science.aaf4388
10.1038/nnano.2016.116
10.1038/nnano.2011.102
10.1021/nl052210l
10.1021/nl502626s
10.1002/anie.200503797
10.1021/nn800316c
10.1021/ac402493u
10.1021/acs.nanolett.6b04146
10.1021/ja0665141
10.1021/ja055614o
10.1021/acsnano.8b01669
10.1021/acs.chemrev.7b00063
10.1007/s12274-020-2672-5
10.1021/acsami.8b22691
10.1002/chem.200903057
10.1039/C5CC08185H
10.1021/acs.langmuir.6b01961
10.1021/nn302896c
10.1021/acs.langmuir.8b00793
10.1021/acsnano.7b06012
10.1039/c2cc32204h
10.1021/acsami.6b10535
10.1038/nnano.2009.450
10.1021/acs.chemrev.8b00570
10.1021/acsami.8b16047
10.1126/science.1070821
10.1073/pnas.1117813109
10.1126/science.1228638
10.1021/acs.nanolett.6b03015
10.1038/srep45591
10.1021/bi00064a003
10.1038/nnano.2011.187
10.1126/science.aad2080
10.1016/S0006-3495(03)74673-6
10.1021/nl050084f
10.1002/anie.201105846
10.1038/nature18287
10.1021/ja993393e
10.1021/acs.accounts.7b00389
10.1002/anie.201403965
10.1021/acs.chemrev.7b00663
10.1073/pnas.1408869112
10.1021/nl048635+
10.1021/nn506014s
10.1002/anie.200603919
10.1002/cbic.201600034
10.1002/cbic.201700545
10.1002/anie.201801983
10.1021/jacs.8b07180
10.1039/c0cc01167c
10.1038/nnano.2016.256
10.1021/bm401425k
10.1093/nar/gkw670
10.1021/ar5001082
10.1007/s11051-018-4225-3
10.1002/anie.201005911
10.1038/nbt874
10.1039/C5CC06092C
10.1126/science.1165831
10.1007/s11047-009-9147-7
10.1126/science.aah5974
10.1021/nl060994c
10.1016/j.chempr.2017.02.009
10.1021/ja9900398
10.1002/admi.201901265
10.1371/journal.pbio.0020424
10.1021/la026942u
10.1038/nmeth.1570
10.1093/nar/14.24.9745
10.1116/1.3646900
10.1016/0022-5193(82)90002-9
10.1038/nature10889
10.3390/ijms13067149
10.1126/sciadv.aap8978
10.1007/s41365-019-0639-6
10.1038/nmat4571
10.1007/s12274-020-2985-4
10.1126/science.1174251
10.1038/nnano.2009.220
10.1126/science.1214081
10.1039/C9FD00023B
10.1038/ncomms9052
10.1021/ja106292x
10.1016/j.mattod.2015.01.018
10.1038/srep08442
10.1002/smll.200900442
10.1016/j.chempr.2018.02.005
10.1021/nl1033073
10.1021/nl201603a
10.1021/jacs.8b10609
10.1039/c0cc05306f
10.1073/pnas.0305860101
10.1016/S0006-3495(93)81263-3
10.1021/ja0568446
10.1021/nn500108k
10.1021/acsnano.5b00161
10.1021/nl050175c
10.1039/C8NR09844A
10.1021/jacs.7b06572
10.1021/bm050230b
10.1038/nchem.2540
10.1126/science.1225624
10.1021/ja4109819
10.1021/nl0515495
10.1038/nmat4031
10.1126/science.1232252
10.1021/nn1031627
10.1126/science.1089389
10.1021/ja0541938
10.1002/anie.201106198
10.1021/jacs.9b09093
10.1021/nl050108i
10.1002/admi.201800437
10.1021/ja906475w
10.1002/anie.200501089
10.1021/nl304147f
10.1021/nl501064b
10.1023/A:1021145208328
10.1021/acsami.8b03585
10.1039/D0NR01252A
10.1126/science.1260901
10.1007/978-1-59745-218-2_8
10.1038/nchem.1070
10.1021/nl101262u
10.1088/2399-7532/ab80d5
10.1002/adma.201806294
10.1021/ja0693441
10.1021/ar400299m
10.1021/acsnano.9b02562
10.1021/la101343k
10.1021/ja982824a
10.1038/nmat2877
10.1002/cbic.201900073
10.1002/anie.200463027
10.1021/jacs.6b03966
10.1126/science.1157312
10.1039/C7TC01015J
10.1002/cphc.200600260
10.1126/science.1250944
10.1088/0957-4484/22/27/275301
10.1021/acs.chemrev.6b00825
10.1021/bi00237a005
10.1016/j.tibtech.2015.08.001
10.1073/pnas.0808736106
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules26061502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_a4b32a45488948c4b6710a18642a5a26
PMC8000633
33801952
10_3390_molecules26061502
Genre Journal Article
Review
GrantInformation_xml – fundername: Jane ja Aatos Erkon Säätiö
  grantid: 2019
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c559t-629487c9afa223b1fdd2b6476b0b7c66890ffe99a091d294a17da4a6e80dc3523
IEDL.DBID PIMPY
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-3049
IngestDate Fri Oct 03 12:44:00 EDT 2025
Tue Nov 04 01:53:52 EST 2025
Mon Sep 08 17:21:42 EDT 2025
Tue Oct 07 07:22:20 EDT 2025
Thu Apr 03 06:59:19 EDT 2025
Sat Nov 29 07:15:02 EST 2025
Tue Nov 18 22:02:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords complexity
lattice
hierarchy
DNA self-assembly
DNA nanotechnology
DNA origami
lithography
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-629487c9afa223b1fdd2b6476b0b7c66890ffe99a091d294a17da4a6e80dc3523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1698-5591
OpenAccessLink https://www.proquest.com/publiccontent/docview/2501886674?pq-origsite=%requestingapplication%
PMID 33801952
PQID 2501886674
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_a4b32a45488948c4b6710a18642a5a26
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000633
proquest_miscellaneous_2508559700
proquest_journals_2501886674
pubmed_primary_33801952
crossref_primary_10_3390_molecules26061502
crossref_citationtrail_10_3390_molecules26061502
PublicationCentury 2000
PublicationDate 20210310
PublicationDateYYYYMMDD 2021-03-10
PublicationDate_xml – month: 3
  year: 2021
  text: 20210310
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_69) 2005; 127
Seeman (ref_8) 2018; 3
Tikhomirov (ref_110) 2017; 552
Suzuki (ref_42) 2015; 6
Ma (ref_85) 1986; 14
Julin (ref_41) 2018; 20
He (ref_98) 2006; 128
Wagenbauer (ref_30) 2017; 552
Wei (ref_103) 2005; 6
Brassat (ref_138) 2018; 34
Hong (ref_39) 2017; 117
Xiao (ref_151) 2002; 4
Shaali (ref_140) 2017; 5
Song (ref_163) 2019; 13
Yin (ref_51) 2008; 321
Tikhomirov (ref_77) 2016; 12
Teschome (ref_94) 2016; 32
Winfree (ref_67) 1998; 394
Kempter (ref_127) 2019; 13
Liu (ref_111) 2016; 8
Jungmann (ref_35) 2011; 22
Rajendran (ref_109) 2010; 5
Benson (ref_54) 2015; 523
Chao (ref_146) 2015; 18
Wang (ref_87) 2016; 44
Cigler (ref_159) 2010; 9
Sun (ref_58) 2015; 51
Woo (ref_107) 2011; 3
Liu (ref_157) 2016; 351
Hong (ref_97) 2018; 140
Evans (ref_46) 2017; 46
Burns (ref_130) 2013; 13
Zhou (ref_19) 2017; 50
Choi (ref_23) 2018; 10
Kielar (ref_114) 2018; 10
Wang (ref_60) 2010; 46
Liu (ref_89) 2004; 101
Rafat (ref_64) 2014; 53
Seeman (ref_48) 1993; 32
Lund (ref_72) 2005; 127
Xin (ref_117) 2020; 12
Bujold (ref_26) 2018; 4
Kan (ref_122) 2015; 5
Malo (ref_80) 2005; 44
Yan (ref_79) 2003; 301
Gopinath (ref_142) 2016; 535
Barish (ref_76) 2009; 106
Sato (ref_125) 2018; 5
Shih (ref_102) 2004; 427
Hung (ref_133) 2009; 5
Avakyan (ref_128) 2017; 139
Roller (ref_17) 2016; 16
Alivisatos (ref_148) 1996; 382
Fusil (ref_123) 2003; 19
Gao (ref_136) 2010; 26
Shen (ref_150) 2018; 34
He (ref_99) 2005; 127
Mirkin (ref_147) 1996; 382
ref_74
Schulman (ref_75) 2012; 109
Gopinath (ref_135) 2014; 8
Zhao (ref_78) 2011; 11
Yang (ref_161) 2014; 47
Dietz (ref_50) 2009; 325
Seeman (ref_47) 2005; 303
Woo (ref_65) 2014; 5
Kocabey (ref_129) 2015; 9
Mao (ref_104) 1999; 121
Jiang (ref_126) 2014; 8
Ramakrishnan (ref_116) 2016; 8
Marchi (ref_28) 2014; 14
Weiss (ref_145) 2008; 2
Park (ref_70) 2006; 45
Park (ref_154) 2005; 5
Pinto (ref_153) 2005; 5
Hawkes (ref_141) 2019; 219
Rothemund (ref_11) 2006; 440
Liu (ref_66) 2017; 18
Kuzyk (ref_20) 2014; 13
Pibiri (ref_143) 2014; 14
Castro (ref_29) 2011; 8
Liu (ref_34) 2010; 50
Endo (ref_113) 2014; 47
Li (ref_32) 2010; 132
Kuzyk (ref_18) 2012; 483
Shen (ref_44) 2018; 4
Seeman (ref_9) 1982; 99
Grzybowski (ref_3) 2016; 11
Baker (ref_106) 2018; 12
Wang (ref_61) 2016; 138
Hu (ref_160) 2019; 31
Langecker (ref_25) 2012; 338
Veneziano (ref_55) 2016; 352
Knowles (ref_4) 2011; 6
Liu (ref_118) 2019; 30
Sacca (ref_15) 2011; 51
Wei (ref_52) 2012; 485
Wang (ref_84) 1991; 30
Bartnik (ref_24) 2019; 142
Tikhomirov (ref_101) 2018; 140
Endo (ref_105) 2010; 16
Ban (ref_56) 2013; 15
Kershner (ref_132) 2009; 4
Evans (ref_45) 2013; 8141
Suzuki (ref_62) 2018; 57
Sharma (ref_155) 2009; 323
ref_162
Le (ref_152) 2004; 4
Pfeifer (ref_36) 2018; 12
Liu (ref_88) 2005; 44
Kallenbach (ref_83) 1983; 305
Linko (ref_22) 2015; 33
Zadegan (ref_96) 2012; 13
Aryal (ref_165) 2020; 13
Wang (ref_86) 2007; 129
Yun (ref_139) 2011; 51
Duguid (ref_120) 1993; 65
Sun (ref_71) 2009; 131
Gerdon (ref_137) 2009; 5
Seeman (ref_10) 2010; 10
Mathieu (ref_91) 2005; 5
Lu (ref_112) 2020; 7
Gan (ref_92) 2013; 85
Xin (ref_40) 2020; 13
Madsen (ref_6) 2019; 119
Liu (ref_68) 1999; 121
LaBean (ref_49) 2000; 122
Penzo (ref_134) 2011; 29
Han (ref_53) 2013; 339
Ding (ref_95) 2010; 10
Zhang (ref_27) 2012; 48
Burns (ref_131) 2013; 52
Iinuma (ref_57) 2014; 344
Tian (ref_156) 2016; 15
Douglas (ref_21) 2012; 335
Lin (ref_38) 2006; 7
Endo (ref_108) 2011; 47
Liu (ref_115) 2019; 11
Tapio (ref_13) 2020; 3
Yang (ref_37) 2012; 6
Zheng (ref_82) 2009; 461
Williams (ref_158) 2007; 46
Tigges (ref_33) 2016; 16
Dong (ref_43) 2019; 20
Suzuki (ref_124) 2014; 136
Fusil (ref_121) 2003; 85
Douglas (ref_12) 2009; 459
Patitz (ref_73) 2009; 9
Zheng (ref_81) 2006; 6
Zhou (ref_119) 2017; 117
Jones (ref_149) 2015; 347
Pinheiro (ref_5) 2011; 6
Nickels (ref_7) 2016; 354
Hu (ref_164) 2018; 119
Wang (ref_59) 2016; 52
Whitesides (ref_1) 2002; 295
Wang (ref_14) 2017; 2
Marras (ref_63) 2015; 112
Huang (ref_144) 2017; 7
Pfeifer (ref_31) 2016; 17
Acuna (ref_16) 2012; 338
Julin (ref_93) 2019; 11
Zhang (ref_2) 2003; 21
Park (ref_90) 2005; 5
Zhang (ref_100) 2006; 6
References_xml – volume: 52
  start-page: 12069
  year: 2013
  ident: ref_131
  article-title: Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201305765
– volume: 34
  start-page: 14911
  year: 2018
  ident: ref_150
  article-title: DNA origami nanophotonics and plasmonics at interfaces
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01843
– volume: 46
  start-page: 3808
  year: 2017
  ident: ref_46
  article-title: Physical principles for DNA tile self-assembly
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00745G
– volume: 352
  start-page: 1534
  year: 2016
  ident: ref_55
  article-title: Designer nanoscale DNA assemblies programmed from the top down
  publication-title: Science
  doi: 10.1126/science.aaf4388
– volume: 305
  start-page: 829
  year: 1983
  ident: ref_83
  article-title: An immobile nucleic acid junction constructed from oligonucleotides
  publication-title: Nat. Cell Biol.
