Diagnosing and responding to violations in the positivity assumption

The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research Jg. 21; H. 1; S. 31 - 54
Hauptverfasser: Petersen, Maya L, Porter, Kristin E, Gruber, Susan, Wang, Yue, van der Laan, Mark J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 01.02.2012
Sage Publications Ltd
Schlagworte:
ISSN:0962-2802, 1477-0334, 1477-0334
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.
AbstractList The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. Adapted from the source document.
The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. [PUBLICATION ABSTRACT]
The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.
The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.
Author Wang, Yue
Gruber, Susan
Petersen, Maya L
van der Laan, Mark J
Porter, Kristin E
AuthorAffiliation 1 Division of Biostatistics, University of California, Berkeley, CA 94110-7358, USA
2 Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
AuthorAffiliation_xml – name: 1 Division of Biostatistics, University of California, Berkeley, CA 94110-7358, USA
– name: 2 Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
Author_xml – sequence: 1
  givenname: Maya L
  surname: Petersen
  fullname: Petersen, Maya L
  organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
– sequence: 2
  givenname: Kristin E
  surname: Porter
  fullname: Porter, Kristin E
  organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
– sequence: 3
  givenname: Susan
  surname: Gruber
  fullname: Gruber, Susan
  organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
– sequence: 4
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
– sequence: 5
  givenname: Mark J
  surname: van der Laan
  fullname: van der Laan, Mark J
  organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21030422$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUhS1EBQNlzwpF3bBKe_2IHW8qVUNfEhIburYcjzPjUcYOsTMS_x6HgRZGgq4s63zn6Nx7T9ChD94idI7hM8ZCfAHJCamBYKA1JyAO0AwzIUqglB2i2SSXk36MTmJcA4AAJo_Q8WQARsgMXV05vfQhOr8stF8Ug4198Ivpm0KxdaHTyQUfC-eLtLJFn9Hkti7dFzrGcdNP6kf0odVdtGdP7yn68-P77fxXeX3z8_f823VpqqpOpdUNM1bThrecMcwprhltQYORuOE096HWNExALVpdG8YbSjXUtak4abkU9BR93eX2Y7OxC2N9GnSn-sFt9HCvgnbqteLdSi3DVjEMQhKZAy6fAoZwN9qY1MZFY7tOexvGqCRnRAAm_P8k5rmRrCby0x65DuPg8x4miDAJFcnQxcvmfys_HyIDfAeYIcQ42FYZlx5XnwdxncKgpour_YtnI-wZn7PfsZQ7S9RL-6_tm_wD1Vi4dg
CitedBy_id crossref_primary_10_1093_biomet_asy015
crossref_primary_10_1080_24709360_2022_2069457
crossref_primary_10_1515_em_2019_0024
crossref_primary_10_1093_aje_kwac136
crossref_primary_10_1093_aje_kwab045
crossref_primary_10_1371_journal_pone_0305526
crossref_primary_10_1097_EDE_0000000000001097
crossref_primary_10_1016_j_jvs_2023_06_024
crossref_primary_10_1007_s13311_023_01344_w
crossref_primary_10_1097_EDE_0000000000001773
crossref_primary_10_1097_j_pain_0000000000001631
crossref_primary_10_1016_j_prevetmed_2024_106165
crossref_primary_10_1136_heartjnl_2012_303461
crossref_primary_10_1177_09622802221146310
crossref_primary_10_1080_01621459_2018_1469993
crossref_primary_10_1002_art_42272
crossref_primary_10_1002_sim_70194
crossref_primary_10_25100_cm_v47i1_2250
crossref_primary_10_1002_pds_5529
crossref_primary_10_1080_19345747_2022_2144563
crossref_primary_10_1136_bmjopen_2020_043528
crossref_primary_10_1038_s41467_022_35185_6
crossref_primary_10_1097_EDE_0000000000001545
crossref_primary_10_1016_j_apmr_2018_10_023
crossref_primary_10_1002_cpt_3576
crossref_primary_10_1093_aje_kwz119
crossref_primary_10_1093_biomet_asy008
crossref_primary_10_1016_j_ajog_2024_10_021
crossref_primary_10_1097_EDE_0000000000001308
crossref_primary_10_1111_ppe_12646
crossref_primary_10_1002_sim_6207
crossref_primary_10_1111_nep_12688
crossref_primary_10_1016_j_drugalcdep_2015_03_014
crossref_primary_10_1002_sim_8741
crossref_primary_10_1146_annurev_statistics_040522_094556
crossref_primary_10_1515_jci_2021_0067
crossref_primary_10_1007_s40265_022_01822_z
crossref_primary_10_1093_aje_kwab053
crossref_primary_10_3389_fnut_2022_791141
crossref_primary_10_1093_aje_kwaa083
crossref_primary_10_1007_s10928_022_09802_2
crossref_primary_10_1093_aje_kwaf091
crossref_primary_10_1177_1403494815608098
crossref_primary_10_1111_brv_12697
crossref_primary_10_1007_s11524_024_00946_9
crossref_primary_10_1016_j_ijrobp_2015_02_025
crossref_primary_10_1097_EDE_0000000000001315
crossref_primary_10_1080_10618600_2023_2240384
crossref_primary_10_1177_09622802231224628
crossref_primary_10_1186_s12874_017_0375_8
crossref_primary_10_1093_eurheartj_ehaf235
crossref_primary_10_1111_add_70189
crossref_primary_10_1097_EDE_0b013e31826c2bb9
crossref_primary_10_1214_20_STS776
crossref_primary_10_1002_ajim_22700
crossref_primary_10_1371_journal_pone_0145506
crossref_primary_10_3390_e24091290
crossref_primary_10_1007_s10902_020_00287_9
crossref_primary_10_1136_jnnp_2023_332883
crossref_primary_10_2147_CLEP_S427933
crossref_primary_10_1371_journal_pone_0279976
crossref_primary_10_1002_sim_9600
crossref_primary_10_1080_00273171_2024_2354228
crossref_primary_10_1017_S0033291723000132
crossref_primary_10_1586_17474124_2015_1095087
crossref_primary_10_1007_s00420_018_1397_1
crossref_primary_10_1080_01621459_2017_1375932
crossref_primary_10_1093_aje_kwac128
crossref_primary_10_1093_aje_kwz016
crossref_primary_10_1097_EDE_0000000000000236
crossref_primary_10_1093_aje_kwv211
crossref_primary_10_1073_pnas_1815678116
crossref_primary_10_1146_annurev_statistics_030718_105312
crossref_primary_10_1016_j_jclinepi_2025_111942
crossref_primary_10_1080_03610918_2021_1963455
crossref_primary_10_1080_03610926_2023_2166790
crossref_primary_10_1093_jrsssa_qnae084
crossref_primary_10_3390_ijerph20043182
crossref_primary_10_1214_19_STS735
crossref_primary_10_1186_s12916_025_04325_2
crossref_primary_10_1093_ajcn_nqac003
crossref_primary_10_1214_20_STS774
crossref_primary_10_1214_20_STS773
crossref_primary_10_1371_journal_pone_0154469
crossref_primary_10_1214_20_STS770
crossref_primary_10_1002_sim_8084
crossref_primary_10_1136_bmjopen_2024_095198
crossref_primary_10_1016_j_vaccine_2021_08_099
crossref_primary_10_1097_EDE_0000000000001215
crossref_primary_10_1093_aje_kwz268
crossref_primary_10_1371_journal_pmed_1004384
crossref_primary_10_1002_sim_8659
crossref_primary_10_1007_s10964_018_0859_9
crossref_primary_10_1097_EDE_0000000000001332
crossref_primary_10_1097_EDE_0000000000001453
crossref_primary_10_1093_aje_kwu253
crossref_primary_10_1093_epirev_mxab010
crossref_primary_10_1097_EDE_0000000000000487
crossref_primary_10_1093_aje_kwac217
crossref_primary_10_1111_biom_13796
crossref_primary_10_1002_sim_9503
crossref_primary_10_1093_epirev_mxab009
crossref_primary_10_1080_01621459_2025_2495319
crossref_primary_10_1515_em_2014_0020
crossref_primary_10_1093_ije_dyx194
crossref_primary_10_1186_s12874_020_01175_9
crossref_primary_10_1002_pds_70172
crossref_primary_10_1097_EDE_0000000000001902
crossref_primary_10_1093_epirev_mxab005
crossref_primary_10_1016_j_jeconom_2019_10_014
crossref_primary_10_1080_10408444_2018_1518404
crossref_primary_10_1007_s40572_022_00388_y
crossref_primary_10_1016_j_jmh_2025_100322
crossref_primary_10_1186_s12874_023_01936_2
crossref_primary_10_1093_ndt_gfae170
crossref_primary_10_1002_sim_8426
crossref_primary_10_1186_s12877_022_02990_z
crossref_primary_10_1177_09622802211025988
crossref_primary_10_1111_1475_6773_12152
crossref_primary_10_2147_JMDH_S516826
crossref_primary_10_1016_j_jsxm_2019_07_021
crossref_primary_10_1080_19466315_2023_2289523
crossref_primary_10_1007_s12561_011_9040_7
crossref_primary_10_1007_s12561_013_9085_x
crossref_primary_10_1016_j_socscimed_2016_07_045
crossref_primary_10_1017_ehs_2023_35
crossref_primary_10_1002_bimj_202000323
crossref_primary_10_1093_jrsssa_qnad068
crossref_primary_10_1093_aje_kwae292
crossref_primary_10_1001_jamanetworkopen_2020_25190
crossref_primary_10_1002_sim_8678
crossref_primary_10_1002_sim_6377
crossref_primary_10_1080_19466315_2024_2394457
crossref_primary_10_1002_bimj_202300156
crossref_primary_10_1093_jamia_ocae141
crossref_primary_10_1080_10543406_2019_1657138
crossref_primary_10_1002_jac5_1591
crossref_primary_10_1080_19466315_2023_2173644
crossref_primary_10_1097_ALN_0000000000001057
crossref_primary_10_1002_sim_7919
crossref_primary_10_1016_j_neuroimage_2022_119296
crossref_primary_10_1080_24709360_2022_2031808
crossref_primary_10_1093_aje_kwv254
crossref_primary_10_1080_15459624_2025_2502491
crossref_primary_10_1177_0962280213507034
crossref_primary_10_1177_13872877241300296
crossref_primary_10_1515_ijb_2015_0034
crossref_primary_10_1093_aje_kwae189
crossref_primary_10_1097_EDE_0000000000001482
crossref_primary_10_1177_0962280219898497
crossref_primary_10_1007_s11336_018_09657_y
crossref_primary_10_1080_01621459_2018_1529594
crossref_primary_10_1080_2330443X_2022_2120136
crossref_primary_10_1097_EDE_0000000000001370
crossref_primary_10_1159_000485593
crossref_primary_10_1002_bimj_201700305
crossref_primary_10_1002_bimj_70026
crossref_primary_10_1002_pds_5338
crossref_primary_10_1093_aje_kwad097
crossref_primary_10_57264_cer_2023_0027
crossref_primary_10_1002_cncr_35650
crossref_primary_10_1016_j_ijrobp_2016_03_047
crossref_primary_10_1093_poq_nfw060
crossref_primary_10_1515_em_2016_0004
crossref_primary_10_5554_22562087_e944
crossref_primary_10_1093_biostatistics_kxac027
crossref_primary_10_1007_s12564_024_09962_5
crossref_primary_10_1097_EDE_0000000000000966
crossref_primary_10_1214_21_AOAS1570
crossref_primary_10_1093_aje_kwv148
crossref_primary_10_1186_1471_2288_13_101
crossref_primary_10_1017_cts_2023_635
crossref_primary_10_12688_f1000research_111915_1
crossref_primary_10_12688_f1000research_111915_2
crossref_primary_10_1016_j_socscimed_2022_115500
crossref_primary_10_1093_aje_kwae277
crossref_primary_10_1515_ijb_2020_0127
crossref_primary_10_1097_EDE_0000000000000164
crossref_primary_10_1017_cts_2023_632
crossref_primary_10_1097_EDE_0000000000000045
crossref_primary_10_1093_jrsssc_qlad034
crossref_primary_10_1515_ijb_2020_0128
crossref_primary_10_1111_biom_13244
crossref_primary_10_1038_s41591_024_03134_z
crossref_primary_10_1111_biom_13121
crossref_primary_10_1186_s12874_018_0484_z
crossref_primary_10_1007_s10661_025_13689_0
crossref_primary_10_3414_ME13_01_0132
crossref_primary_10_1093_esr_jcaf016
crossref_primary_10_1016_j_chest_2023_04_048
crossref_primary_10_1093_aje_kwx213
crossref_primary_10_1097_EDE_0000000000001701
crossref_primary_10_1093_aje_kwx214
crossref_primary_10_1097_EDE_0000000000001704
crossref_primary_10_1038_s41591_024_02902_1
crossref_primary_10_1097_EDE_0000000000001261
crossref_primary_10_1002_phar_2778
crossref_primary_10_1002_sim_8904
crossref_primary_10_1177_0962280218772065
crossref_primary_10_1093_epirev_mxac011
crossref_primary_10_1002_sim_70123
crossref_primary_10_1289_ehp_1205251
crossref_primary_10_1080_19466315_2022_2081599
crossref_primary_10_1016_j_xkme_2020_11_001
crossref_primary_10_1093_aje_kwad196
crossref_primary_10_1145_3444944
crossref_primary_10_1002_sim_8340
crossref_primary_10_1002_sim_9550
crossref_primary_10_1111_rssb_12213
crossref_primary_10_1186_s12874_025_02661_8
crossref_primary_10_1073_pnas_2401882121
crossref_primary_10_1007_s00184_024_00962_4
crossref_primary_10_1136_emermed_2016_205715
crossref_primary_10_1017_S2045796018000367
crossref_primary_10_1097_EDE_0000000000000985
crossref_primary_10_1289_EHP7495
crossref_primary_10_1371_journal_pone_0267462
crossref_primary_10_1111_biom_12927
crossref_primary_10_1097_EDE_0000000000000627
crossref_primary_10_1080_24709360_2024_2347709
crossref_primary_10_1177_03000605241241920
crossref_primary_10_1017_cts_2023_656
crossref_primary_10_1080_03610918_2024_2319419
crossref_primary_10_1097_EDE_0000000000001272
crossref_primary_10_1016_j_sste_2021_100439
crossref_primary_10_1038_s41746_023_00961_1
crossref_primary_10_1093_epirev_mxac002
crossref_primary_10_1542_peds_2020_033316
crossref_primary_10_1093_aje_kwu197
crossref_primary_10_1177_17562864241284166
crossref_primary_10_6339_24_JDS1143
crossref_primary_10_1007_s10742_013_0109_2
crossref_primary_10_1097_EDE_0000000000000507
crossref_primary_10_1111_rssb_12300
crossref_primary_10_1001_jamanetworkopen_2021_26605
crossref_primary_10_1016_j_jadohealth_2020_07_006
crossref_primary_10_1093_jrsssa_qnae002
crossref_primary_10_1111_jmwh_12710
crossref_primary_10_1093_aje_kwaa221
crossref_primary_10_1177_00220345231164106
crossref_primary_10_1016_j_envres_2019_108649
crossref_primary_10_1177_09622802211047345
crossref_primary_10_3390_ijerph15010039
crossref_primary_10_1097_EDE_0000000000000078
crossref_primary_10_1093_aje_kwz099
crossref_primary_10_1097_EDE_0000000000000872
crossref_primary_10_1016_j_eururo_2014_08_061
crossref_primary_10_1186_s12874_022_01692_9
crossref_primary_10_1002_sim_7277
crossref_primary_10_1007_s40471_017_0124_x
crossref_primary_10_1093_aje_kwae023
crossref_primary_10_1177_0962280220940334
crossref_primary_10_1093_aje_kwac087
crossref_primary_10_1038_srep23222
crossref_primary_10_1093_aje_kwx247
crossref_primary_10_1093_aje_kwac179
crossref_primary_10_1136_jech_2015_205886
crossref_primary_10_1111_biom_13716
crossref_primary_10_1177_0272989X20937257
crossref_primary_10_1093_aje_kwae115
crossref_primary_10_3389_fphar_2022_1034636
crossref_primary_10_1080_00031305_2022_2051605
crossref_primary_10_1002_sim_70034
crossref_primary_10_1002_sim_7046
crossref_primary_10_1093_aje_kwt318
crossref_primary_10_1002_sim_70037
crossref_primary_10_1111_biom_13162
crossref_primary_10_1136_jech_2022_219267
crossref_primary_10_1002_sim_9348
crossref_primary_10_1097_EDE_0000000000000409
crossref_primary_10_1080_00031305_2024_2368794
crossref_primary_10_1111_rssb_12487
crossref_primary_10_1007_s00484_025_02974_9
crossref_primary_10_1016_j_bodyim_2024_101704
crossref_primary_10_1093_bja_aev255
crossref_primary_10_1177_09622802241269646
crossref_primary_10_1093_biostatistics_kxae012
crossref_primary_10_1007_s10654_022_00901_5
crossref_primary_10_1016_j_jaci_2025_03_005
crossref_primary_10_1097_EDE_0000000000000774
crossref_primary_10_1186_s13195_021_00818_3
crossref_primary_10_1016_j_jss_2025_03_043
crossref_primary_10_1097_EDE_0000000000001502
crossref_primary_10_1111_add_15005
crossref_primary_10_1146_annurev_statistics_030718_105251
crossref_primary_10_1093_aje_kwad156
crossref_primary_10_1007_s12564_024_09957_2
crossref_primary_10_1016_j_jclinepi_2013_01_016
crossref_primary_10_1214_20_STS789
crossref_primary_10_1093_aje_kww165
crossref_primary_10_1097_EE9_0000000000000056
crossref_primary_10_1093_ije_dyy218
crossref_primary_10_1515_ijb_2017_0054
crossref_primary_10_1038_s41598_025_85501_5
crossref_primary_10_1016_j_cjca_2024_02_005
crossref_primary_10_1111_biom_13271
crossref_primary_10_1371_journal_pone_0310531
crossref_primary_10_1515_em_2012_0006
crossref_primary_10_1136_oemed_2023_108853
crossref_primary_10_1177_0962280217729845
crossref_primary_10_1080_01621459_2023_2187814
crossref_primary_10_1136_bmjopen_2021_058244
crossref_primary_10_1001_jamanetworkopen_2025_1714
crossref_primary_10_1007_s10551_014_2524_x
crossref_primary_10_1515_em_2012_0001
crossref_primary_10_1097_EDE_0000000000001875
crossref_primary_10_1111_jmwh_12868
crossref_primary_10_1371_journal_pone_0291057
crossref_primary_10_1016_j_jbi_2023_104339
crossref_primary_10_1016_j_ypmed_2022_107257
crossref_primary_10_1016_j_annepidem_2024_12_013
crossref_primary_10_7554_eLife_79548
crossref_primary_10_1093_aje_kwad005
crossref_primary_10_1109_ACCESS_2021_3140189
crossref_primary_10_1093_aje_kwac036
crossref_primary_10_1097_EDE_0000000000001637
crossref_primary_10_1038_jes_2014_60
crossref_primary_10_1002_sim_8715
crossref_primary_10_1002_sim_9802
crossref_primary_10_1001_jamanetworkopen_2022_5026
crossref_primary_10_1002_sim_6099
crossref_primary_10_1186_s12874_024_02212_7
crossref_primary_10_1002_pds_5500
crossref_primary_10_1016_j_cmi_2021_06_034
crossref_primary_10_1111_add_70141
crossref_primary_10_1001_jamanetworkopen_2019_18554
crossref_primary_10_1002_ijc_70138
crossref_primary_10_1002_sim_8710
crossref_primary_10_1093_aje_kwt215
crossref_primary_10_1177_0962280212461194
crossref_primary_10_1093_aje_kwad241
crossref_primary_10_1002_bimj_201800132
crossref_primary_10_1002_pds_3569
crossref_primary_10_1038_nrrheum_2015_30
crossref_primary_10_1371_journal_pone_0101090
crossref_primary_10_1016_j_amepre_2025_02_014
crossref_primary_10_1097_EDE_0000000000001764
crossref_primary_10_1093_aje_kwy006
crossref_primary_10_1002_sim_10246
crossref_primary_10_1002_sim_10003
crossref_primary_10_1186_s12940_020_00599_6
crossref_primary_10_1097_MLR_0000000000001063
crossref_primary_10_1186_s12874_022_01720_8
crossref_primary_10_1111_biom_13800
crossref_primary_10_1097_EE9_0000000000000035
crossref_primary_10_1111_j_1541_0420_2011_01685_x
crossref_primary_10_1093_jnci_djad092
crossref_primary_10_1186_s12891_020_03672_w
crossref_primary_10_1097_QAD_0000000000003786
crossref_primary_10_1177_0962280215627335
crossref_primary_10_1515_ijb_2013_0014
crossref_primary_10_1002_pds_4767
crossref_primary_10_1007_s10654_023_01067_4
crossref_primary_10_1093_aje_kwac162
crossref_primary_10_1016_j_jad_2024_01_022
crossref_primary_10_1002_sim_70185
crossref_primary_10_1007_s10742_016_0157_5
crossref_primary_10_1016_j_csda_2021_107303
crossref_primary_10_1177_0962280218774817
Cites_doi 10.1002/sim.1110
10.1097/00001648-200009000-00011
10.2202/1557-4679.1043
10.2202/1557-4679.1238
10.2202/1557-4679.1022
10.2307/2971733
10.2202/1557-4679.1182
10.1016/S0021-9681(87)80018-8
10.1007/978-1-4757-2545-2
10.1016/0270-0255(86)90088-6
10.1016/j.jspi.2005.12.008
10.1007/978-0-387-84858-7
10.3386/t0330
10.1037/h0037350
10.1093/aje/kwn164
10.1002/sim.3301
10.2307/2527916
10.1214/ss/1177012031
10.1016/j.jspi.2004.06.060
10.1002/sim.3414
10.1080/01621459.1999.10473858
10.1177/0193841X08317586
ContentType Journal Article
Copyright The Author(s) 2010 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav
SAGE Publications © Feb 2012
The Author(s) 2010 2010
Copyright_xml – notice: The Author(s) 2010 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav
– notice: SAGE Publications © Feb 2012
– notice: The Author(s) 2010 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7QJ
7SC
7X7
7XB
88E
88I
8C1
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
HEHIP
JQ2
K9.
L6V
L7M
L~C
L~D
M0S
M1P
M2P
M2S
M7S
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PTHSS
Q9U
7X8
5PM
DOI 10.1177/0962280210386207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Sociology Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Sociology Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Sociology & Social Sciences Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Sociology
ProQuest Medical Library (Alumni)
Engineering Collection
Social Science Premium Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Sociology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Sociology Collection
Advanced Technologies Database with Aerospace
ProQuest Public Health
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central Student

MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
EndPage 54
ExternalDocumentID PMC4107929
2561765531
21030422
10_1177_0962280210386207
10.1177_0962280210386207
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI074345
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
AAEJI
AAPII
AAYXX
ABUAX
AFFHD
AJGYC
AJHME
AJVBE
CITATION
PJZUB
POGQB
PPXIY
PQGLB
PRQQA
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QJ
7SC
7XB
8FD
8FK
JQ2
K9.
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c558t-eab4cea3b6f6441631843f0a0c91b634223ecb47087fa8c46b33a088c562f6973
IEDL.DBID M7S
ISICitedReferencesCount 397
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299122600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-2802
1477-0334
IngestDate Tue Nov 04 01:59:06 EST 2025
Sun Sep 28 01:03:51 EDT 2025
Sun Nov 09 11:47:32 EST 2025
Mon Nov 10 21:41:20 EST 2025
Mon Jul 21 05:54:03 EDT 2025
Sat Nov 29 08:12:05 EST 2025
Tue Nov 18 22:12:43 EST 2025
Tue Jun 17 22:42:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords realistic treatment rule
positivity
stabilised weights
double robust
parametric bootstrap
trimming
counterfactual
experimental treatment assignment
marginal structural model
inverse probability weight
causal inference
truncation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-eab4cea3b6f6441631843f0a0c91b634223ecb47087fa8c46b33a088c562f6973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1177/0962280210386207
PMID 21030422
PQID 916249052
PQPubID 29398
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107929
proquest_miscellaneous_964270126
proquest_miscellaneous_916697956
proquest_journals_916249052
pubmed_primary_21030422
crossref_citationtrail_10_1177_0962280210386207
crossref_primary_10_1177_0962280210386207
sage_journals_10_1177_0962280210386207
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: London
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2012
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References van der Laan, Petersen 2007; 3
Robins, Hernan, Brumback 2000; 11
Robins, Orellana, Rotnitzky 2008; 27
Cole, Hernan 2008; 168
Bembom, Petersen, Rhee 2009; 28
van der Laan, Polley, Hubbard 2007; 6
Freedman, Berk 2008; 32
van der Laan, Rubin 2006; 2
Neyman 1923; 5
Rosenblum, van der Laan 2001; 1
Gruber, van der Laan 2010; 6
LaLonde 1986; 76
Cochran 1957; 13
Rubin 1974; 66
Scharfstein, Rotnitzky, Robins 1999; 94
Rosenblum, van der Laan 2010; 6
Heckman, Ichimura, Todd 1997; 64
Robins 1987; 40
Robins 2002; 21
Robins 1986; 7
Dehejia, Wahba 1999; 94
Bembom, van der Laan 2007; 1
Neugebauer, van der Laan 2005; 129
Robins, Rotnitzky 2001; 11
Kish 1992; 8
Johnson, Brun-Vezinet, Clotet 2009; 17
Neugebauer, van der Laan 2007; 137
Robins JM. (bibr9-0962280210386207) 1998
bibr13-0962280210386207
bibr21-0962280210386207
Robins JM. (bibr10-0962280210386207) 1999
Moore KL (bibr15-0962280210386207) 2009
Kish L. (bibr22-0962280210386207) 1992; 8
bibr39-0962280210386207
Wang Y (bibr5-0962280210386207) 2006
bibr25-0962280210386207
bibr8-0962280210386207
bibr20-0962280210386207
Scharfstein DO (bibr26-0962280210386207) 1999; 94
bibr38-0962280210386207
Johnson VA (bibr34-0962280210386207) 2009; 17
Rosenblum MM (bibr17-0962280210386207) 2001; 1
bibr33-0962280210386207
Robins JM (bibr24-0962280210386207) 2001; 11
bibr16-0962280210386207
bibr3-0962280210386207
bibr29-0962280210386207
bibr7-0962280210386207
bibr12-0962280210386207
bibr2-0962280210386207
Bembom O (bibr14-0962280210386207) 2007; 1
bibr32-0962280210386207
Bembom O (bibr23-0962280210386207) 2008
bibr28-0962280210386207
LaLonde RJ. (bibr37-0962280210386207) 1986; 76
bibr41-0962280210386207
van der Laan MJ (bibr18-0962280210386207) 2003
Robins JM. (bibr4-0962280210386207) 1999
bibr11-0962280210386207
bibr1-0962280210386207
Pearl J. (bibr6-0962280210386207) 2000
van der Laan MJ (bibr19-0962280210386207) 2007; 6
Petersen ML (bibr30-0962280210386207) 2010
bibr36-0962280210386207
bibr31-0962280210386207
Bembom O (bibr35-0962280210386207) 2008
bibr40-0962280210386207
bibr27-0962280210386207
References_xml – volume: 1
  start-page: 574
  year: 2007
  end-page: 596
  article-title: A practical illustration of the importance of realistic individualized treatment rules in causal inference
– volume: 27
  start-page: 4678
  year: 2008
  end-page: 4721
  article-title: Estimation and extrapolation of optimal treatment and testing strategies
– volume: 5
  start-page: 465
  year: 1923
  end-page: 480
  article-title: On the application of probability theory to agricultural experiments. Essay on principles: section 9
  publication-title: Stat Sci
– volume: 6
  year: 2007
  article-title: Super learner
  publication-title: Genet Mol Biol
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with sustained exposure periods – application to control of the healthy worker survivor effect
  publication-title: Math Model
– volume: 32
  start-page: 392
  issue: 4
  year: 2008
  end-page: 409
  article-title: Weighting regressions by propensity scores
– volume: 2
  start-page: 11
  issue: 1
  year: 2006
  end-page: 11
  article-title: Targeted maximum likelihood learning
– volume: 28
  start-page: 152
  year: 2009
  end-page: 172
  article-title: Biomarker discovery using targeted maximum likelihood estimation: Application to the treatment of antiretroviral resistant HIV infection
– volume: 76
  start-page: 604
  year: 1986
  end-page: 620
  article-title: Evaluating the econometric evaluations of training programs with experimental data
– volume: 40
  start-page: 139s
  issue: 2
  year: 1987
  end-page: 161s
  article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
– volume: 129
  start-page: 405
  issue: 1–2
  year: 2005
  end-page: 426
  article-title: Why prefer DR estimates
– volume: 1
  start-page: 4
  year: 2001
  end-page: 4
  article-title: Confidence intervals for the population mean tailored to small sample sizes, with applications to survey sampling
– volume: 94
  start-page: 1121
  issue: 1096-1120
  year: 1999
  end-page: 1146
  article-title: Adjusting for non-ignorable drop-out using semiparametric nonresponse models, (with discussion and rejoinder)
– volume: 6
  issue: 1
  year: 2010
  article-title: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
– volume: 94
  start-page: 1053
  year: 1999
  end-page: 1062
  article-title: Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs
– volume: 137
  start-page: 419
  issue: 2
  year: 2007
  end-page: 434
  article-title: Non-parametric causal effects based on marginal structural models
– volume: 13
  start-page: 261
  year: 1957
  end-page: 281
  article-title: Analysis of covariance: its nature and uses
  publication-title: Biometrics
– volume: 11
  start-page: 550
  issue: 5
  year: 2000
  end-page: 560
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
– volume: 11
  start-page: 920
  issue: 4
  year: 2001
  end-page: 936
  article-title: Comment on the Bickel and Kwon article, Inference for semiparametric models: some questions and an answer
– volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  end-page: 1512
  article-title: Addendum to: A new approach to causal inference in mortality studies with a sustained exposure period–application to control of the healthy worker survivor effect
  publication-title: Math. Model.
– volume: 17
  start-page: 138
  issue: 5
  year: 2009
  end-page: 145
  article-title: Update of the drug resistance mutations in HIV-1: December 2009
– volume: 8
  start-page: 183
  year: 1992
  end-page: 200
  article-title: Weighting for unequal
  publication-title: J Official Stat
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  end-page: 664
  article-title: Constructing inverse probability weights for marginal structural models
– volume: 3
  start-page: 3
  issue: 1
  year: 2007
  end-page: 3
  article-title: Causal effect models for realistic individualized treatment and intention to treat rules
– volume: 21
  start-page: 1663
  year: 2002
  end-page: 1680
  article-title: Commentary on using inverse weighting and predictive inference to estimate the effects of time-varying treatments on the discrete-time hazard by Dawson and Lavori
– volume: 64
  start-page: 605
  year: 1997
  end-page: 654
  article-title: Matching as an econometric evaluation estimator: evidence from evaluating a job training programme
– volume: 6
  start-page: 19
  issue: 2
  year: 2010
  end-page: 19
  article-title: Targeted maximum likelihood estimation of the parameter of a marginal structural model
– ident: bibr25-0962280210386207
  doi: 10.1002/sim.1110
– ident: bibr21-0962280210386207
  doi: 10.1097/00001648-200009000-00011
– volume-title: Technical Report 211, Division of Biostatistics
  year: 2006
  ident: bibr5-0962280210386207
– ident: bibr27-0962280210386207
  doi: 10.2202/1557-4679.1043
– start-page: 1
  volume-title: In: Proceedings of the American Statistical Association. Section on Bayesian Statistical Science 1997
  year: 1998
  ident: bibr9-0962280210386207
– ident: bibr28-0962280210386207
  doi: 10.2202/1557-4679.1238
– ident: bibr40-0962280210386207
  doi: 10.2202/1557-4679.1022
– ident: bibr38-0962280210386207
  doi: 10.2307/2971733
– volume-title: Technical Report 255, Division of Biostatistics
  year: 2009
  ident: bibr15-0962280210386207
– volume: 8
  start-page: 183
  year: 1992
  ident: bibr22-0962280210386207
  publication-title: J Official Stat
– volume-title: Technical report, division of Biostatstics
  year: 2010
  ident: bibr30-0962280210386207
– ident: bibr33-0962280210386207
  doi: 10.2202/1557-4679.1182
– start-page: 6
  volume-title: In: Proceedings of the American Statistical Association: Section on Bayesian Statistical Science
  year: 1999
  ident: bibr4-0962280210386207
– ident: bibr12-0962280210386207
  doi: 10.1016/S0021-9681(87)80018-8
– ident: bibr31-0962280210386207
  doi: 10.1007/978-1-4757-2545-2
– ident: bibr2-0962280210386207
  doi: 10.1016/0270-0255(86)90088-6
– volume: 11
  start-page: 920
  issue: 4
  year: 2001
  ident: bibr24-0962280210386207
  publication-title: Stat Sinica
– volume-title: Causality: models, reasoning, and inference
  year: 2000
  ident: bibr6-0962280210386207
– start-page: 95
  volume-title: In: Halloran E and Berry D (eds) Statistical models in epidemiology, the environment, and clinical trials (Minneapolis, MN, 1997)
  year: 1999
  ident: bibr10-0962280210386207
– ident: bibr11-0962280210386207
  doi: 10.1016/j.jspi.2005.12.008
– volume: 94
  start-page: 1121
  issue: 1096
  year: 1999
  ident: bibr26-0962280210386207
  publication-title: J Am Stat Assoc
– ident: bibr20-0962280210386207
  doi: 10.1007/978-0-387-84858-7
– ident: bibr36-0962280210386207
  doi: 10.3386/t0330
– ident: bibr3-0962280210386207
  doi: 10.1016/0270-0255(86)90088-6
– volume: 76
  start-page: 604
  year: 1986
  ident: bibr37-0962280210386207
  publication-title: Am Econ Rev
– volume: 1
  start-page: 4
  year: 2001
  ident: bibr17-0962280210386207
  publication-title: Int J Biostat
– ident: bibr8-0962280210386207
  doi: 10.1037/h0037350
– volume-title: Technical Report 130, Division of Biostatistics
  year: 2003
  ident: bibr18-0962280210386207
– volume: 1
  start-page: 574
  year: 2007
  ident: bibr14-0962280210386207
  publication-title: EJS
– ident: bibr16-0962280210386207
  doi: 10.1093/aje/kwn164
– ident: bibr41-0962280210386207
  doi: 10.1002/sim.3301
– ident: bibr1-0962280210386207
  doi: 10.2307/2527916
– ident: bibr7-0962280210386207
  doi: 10.1214/ss/1177012031
– volume: 6
  year: 2007
  ident: bibr19-0962280210386207
  publication-title: Genet Mol Biol
– ident: bibr13-0962280210386207
  doi: 10.1016/j.jspi.2004.06.060
– volume: 17
  start-page: 138
  issue: 5
  year: 2009
  ident: bibr34-0962280210386207
  publication-title: Top HIV Med
– ident: bibr32-0962280210386207
  doi: 10.1002/sim.3414
– volume-title: Technical Report 230,Division of Biostatstics
  year: 2008
  ident: bibr23-0962280210386207
– ident: bibr39-0962280210386207
  doi: 10.1080/01621459.1999.10473858
– ident: bibr29-0962280210386207
  doi: 10.1177/0193841X08317586
– volume-title: Technical Report 231, Division of Biostatstics
  year: 2008
  ident: bibr35-0962280210386207
SSID ssj0007049
Score 2.512891
Snippet The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31
SubjectTerms Anti-HIV Agents - therapeutic use
Bias
Biomedical Research - statistics & numerical data
Cohort Studies
Computer Simulation - statistics & numerical data
Confounding Factors, Epidemiologic
Data
Data Interpretation, Statistical
Drug Resistance, Viral
HIV Infections - drug therapy
HIV Infections - genetics
Humans
Inference
Lopinavir - therapeutic use
Models, Statistical
Modification
Mutation
Parameters
Positive affect
Proximity
Trading
Treatment methods
Treatment Outcome
Violations
Working models
Title Diagnosing and responding to violations in the positivity assumption
URI https://journals.sagepub.com/doi/full/10.1177/0962280210386207
https://www.ncbi.nlm.nih.gov/pubmed/21030422
https://www.proquest.com/docview/916249052
https://www.proquest.com/docview/916697956
https://www.proquest.com/docview/964270126
https://pubmed.ncbi.nlm.nih.gov/PMC4107929
Volume 21
WOSCitedRecordID wos000299122600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest sociology
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: M2S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sociology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQYg9DCgbyxiVHxASD1GT2ImTp2njQzzQquJLfati1xGVppT1g79_d44TYGh92YuVxJc21p19P-d-uQM45iEPxwhEfCVxuuF-Q-GRiH1hxnEUa60C-_nYw7Xs99PhMBs4bs7c0SrrNdEu1OOppnfkXYQxuFPAO78__fapaBQFV10FjXXYoCQJkWXu3TYLsXToN0voC2Qi8tRRyi5do0uUHjyJqJbsa6_0Dmq-Z0y-on1ZT3S5859j2IWPDoKyH5XN7MGaKdvwodfkb523YavnQu5t2CY4WmVz3ofz84qZh_6O5eWYzSzDltwfW0wZBfmrF4BsUjL8OVZRwqg8BUOQjpZDvZ_g_vLi7uzKd3UYfB3H6cI3uRLa5FwlBaGnhFONmCLIA52FKuECEYbRSsgglUWeatQ35zmuXhqxVZFkkn-GVjktzRdgPIkjoeM0MDqn2nZKCCkVglQeC1VkoQfdWg8j7ZKUU62MX6Owzkv-l-Y8OG3ueKoSdKyQPaz1MnJTdT5qlOIBa3pxjlHgJC_NdGlFcBi4k1whgvs4ic4eRQ4qU2mehv6eMq15IN8YUSNAGb7f9pSTR5vpW-DmHPGrBydkbi_P_K8Bfl05wEPYRrgXVZzzb9BazJbmCDb1M1rRrAPrcihtm2KbnoUd2Ph50R_c4FkvGtj2tmNn2B-HqiF0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrWA5tGX7SunDB1qph2iT2ImTQ1VVXRBoH-oB0N5C7HVUJJTd7i6t-FH8R2biJIWuujcO3KLYSexkHt_En2cA9rjP_TECEVdJVDeMNxQeidAVZhwGodbKK7ePnfblcBiPRsmPNbiu98IQrbK2iaWhHk80_SPvIIzBSAGv_Dr95VLRKFpcrStoWKnomas_GLHNvxx18fN-DIKD_ePvh25VVMDVYRgvXJMpoU3GVZQTFIg4FTzJvczTia8iLtBdGq2E9GKZZ7HGwXOeoSpqBAp5lEiO912HR2jGJTHI5KiJ71B5LNpOItrxTMShelW0Q-foFKUjjwKqXXvbCy5B22WG5i2aWen5Dp4-sHf2DJ5UEJt9szqxA2umaMP2oMlPO2_D5qCiFLShRXDbZqt-Dt2uZR6iP2dZMWazkkFM7p0tJoxIDPYHJzsvGN6OWcobld9gGISgZlDrCzi5l-m9hI1iUpjXwHgUBkKHsWd0RrX7lBBSKgThPBQqT3wHOvV3T3WVhJ1qgVykfp13_R9JceBzc8XUJiBZ0Xe3loO0MkXztBECB1jTijaEFoaywkwuyy44DYyUV3TBOFUimMEur6xoNqOhx1MmOQfkHaFtOlAG87stxfnPMpO58D2J-NyBTyTef8f8vwm-WTnBD7B1eDzop_2jYW8XWghtA8uvfwsbi9mleQeP9W-UqNn7Um8ZnN230N8ARqJ2vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+and+responding+to+violations+in+the+positivity+assumption&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Petersen%2C+Maya+L&rft.au=Porter%2C+Kristin+E&rft.au=Gruber%2C+Susan&rft.au=Wang%2C+Yue&rft.date=2012-02-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=21&rft.issue=1&rft.spage=31&rft.epage=54&rft_id=info:doi/10.1177%2F0962280210386207&rft.externalDocID=10.1177_0962280210386207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon