Diagnosing and responding to violations in the positivity assumption
The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations...
Gespeichert in:
| Veröffentlicht in: | Statistical methods in medical research Jg. 21; H. 1; S. 31 - 54 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London, England
SAGE Publications
01.02.2012
Sage Publications Ltd |
| Schlagworte: | |
| ISSN: | 0962-2802, 1477-0334, 1477-0334 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. |
|---|---|
| AbstractList | The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. Adapted from the source document. The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. [PUBLICATION ABSTRACT] The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically. |
| Author | Wang, Yue Gruber, Susan Petersen, Maya L van der Laan, Mark J Porter, Kristin E |
| AuthorAffiliation | 1 Division of Biostatistics, University of California, Berkeley, CA 94110-7358, USA 2 Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA |
| AuthorAffiliation_xml | – name: 1 Division of Biostatistics, University of California, Berkeley, CA 94110-7358, USA – name: 2 Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA |
| Author_xml | – sequence: 1 givenname: Maya L surname: Petersen fullname: Petersen, Maya L organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA – sequence: 2 givenname: Kristin E surname: Porter fullname: Porter, Kristin E organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA – sequence: 3 givenname: Susan surname: Gruber fullname: Gruber, Susan organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA – sequence: 4 givenname: Yue surname: Wang fullname: Wang, Yue organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA – sequence: 5 givenname: Mark J surname: van der Laan fullname: van der Laan, Mark J organization: Department of Clinical Information Services, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21030422$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtP3DAUhS1EBQNlzwpF3bBKe_2IHW8qVUNfEhIburYcjzPjUcYOsTMS_x6HgRZGgq4s63zn6Nx7T9ChD94idI7hM8ZCfAHJCamBYKA1JyAO0AwzIUqglB2i2SSXk36MTmJcA4AAJo_Q8WQARsgMXV05vfQhOr8stF8Ug4198Ivpm0KxdaHTyQUfC-eLtLJFn9Hkti7dFzrGcdNP6kf0odVdtGdP7yn68-P77fxXeX3z8_f823VpqqpOpdUNM1bThrecMcwprhltQYORuOE096HWNExALVpdG8YbSjXUtak4abkU9BR93eX2Y7OxC2N9GnSn-sFt9HCvgnbqteLdSi3DVjEMQhKZAy6fAoZwN9qY1MZFY7tOexvGqCRnRAAm_P8k5rmRrCby0x65DuPg8x4miDAJFcnQxcvmfys_HyIDfAeYIcQ42FYZlx5XnwdxncKgpour_YtnI-wZn7PfsZQ7S9RL-6_tm_wD1Vi4dg |
| CitedBy_id | crossref_primary_10_1093_biomet_asy015 crossref_primary_10_1080_24709360_2022_2069457 crossref_primary_10_1515_em_2019_0024 crossref_primary_10_1093_aje_kwac136 crossref_primary_10_1093_aje_kwab045 crossref_primary_10_1371_journal_pone_0305526 crossref_primary_10_1097_EDE_0000000000001097 crossref_primary_10_1016_j_jvs_2023_06_024 crossref_primary_10_1007_s13311_023_01344_w crossref_primary_10_1097_EDE_0000000000001773 crossref_primary_10_1097_j_pain_0000000000001631 crossref_primary_10_1016_j_prevetmed_2024_106165 crossref_primary_10_1136_heartjnl_2012_303461 crossref_primary_10_1177_09622802221146310 crossref_primary_10_1080_01621459_2018_1469993 crossref_primary_10_1002_art_42272 crossref_primary_10_1002_sim_70194 crossref_primary_10_25100_cm_v47i1_2250 crossref_primary_10_1002_pds_5529 crossref_primary_10_1080_19345747_2022_2144563 crossref_primary_10_1136_bmjopen_2020_043528 crossref_primary_10_1038_s41467_022_35185_6 crossref_primary_10_1097_EDE_0000000000001545 crossref_primary_10_1016_j_apmr_2018_10_023 crossref_primary_10_1002_cpt_3576 crossref_primary_10_1093_aje_kwz119 crossref_primary_10_1093_biomet_asy008 crossref_primary_10_1016_j_ajog_2024_10_021 crossref_primary_10_1097_EDE_0000000000001308 crossref_primary_10_1111_ppe_12646 crossref_primary_10_1002_sim_6207 crossref_primary_10_1111_nep_12688 crossref_primary_10_1016_j_drugalcdep_2015_03_014 crossref_primary_10_1002_sim_8741 crossref_primary_10_1146_annurev_statistics_040522_094556 crossref_primary_10_1515_jci_2021_0067 crossref_primary_10_1007_s40265_022_01822_z crossref_primary_10_1093_aje_kwab053 crossref_primary_10_3389_fnut_2022_791141 crossref_primary_10_1093_aje_kwaa083 crossref_primary_10_1007_s10928_022_09802_2 crossref_primary_10_1093_aje_kwaf091 crossref_primary_10_1177_1403494815608098 crossref_primary_10_1111_brv_12697 crossref_primary_10_1007_s11524_024_00946_9 crossref_primary_10_1016_j_ijrobp_2015_02_025 crossref_primary_10_1097_EDE_0000000000001315 crossref_primary_10_1080_10618600_2023_2240384 crossref_primary_10_1177_09622802231224628 crossref_primary_10_1186_s12874_017_0375_8 crossref_primary_10_1093_eurheartj_ehaf235 crossref_primary_10_1111_add_70189 crossref_primary_10_1097_EDE_0b013e31826c2bb9 crossref_primary_10_1214_20_STS776 crossref_primary_10_1002_ajim_22700 crossref_primary_10_1371_journal_pone_0145506 crossref_primary_10_3390_e24091290 crossref_primary_10_1007_s10902_020_00287_9 crossref_primary_10_1136_jnnp_2023_332883 crossref_primary_10_2147_CLEP_S427933 crossref_primary_10_1371_journal_pone_0279976 crossref_primary_10_1002_sim_9600 crossref_primary_10_1080_00273171_2024_2354228 crossref_primary_10_1017_S0033291723000132 crossref_primary_10_1586_17474124_2015_1095087 crossref_primary_10_1007_s00420_018_1397_1 crossref_primary_10_1080_01621459_2017_1375932 crossref_primary_10_1093_aje_kwac128 crossref_primary_10_1093_aje_kwz016 crossref_primary_10_1097_EDE_0000000000000236 crossref_primary_10_1093_aje_kwv211 crossref_primary_10_1073_pnas_1815678116 crossref_primary_10_1146_annurev_statistics_030718_105312 crossref_primary_10_1016_j_jclinepi_2025_111942 crossref_primary_10_1080_03610918_2021_1963455 crossref_primary_10_1080_03610926_2023_2166790 crossref_primary_10_1093_jrsssa_qnae084 crossref_primary_10_3390_ijerph20043182 crossref_primary_10_1214_19_STS735 crossref_primary_10_1186_s12916_025_04325_2 crossref_primary_10_1093_ajcn_nqac003 crossref_primary_10_1214_20_STS774 crossref_primary_10_1214_20_STS773 crossref_primary_10_1371_journal_pone_0154469 crossref_primary_10_1214_20_STS770 crossref_primary_10_1002_sim_8084 crossref_primary_10_1136_bmjopen_2024_095198 crossref_primary_10_1016_j_vaccine_2021_08_099 crossref_primary_10_1097_EDE_0000000000001215 crossref_primary_10_1093_aje_kwz268 crossref_primary_10_1371_journal_pmed_1004384 crossref_primary_10_1002_sim_8659 crossref_primary_10_1007_s10964_018_0859_9 crossref_primary_10_1097_EDE_0000000000001332 crossref_primary_10_1097_EDE_0000000000001453 crossref_primary_10_1093_aje_kwu253 crossref_primary_10_1093_epirev_mxab010 crossref_primary_10_1097_EDE_0000000000000487 crossref_primary_10_1093_aje_kwac217 crossref_primary_10_1111_biom_13796 crossref_primary_10_1002_sim_9503 crossref_primary_10_1093_epirev_mxab009 crossref_primary_10_1080_01621459_2025_2495319 crossref_primary_10_1515_em_2014_0020 crossref_primary_10_1093_ije_dyx194 crossref_primary_10_1186_s12874_020_01175_9 crossref_primary_10_1002_pds_70172 crossref_primary_10_1097_EDE_0000000000001902 crossref_primary_10_1093_epirev_mxab005 crossref_primary_10_1016_j_jeconom_2019_10_014 crossref_primary_10_1080_10408444_2018_1518404 crossref_primary_10_1007_s40572_022_00388_y crossref_primary_10_1016_j_jmh_2025_100322 crossref_primary_10_1186_s12874_023_01936_2 crossref_primary_10_1093_ndt_gfae170 crossref_primary_10_1002_sim_8426 crossref_primary_10_1186_s12877_022_02990_z crossref_primary_10_1177_09622802211025988 crossref_primary_10_1111_1475_6773_12152 crossref_primary_10_2147_JMDH_S516826 crossref_primary_10_1016_j_jsxm_2019_07_021 crossref_primary_10_1080_19466315_2023_2289523 crossref_primary_10_1007_s12561_011_9040_7 crossref_primary_10_1007_s12561_013_9085_x crossref_primary_10_1016_j_socscimed_2016_07_045 crossref_primary_10_1017_ehs_2023_35 crossref_primary_10_1002_bimj_202000323 crossref_primary_10_1093_jrsssa_qnad068 crossref_primary_10_1093_aje_kwae292 crossref_primary_10_1001_jamanetworkopen_2020_25190 crossref_primary_10_1002_sim_8678 crossref_primary_10_1002_sim_6377 crossref_primary_10_1080_19466315_2024_2394457 crossref_primary_10_1002_bimj_202300156 crossref_primary_10_1093_jamia_ocae141 crossref_primary_10_1080_10543406_2019_1657138 crossref_primary_10_1002_jac5_1591 crossref_primary_10_1080_19466315_2023_2173644 crossref_primary_10_1097_ALN_0000000000001057 crossref_primary_10_1002_sim_7919 crossref_primary_10_1016_j_neuroimage_2022_119296 crossref_primary_10_1080_24709360_2022_2031808 crossref_primary_10_1093_aje_kwv254 crossref_primary_10_1080_15459624_2025_2502491 crossref_primary_10_1177_0962280213507034 crossref_primary_10_1177_13872877241300296 crossref_primary_10_1515_ijb_2015_0034 crossref_primary_10_1093_aje_kwae189 crossref_primary_10_1097_EDE_0000000000001482 crossref_primary_10_1177_0962280219898497 crossref_primary_10_1007_s11336_018_09657_y crossref_primary_10_1080_01621459_2018_1529594 crossref_primary_10_1080_2330443X_2022_2120136 crossref_primary_10_1097_EDE_0000000000001370 crossref_primary_10_1159_000485593 crossref_primary_10_1002_bimj_201700305 crossref_primary_10_1002_bimj_70026 crossref_primary_10_1002_pds_5338 crossref_primary_10_1093_aje_kwad097 crossref_primary_10_57264_cer_2023_0027 crossref_primary_10_1002_cncr_35650 crossref_primary_10_1016_j_ijrobp_2016_03_047 crossref_primary_10_1093_poq_nfw060 crossref_primary_10_1515_em_2016_0004 crossref_primary_10_5554_22562087_e944 crossref_primary_10_1093_biostatistics_kxac027 crossref_primary_10_1007_s12564_024_09962_5 crossref_primary_10_1097_EDE_0000000000000966 crossref_primary_10_1214_21_AOAS1570 crossref_primary_10_1093_aje_kwv148 crossref_primary_10_1186_1471_2288_13_101 crossref_primary_10_1017_cts_2023_635 crossref_primary_10_12688_f1000research_111915_1 crossref_primary_10_12688_f1000research_111915_2 crossref_primary_10_1016_j_socscimed_2022_115500 crossref_primary_10_1093_aje_kwae277 crossref_primary_10_1515_ijb_2020_0127 crossref_primary_10_1097_EDE_0000000000000164 crossref_primary_10_1017_cts_2023_632 crossref_primary_10_1097_EDE_0000000000000045 crossref_primary_10_1093_jrsssc_qlad034 crossref_primary_10_1515_ijb_2020_0128 crossref_primary_10_1111_biom_13244 crossref_primary_10_1038_s41591_024_03134_z crossref_primary_10_1111_biom_13121 crossref_primary_10_1186_s12874_018_0484_z crossref_primary_10_1007_s10661_025_13689_0 crossref_primary_10_3414_ME13_01_0132 crossref_primary_10_1093_esr_jcaf016 crossref_primary_10_1016_j_chest_2023_04_048 crossref_primary_10_1093_aje_kwx213 crossref_primary_10_1097_EDE_0000000000001701 crossref_primary_10_1093_aje_kwx214 crossref_primary_10_1097_EDE_0000000000001704 crossref_primary_10_1038_s41591_024_02902_1 crossref_primary_10_1097_EDE_0000000000001261 crossref_primary_10_1002_phar_2778 crossref_primary_10_1002_sim_8904 crossref_primary_10_1177_0962280218772065 crossref_primary_10_1093_epirev_mxac011 crossref_primary_10_1002_sim_70123 crossref_primary_10_1289_ehp_1205251 crossref_primary_10_1080_19466315_2022_2081599 crossref_primary_10_1016_j_xkme_2020_11_001 crossref_primary_10_1093_aje_kwad196 crossref_primary_10_1145_3444944