– volume: 11
  start-page: 585
  year: 2016
  ident: ref_3
  article-title: The nanotechnology of life-inspired systems
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.116
– volume: 6
  start-page: 469
  year: 2011
  ident: ref_4
  article-title: Nanomechanics of functional and pathological amyloid materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.102
– volume: 6
  start-page: 248
  year: 2006
  ident: ref_100
  article-title: Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface
  publication-title: Nano Lett.
  doi: 10.1021/nl052210l
– volume: 14
  start-page: 5740
  year: 2014
  ident: ref_28
  article-title: Toward larger DNA origami
  publication-title: Nano Lett.
  doi: 10.1021/nl502626s
– volume: 45
  start-page: 735
  year: 2006
  ident: ref_70
  article-title: Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503797
– volume: 2
  start-page: 1089
  year: 2008
  ident: ref_145
  article-title: A conversation with Prof. Ned Seeman: Founder of DNA nanotechnology
  publication-title: ACS Nano
  doi: 10.1021/nn800316c
– volume: 85
  start-page: 11427
  year: 2013
  ident: ref_92
  article-title: Six-helix bundle and triangle DNA origami insulator-based dielectro-phoresis
  publication-title: Anal. Chem.
  doi: 10.1021/ac402493u
– volume: 16
  start-page: 7870
  year: 2016
  ident: ref_33
  article-title: 3D DNA origami cuboids as monodisperse patchy nanoparticles for switchable hierarchical self-assembly
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04146
– volume: 128
  start-page: 15978
  year: 2006
  ident: ref_98
  article-title: Highly connected two-dimensional crystals of DNA six-point-stars
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0665141
– volume: 127
  start-page: 17140
  year: 2005
  ident: ref_69
  article-title: Self-assembly of symmetric finite-size DNA nanoarrays
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055614o
– volume: 12
  start-page: 5791
  year: 2018
  ident: ref_106
  article-title: Dimensions and global twist of single-layer DNA origami measured by small-angle X-ray scattering
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01669
– volume: 117
  start-page: 8272
  year: 2017
  ident: ref_119
  article-title: Metal sensing by DNA
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00063
– volume: 13
  start-page: 1419
  year: 2020
  ident: ref_165
  article-title: DNA origami mediated electrically connected metal-semiconductor junctions
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2672-5
– volume: 11
  start-page: 13853
  year: 2019
  ident: ref_115
  article-title: Patterning nanoparticles with DNA molds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22691
– volume: 16
  start-page: 5362
  year: 2010
  ident: ref_105
  article-title: Programmed-assembly system using DNA jigsaw pieces
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.200903057
– volume: 52
  start-page: 1610
  year: 2016
  ident: ref_59
  article-title: Control of DNA origami inter-tile connection with vertical linkers
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08185H
– volume: 32
  start-page: 10159
  year: 2016
  ident: ref_94
  article-title: Temperature-dependent charge transport through individually contacted DNA origami-based au nanowires
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01961
– volume: 6
  start-page: 8209
  year: 2012
  ident: ref_37
  article-title: DNA Origami with double-stranded DNA as a unified scaffold
  publication-title: ACS Nano
  doi: 10.1021/nn302896c
– volume: 34
  start-page: 14757
  year: 2018
  ident: ref_138
  article-title: On the Adsorption of DNA origami nanostructures in nanohole arrays
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00793
– volume: 12
  start-page: 44
  year: 2018
  ident: ref_36
  article-title: Hierarchical assembly of DNA filaments with designer elastic properties
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06012
– volume: 459
  start-page: 414
  year: 2009
  ident: ref_12
  article-title: Self-assembly of DNA into nanoscale three-dimensional shapes
  publication-title: Nat. Cell Biol.
– volume: 48
  start-page: 6405
  year: 2012
  ident: ref_27
  article-title: Folding super-sized DNA origami with scaffold strands from long-range PCR
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32204h
– volume: 8
  start-page: 31239
  year: 2016
  ident: ref_116
  article-title: Regular nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10535
– volume: 5
  start-page: 121
  year: 2009
  ident: ref_133
  article-title: Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.450
– volume: 119
  start-page: 6384
  year: 2019
  ident: ref_6
  article-title: Chemistries for DNA nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00570
– volume: 10
  start-page: 44844
  year: 2018
  ident: ref_114
  article-title: Dynamics of DNA origami lattice formation at solid-liquid interfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16047
– volume: 295
  start-page: 2418
  year: 2002
  ident: ref_1
  article-title: Self-assembly at all scales
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 109
  start-page: 6405
  year: 2012
  ident: ref_75
  article-title: Robust self-replication of combinatorial information via crystal growth and scission
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117813109
– volume: 338
  start-page: 506
  year: 2012
  ident: ref_16
  article-title: Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas
  publication-title: Science
  doi: 10.1126/science.1228638
– volume: 16
  start-page: 5962
  year: 2016
  ident: ref_17
  article-title: Plasmon–exciton coupling using DNA templates
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03015
– volume: 7
  start-page: srep45591
  year: 2017
  ident: ref_144
  article-title: DNA-mediated patterning of single quantum dot nanoarrays: A reusable platform for single-molecule control
  publication-title: Sci. Rep.
  doi: 10.1038/srep45591
– volume: 32
  start-page: 3211
  year: 1993
  ident: ref_48
  article-title: DNA double-crossover molecules
  publication-title: Biochemistry
  doi: 10.1021/bi00064a003
– volume: 6
  start-page: 763
  year: 2011
  ident: ref_5
  article-title: Challenges and opportunities for structural DNA nanotechnology
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.187
– volume: 461
  start-page: 74
  year: 2009
  ident: ref_82
  article-title: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal
  publication-title: Nat. Cell Biol.
– volume: 523
  start-page: 441
  year: 2015
  ident: ref_54
  article-title: DNA rendering of polyhedral meshes at the nanoscale
  publication-title: Nat. Cell Biol.
– volume: 351
  start-page: 582
  year: 2016
  ident: ref_157
  article-title: Diamond family of nanoparticle superlattices
  publication-title: Science
  doi: 10.1126/science.aad2080
– volume: 13
  start-page: 996
  year: 2019
  ident: ref_127
  article-title: Single particle tracking and super-resolution imaging of membrane-assisted stop-and-go diffusion and lattice assembly of DNA origami
  publication-title: ACS Nano
– volume: 85
  start-page: 2507
  year: 2003
  ident: ref_121
  article-title: Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74673-6
– volume: 5
  start-page: 1
  year: 2014
  ident: ref_65
  article-title: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion
  publication-title: Nat. Commun.
– volume: 5
  start-page: 661
  year: 2005
  ident: ref_91
  article-title: Six-helix bundles designed from DNA
  publication-title: Nano Lett.
  doi: 10.1021/nl050084f
– volume: 51
  start-page: 58
  year: 2011
  ident: ref_15
  article-title: DNA origami: The art of folding DNA
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105846
– volume: 535
  start-page: 401
  year: 2016
  ident: ref_142
  article-title: Engineering and mapping nanocavity emission via precision placement of DNA origami
  publication-title: Nature
  doi: 10.1038/nature18287
– volume: 122
  start-page: 1848
  year: 2000
  ident: ref_49
  article-title: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993393e
– volume: 50
  start-page: 2906
  year: 2017
  ident: ref_19
  article-title: DNA-nanotechnology-enabled chiral plasmonics: From static to dynamic
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00389
– volume: 53
  start-page: 7665
  year: 2014
  ident: ref_64
  article-title: Surface-assisted large-scale ordering of DNA origami tiles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403965
– volume: 119
  start-page: 6459
  year: 2018
  ident: ref_164
  article-title: DNA nanotechnology-enabled drug delivery systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00663
– volume: 112
  start-page: 713
  year: 2015
  ident: ref_63
  article-title: Programmable motion of DNA origami mechanisms
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1408869112
– volume: 4
  start-page: 2343
  year: 2004
  ident: ref_152
  article-title: DNA-Templated self-assembly of metallic nanocomponent arrays on a surface
  publication-title: Nano Lett.
  doi: 10.1021/nl048635+
– volume: 8
  start-page: 12030
  year: 2014
  ident: ref_135
  article-title: Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays
  publication-title: ACS Nano
  doi: 10.1021/nn506014s
– volume: 46
  start-page: 3051
  year: 2007
  ident: ref_158
  article-title: Self-assembled peptide nanoarrays: An approach to studying protein-protein interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603919
– volume: 17
  start-page: 1063
  year: 2016
  ident: ref_31
  article-title: From nano to macro through hierarchical self-assembly: The DNA paradigm
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201600034
– volume: 18
  start-page: 2404
  year: 2017
  ident: ref_66
  article-title: Regulating DNA self-assembly by DNA-surface interactions
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201700545
– volume: 427
  start-page: 618
  year: 2004
  ident: ref_102
  article-title: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron
  publication-title: Nat. Cell Biol.
– volume: 57
  start-page: 7061
  year: 2018
  ident: ref_62
  article-title: Complexing DNA origami frameworks through sequential self-assembly based on directed docking
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801983
– volume: 140
  start-page: 14670
  year: 2018
  ident: ref_97
  article-title: Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07180
– volume: 8141
  start-page: 61
  year: 2013
  ident: ref_45
  article-title: DNA sticky end design and assignment for robust algorithmic self-assembly
  publication-title: Comput. Vis.
– volume: 46
  start-page: 4905
  year: 2010
  ident: ref_60
  article-title: Blunt-ended DNA stacking interactions in a 3-helix motif
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01167c
– volume: 12
  start-page: 251
  year: 2016
  ident: ref_77
  article-title: Programmable disorder in random DNA tilings
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.256
– volume: 15
  start-page: 143
  year: 2013
  ident: ref_56
  article-title: Strength of DNA sticky end links
  publication-title: Biomacromolecules
  doi: 10.1021/bm401425k
– volume: 44
  start-page: 7989
  year: 2016
  ident: ref_87
  article-title: Self-assembly of fully addressable DNA nanostructures from double crossover tiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw670
– volume: 47
  start-page: 1902
  year: 2014
  ident: ref_161
  article-title: DNA materials: Bridging nanotechnology and biotechnology
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5001082
– volume: 552
  start-page: 78
  year: 2017
  ident: ref_30
  article-title: Gigadalton-scale shape-programmable DNA assemblies
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 119
  year: 2018
  ident: ref_41
  article-title: DNA nanostructure-directed assembly of metal nanoparticle superlat-tices
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-018-4225-3
– volume: 50
  start-page: 264
  year: 2010
  ident: ref_34
  article-title: Crystalline two-dimensional DNA-origami arrays
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005911
– volume: 21
  start-page: 1171
  year: 2003
  ident: ref_2
  article-title: Fabrication of novel biomaterials through molecular self-assembly
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt874
– volume: 485
  start-page: 623
  year: 2012
  ident: ref_52
  article-title: Complex shapes self-assembled from single-stranded DNA tiles
  publication-title: Nat. Cell Biol.
– volume: 51
  start-page: 16247
  year: 2015
  ident: ref_58
  article-title: DNA polygonal cavities with tunable shapes and sizes
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06092C
– volume: 323
  start-page: 112
  year: 2009
  ident: ref_155
  article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles
  publication-title: Science
  doi: 10.1126/science.1165831
– volume: 9
  start-page: 135
  year: 2009
  ident: ref_73
  article-title: Self-assembly of discrete self-similar fractals
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9147-7
– volume: 354
  start-page: 305
  year: 2016
  ident: ref_7
  article-title: Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp
  publication-title: Science
  doi: 10.1126/science.aah5974
– volume: 3
  start-page: 1
  year: 2018
  ident: ref_8
  article-title: DNA nanotechnology
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 1502
  year: 2006
  ident: ref_81
  article-title: Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs
  publication-title: Nano Lett.
  doi: 10.1021/nl060994c
– volume: 2
  start-page: 359
  year: 2017
  ident: ref_14
  article-title: The beauty and utility of DNA origami
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.02.009
– volume: 121
  start-page: 5437
  year: 1999
  ident: ref_104
  article-title: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9900398
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_112
  article-title: Atomic scale understanding of the epitaxy of perovskite oxides on flexible mica substrate
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901265
– ident: ref_74
  doi: 10.1371/journal.pbio.0020424
– volume: 19
  start-page: 2536
  year: 2003
  ident: ref_123
  article-title: Reversible binding of DNA on NiCl2-treated mica by varying the ionic strength
  publication-title: Langmuir
  doi: 10.1021/la026942u
– volume: 8
  start-page: 221
  year: 2011
  ident: ref_29
  article-title: A primer to scaffolded DNA origami
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1570
– volume: 14
  start-page: 9745
  year: 1986
  ident: ref_85
  article-title: Three-arm nucleic acid junctions are flexible
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/14.24.9745
– volume: 29
  start-page: 6
  year: 2011
  ident: ref_134
  article-title: Selective placement of DNA origami on substrates patterned by nanoimprint Lithography
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3646900
– volume: 99
  start-page: 237
  year: 1982
  ident: ref_9
  article-title: Nucleic acid junctions and lattices
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(82)90002-9
– volume: 483
  start-page: 311
  year: 2012
  ident: ref_18
  article-title: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
  publication-title: Nature
  doi: 10.1038/nature10889
– volume: 394
  start-page: 539
  year: 1998
  ident: ref_67
  article-title: Design and self-assembly of two-dimensional DNA crystals
  publication-title: Nat. Cell Biol.
– volume: 13
  start-page: 7149
  year: 2012
  ident: ref_96
  article-title: Structural DNA nanotechnology: From design to applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms13067149
– volume: 4
  start-page: eaap8978
  year: 2018
  ident: ref_44
  article-title: Plasmonic Nanostructures through DNA-assisted lithography
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap8978
– volume: 30
  start-page: 111
  year: 2019
  ident: ref_118
  article-title: Effect of concentration and adsorption time on the formation of a large-scale origami pattern
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-019-0639-6
– volume: 15
  start-page: 654
  year: 2016
  ident: ref_156
  article-title: Lattice engineering through nanoparticle–DNA frameworks
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4571
– volume: 13
  start-page: 3142
  year: 2020
  ident: ref_40
  article-title: Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2985-4
– volume: 325
  start-page: 725
  year: 2009
  ident: ref_50
  article-title: Folding DNA into twisted and curved nanoscale shapes
  publication-title: Science
  doi: 10.1126/science.1174251
– volume: 4
  start-page: 557
  year: 2009
  ident: ref_132
  article-title: Placement and orientation of individual DNA shapes on lithographically patterned surfaces
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.220
– volume: 335
  start-page: 831
  year: 2012
  ident: ref_21
  article-title: A Logic-Gated Nanorobot for targeted transport of molecular payloads
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 219
  start-page: 203
  year: 2019
  ident: ref_141
  article-title: Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control
  publication-title: Faraday Discuss.
  doi: 10.1039/C9FD00023B
– volume: 6
  start-page: 8052
  year: 2015
  ident: ref_42
  article-title: Lipid-bilayer-assisted two-dimensional self-assembly of dna origami nanostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9052
– volume: 132
  start-page: 13545
  year: 2010
  ident: ref_32
  article-title: Molecular behavior of DNA origami in higher-order self-assembly
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106292x
– volume: 18
  start-page: 326
  year: 2015
  ident: ref_146
  article-title: DNA-based plasmonic nanostructures
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.01.018
– volume: 5
  start-page: srep08442
  year: 2015
  ident: ref_122
  article-title: Study of DNA adsorption on mica surfaces using a surface force apparatus
  publication-title: Sci. Rep.
  doi: 10.1038/srep08442
– volume: 5
  start-page: 1942
  year: 2009
  ident: ref_137
  article-title: Controlled delivery of DNA origami on patterned surfaces
  publication-title: Small
  doi: 10.1002/smll.200900442
– volume: 4
  start-page: 495
  year: 2018
  ident: ref_26
  article-title: DNA nanostructures at the interface with biology
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.02.005
– volume: 10
  start-page: 5065
  year: 2010
  ident: ref_95
  article-title: Interconnecting gold islands with DNA origami nanotubes
  publication-title: Nano Lett.
  doi: 10.1021/nl1033073
– volume: 11
  start-page: 2997
  year: 2011
  ident: ref_78
  article-title: Organizing DNA origami tiles into larger structures using preformed scaffold frames
  publication-title: Nano Lett.
  doi: 10.1021/nl201603a
– volume: 140
  start-page: 17361
  year: 2018
  ident: ref_101
  article-title: Triangular DNA origami tilings
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10609
– volume: 47
  start-page: 3213
  year: 2011
  ident: ref_108
  article-title: Two-dimensional DNA origami assemblies using a four-way connector
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05306f
– volume: 101
  start-page: 717
  year: 2004
  ident: ref_89
  article-title: DNA Nanotubes Self-Assembled from Triple-Crossover Tiles as Templates for conductive nanowires
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305860101
– volume: 65
  start-page: 1916
  year: 1993
  ident: ref_120
  article-title: Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(93)81263-3
– volume: 127
  start-page: 17606
  year: 2005
  ident: ref_72
  article-title: Self-assembling a molecular pegboard
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0568446
– volume: 8
  start-page: 5641
  year: 2014
  ident: ref_126
  article-title: DNA–Cholesterol barges as programmable membrane-exploring agents
  publication-title: ACS Nano
  doi: 10.1021/nn500108k
– volume: 9
  start-page: 3530
  year: 2015
  ident: ref_129
  article-title: Membrane-assisted growth of DNA origami nanostructure arrays
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00161
– volume: 5
  start-page: 729
  year: 2005
  ident: ref_154
  article-title: Programmable DMA self-assemblies for nanoscale organization of ligands and proteins
  publication-title: Nano Lett.
  doi: 10.1021/nl050175c
– volume: 11
  start-page: 4546
  year: 2019
  ident: ref_93
  article-title: DNA origami directed 3D nanoparticle superlattice: Via electrostatic assembly
  publication-title: Nanoscale
  doi: 10.1039/C8NR09844A
– volume: 139
  start-page: 12027
  year: 2017
  ident: ref_128
  article-title: Long-range ordering of blunt-ended DNA tiles on supported lipid bilayers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06572
– volume: 6
  start-page: 2528
  year: 2005
  ident: ref_103
  article-title: A new triple crossover triangle (TXT) motif for DNA self-assembly
  publication-title: Biomacromolecules
  doi: 10.1021/bm050230b
– volume: 8
  start-page: 867
  year: 2016
  ident: ref_111
  article-title: Self-organized architectures from assorted DNA-framed nanoparticles
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2540
– volume: 338
  start-page: 932
  year: 2012
  ident: ref_25
  article-title: Synthetic lipid membrane channels formed by designed DNA nanostructures
  publication-title: Science
  doi: 10.1126/science.1225624
– volume: 136
  start-page: 1714
  year: 2014
  ident: ref_124
  article-title: Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4109819
– volume: 5
  start-page: 2399
  year: 2005
  ident: ref_153
  article-title: Sequence-encoded self-assembly of mul-tiple-nanocomponent arrays by 2D DNA scaffolding
  publication-title: Nano Lett.
  doi: 10.1021/nl0515495
– volume: 13
  start-page: 862
  year: 2014
  ident: ref_20
  article-title: Reconfigurable 3D plasmonic metamolecules
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4031
– volume: 339
  start-page: 1412
  year: 2013
  ident: ref_53
  article-title: DNA gridiron nanostructures based on four-arm junctions
  publication-title: Science
  doi: 10.1126/science.1232252
– volume: 5
  start-page: 665
  year: 2010
  ident: ref_109
  article-title: Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces
  publication-title: ACS Nano
  doi: 10.1021/nn1031627
– volume: 301
  start-page: 1882
  year: 2003
  ident: ref_79
  article-title: DNA-templated self-assembly of protein arrays and highly conductive nanowires
  publication-title: Science
  doi: 10.1126/science.1089389
– volume: 127
  start-page: 12202
  year: 2005
  ident: ref_99
  article-title: Self-assembly of hexagonal DNA two-dimensional (2D) arrays
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0541938
– volume: 51
  start-page: 912
  year: 2011
  ident: ref_139
  article-title: DNA origami nanopatterning on chemically modified graphene
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106198
– volume: 142
  start-page: 815
  year: 2019
  ident: ref_24
  article-title: A DNA origami platform for single-pair förster resonance energy transfer investigation of DNA–DNA interactions and ligation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09093
– volume: 5
  start-page: 693
  year: 2005
  ident: ref_90
  article-title: Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl050108i
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_125
  article-title: Environment-dependent self-assembly of DNA origami lattices on phase-separated lipid membranes
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800437
– volume: 131
  start-page: 13248
  year: 2009
  ident: ref_71
  article-title: Surface-mediated DNA self-assembly
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906475w
– volume: 44
  start-page: 4333
  year: 2005
  ident: ref_88
  article-title: Aptamer-directed self-assembly of protein arrays on a DNA nanostructure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200501089
– volume: 13
  start-page: 2351
  year: 2013
  ident: ref_130
  article-title: Self-assembled DNA nanopores that span lipid bilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl304147f
– volume: 14
  start-page: 3499
  year: 2014
  ident: ref_143
  article-title: Single-molecule positioning in zeromode waveguides by DNA origami nanoadapters
  publication-title: Nano Lett.
  doi: 10.1021/nl501064b
– volume: 4
  start-page: 313
  year: 2002
  ident: ref_151
  article-title: Selfassembly of metallic NA-noparticle arrays by DNA scaffolding
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1021145208328
– volume: 10
  start-page: 23295
  year: 2018
  ident: ref_23
  article-title: DNA origami-based förster resonance energy-transfer nanoarrays and their application as ratiometric sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03585
– volume: 12
  start-page: 9733
  year: 2020
  ident: ref_117
  article-title: Dynamics of lattice defects in mixed DNA origami monolayers
  publication-title: Nanoscale
  doi: 10.1039/D0NR01252A
– volume: 347
  start-page: 1260901
  year: 2015
  ident: ref_149
  article-title: Programmable materials and the nature of the DNA bond
  publication-title: Science
  doi: 10.1126/science.1260901
– ident: ref_162
  doi: 10.1007/978-1-59745-218-2_8
– volume: 3
  start-page: 620
  year: 2011
  ident: ref_107
  article-title: Programmable molecular recognition based on the geometry of DNA nanostructures
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1070
– volume: 382
  start-page: 607
  year: 1996
  ident: ref_147
  article-title: A DNA-based method for rationally assembling nanoparticles into macroscopic materials
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 1971
  year: 2010
  ident: ref_10
  article-title: Structural DNA Nanotechnology: Growing along with nano letters
  publication-title: Nano Lett.
  doi: 10.1021/nl101262u
– volume: 552
  start-page: 67
  year: 2017
  ident: ref_110
  article-title: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns
  publication-title: Nat. Cell Biol.
– volume: 3
  start-page: 032001
  year: 2020
  ident: ref_13
  article-title: The potential of DNA origami to build multifunctional materials
  publication-title: Multifunct. Mater.
  doi: 10.1088/2399-7532/ab80d5
– volume: 31
  start-page: 1806294
  year: 2019
  ident: ref_160
  article-title: From DNA nanotechnology to material systems engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806294
– volume: 129
  start-page: 8169
  year: 2007
  ident: ref_86
  article-title: Assembly and characterization of 8-arm and 12-arm DNA branched junctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0693441
– volume: 47
  start-page: 1645
  year: 2014
  ident: ref_113
  article-title: Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400299m
– volume: 13
  start-page: 6256
  year: 2019
  ident: ref_163
  article-title: Nucleic acid databases and molecular-scale computing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02562
– volume: 440
  start-page: 297
  year: 2006
  ident: ref_11
  article-title: Folding DNA to create nanoscale shapes and patterns
  publication-title: Nat. Cell Biol.
– volume: 26
  start-page: 12680
  year: 2010
  ident: ref_136
  article-title: Guided deposition of individual DNA nanostructures on silicon substrates
  publication-title: Langmuir
  doi: 10.1021/la101343k
– volume: 121
  start-page: 917
  year: 1999
  ident: ref_68
  article-title: Modifying the surface features of two-dimensional DNA crystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982824a
– volume: 9
  start-page: 918
  year: 2010
  ident: ref_159
  article-title: DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2877
– volume: 20
  start-page: 2422
  year: 2019
  ident: ref_43
  article-title: DNA Origami as scaffolds for self-assembly of lipids and proteins
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201900073
– volume: 303
  start-page: 143
  year: 2005
  ident: ref_47
  article-title: Structural DNA nanotechnology: An overview
  publication-title: Breast Cancer
– volume: 44
  start-page: 3057
  year: 2005
  ident: ref_80
  article-title: Engineering a 2D protein-DNA crystal
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200463027
– volume: 138
  start-page: 7733
  year: 2016
  ident: ref_61
  article-title: Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03966
– volume: 321
  start-page: 824
  year: 2008
  ident: ref_51
  article-title: Programming DNA tube circumferences
  publication-title: Science
  doi: 10.1126/science.1157312
– volume: 5
  start-page: 7637
  year: 2017
  ident: ref_140
  article-title: Site-selective immobilization of functionalized DNA origami on nano-patterned teflon AF
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01015J
– volume: 7
  start-page: 1641
  year: 2006
  ident: ref_38
  article-title: DNA tile based self-assembly: Building complex nanoarchitectures
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200600260
– volume: 344
  start-page: 65
  year: 2014
  ident: ref_57
  article-title: Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT
  publication-title: Science
  doi: 10.1126/science.1250944
– volume: 22
  start-page: 275301
  year: 2011
  ident: ref_35
  article-title: DNA origami-based nanoribbons: Assembly, length distribution, and twist
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/27/275301
– volume: 117
  start-page: 12584
  year: 2017
  ident: ref_39
  article-title: DNA origami: Scaffolds for creating higher order structures
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00825
– volume: 382
  start-page: 609
  year: 1996
  ident: ref_148
  article-title: Organization of ‘nanocrystal molecules’ using DNA
  publication-title: Nat. Cell Biol.
– volume: 30
  start-page: 5667
  year: 1991
  ident: ref_84
  article-title: Assembly and characterization of five-arm and six-arm DNA branched junctions
  publication-title: Biochemistry
  doi: 10.1021/bi00237a005
– volume: 33
  start-page: 586
  year: 2015
  ident: ref_22
  article-title: DNA Nanostructures as smart drug-delivery vehicles and molecular devices
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2015.08.001
– volume: 106
  start-page: 6054
  year: 2009
  ident: ref_76
  article-title: An information-bearing seed for nucleating algorithmic self-assembly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808736106
SSID ssj0021415
Score 2.4337394
SecondaryResourceType review_article
Snippet The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1502
SubjectTerms complexity
Deoxyribonucleic acid
Design
DNA
DNA - chemical synthesis
DNA - chemistry
DNA nanotechnology
DNA origami
DNA self-assembly
hierarchy
Hydrogen bonds
lattice
Nanoparticles
Nanostructures - chemistry
Nanotechnology
Nanotechnology - methods
Proteins
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EBL2Ib-uLCp6Esm0a0-Toa_Egq4cV9lamSaoL2hW76-930nQXV0Uv3kozhXQm7XwfmXwDcIKqZKyUJko5xhGnBBRJjSrilgktuClSL-J6m_V6cjBQ959afbmaMC8P7B3XQV6kDDkBa6m41LwQlBMxkYSb8QxZI7YdZ2pKplqqlVBe8nuYKZH6zotvNWtrQu9OAZ3NZaFGrP8nhPm1UPJT5umuwWoLGcNzP9V1WLDVBixfTju1bULHdd30OrDVY3jrartDdkUXY1fZVod3k3E4KsOr3nnUp59AvQUP3ev-5U3UNkKINAH-cSQYvXqmFZZIziyS0hhWCJ6JIi4yLYRUcVlapZCSvyFbTDKDHIWVsdGEsNJtWKxGld2F0LjslEhp3aFYInfEl1AINMoQFpOYBhBPHZPrViXcNat4zoktOF_m33wZwOnskVcvkfGb8YXz9szQqVs3NyjmeRvz_K-YB3AwjVXefnJ1zpw0oRQi4wEcz4YpEm4HBCs7mjQ20lGoOA5gx4d2NhPi6u7wJM0wmwv63FTnR6rhUyPILRukl-79x7vtwwpzZTNNyeABLNLqsYewpN_Hw_rtqFnlH9Px_uU
  priority: 102
  providerName: Directory of Open Access Journals
Title Constructing Large 2D Lattices Out of DNA-Tiles
URI https://www.ncbi.nlm.nih.gov/pubmed/33801952
https://www.proquest.com/docview/2501886674
https://www.proquest.com/docview/2508559700
https://pubmed.ncbi.nlm.nih.gov/PMC8000633
https://doaj.org/article/a4b32a45488948c4b6710a18642a5a26
Volume 26
WOSCitedRecordID wos000645394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXSR64V0IlFWQOCFZm3Vcxz6hPgVSWVaoSMspcmynVIKkNFt-PzOON7CAeuISRclEsjNjz3z2-BuAV0bXnNfKsVyYjAl0QExZo5nwXFopXJX3JK6nxXyulku9iMeju5hWuZ4Tw0Tdsz1T3jZOwlPXWloxn3LioVNSFuLN5XdGNaRorzUW1NiCMRFvZSMYL969X3weANgMvVW_s5kj1J9-6wvQ-g5jeuJF5xu-KVD4_yvu_DN98jd_dHLv__bkPtyNcWm63xvSA7jlm4dw53BdDu4RTKm0Z08225ynp5RAnvIjvFlR-lyXfrhepW2dHs332RnONN1j-HRyfHb4lsVqC8wiqlgxyTWCF6tNbVBj1ax2jldSFLLKqsJKqXRW115rgxGGQ1kzK5wRRnqVOYthXL4Do6Zt_FNIHblA7JWnk7eIIBGUGSmN0w4DPmXyBLL1fy5tpCKnihhfS4QkpJryL9Uk8Hr45LLn4bhJ-ICUNwgShXZ40F6dl3FElkZUOTcCEZvCjltRSQy2zEwhIDN7hssEdtfqK-O47spf2krg5fAaNUHbLKbx7XWQUYTTsiyBJ72lDC3Jc0UnNLGFxYYNbTR1801z8SWwfqsQTubPbm7Wc9jmlHUTMg53YYR24V_AbftjddFdTWCrWBbhqiYwPjieLz5OwirEJA6Vn9NyH9M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58H4ECgQJLkjRZm3j2AeESpeqq26XPSxSOQXHdtpKJSnNFsSf4jcykxcsoN564BYlTjTxfJmZLx7PADw3OmcsVy7iwsSRQAcUKWt0JDyTVgqX8aaI6zSZzdTBgZ6vwY9uLwylVXY2sTbUrrT0j3zIqPKckjIRb06_RNQ1ilZXuxYaDSz2_PdvSNmq15Mx6vcFYzvvFtu7UdtVILIYPS8jyTQG6Vab3KBk2Sh3jmVSJDKLs8RKqXSc515rg57U4VgzSpwRRnoVO4vhCsfnXoF1gWCPB7A-n-zPP_YUb4T-sFk75VzHw89Ni1tfIWugyutsxfvVTQL-Fdn-maD5m8fbufG_zdVNuN7G1uFW8zHcgjVf3IaN7a6l3R0YUnvSpmBucRhOKQk-ZGM8WFIKYBW-P1-GZR6OZ1vRAq1ldRc-XIq892BQlIV_AKEjN46z6Gn3MLJgJJZGSuO0w6BVGR5A3GkytW05derqcZIirSLlp38pP4CX_S2nTS2Riwa_JXj0A6kMeH2iPDtMW6uSGpFxZgSyToUvbkUmMWA0I4Wk0rwyTAaw2QEkbW1Tlf5CRwDP-suoCVoqMoUvz-sxirhmHAdwv8FiLwnninaZooTJCkpXRF29Uhwf1ZXLVR0S84cXi_UUNnYX-9N0OpntPYJrjLKI6gzKTRggRvxjuGq_Lo-rsyft5xfCp8tG8U8lEmzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvB-BAkGCC1K0Wds49gGhttsVVVdhhYrUW-rYTqkESWm2IP4av46ZvGAB9dYDtyh2oon9eWa-eDwD8NzogrFCuYgLE0cCDVCkrNGR8ExaKVzO2ySu8yRN1cGBXqzBj_4sDIVV9jqxUdSusvSPfMwo85ySMhHjoguLWExnb06-RFRBinZa-3IaLUT2_PdvSN_q17tTnOsXjM129rffRl2FgciiJ72MJNPosFttCoNS5pPCOZZLkcg8zhMrpdJxUXitDVpVh33NJHFGGOlV7Cy6LhzfewnWE46kZwTrWzvp4v1A9yZoG9t9VM51PP7clrv1NTIIysLOVixhUzDgX17un8Gav1m_2Y3_edxuwvXO5w4320VyC9Z8eRuubvel7u7AmMqWtol0y6NwTsHxIZvixZJCA-vw3dkyrIpwmm5G-6hF67vw4ULkvQejsir9AwgdmXccUU-nipEdI-E0UhqnHTqzyvAA4n5WM9ulWadqH58ypFsEhOwvIATwcnjkpM0xcl7nLYLK0JHSgzc3qtOjrNM2mRE5Z0YgG1X44VbkEh1JM1FINs0rw2QAGz1Ysk5n1dkvpATwbGjGmaAtJFP66qzpo4iDxnEA91tcDpJwruj0KUqYrCB2RdTVlvL4Y5PRXDWuMn94vlhP4QpCN5vvpnuP4Bqj4KImsHIDRggR_xgu26_L4_r0SbcSQzi8aBD_BKxpdWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Large+2D+Lattices+Out+of+DNA-Tiles&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Parikka%2C+Johannes+M.&rft.au=Soko%C5%82owska%2C+Karolina&rft.au=Marke%C5%A1evi%C4%87%2C+Nemanja&rft.au=Toppari%2C+J.+Jussi&rft.date=2021-03-10&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=26&rft.issue=6&rft.spage=1502&rft_id=info:doi/10.3390%2Fmolecules26061502&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules26061502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon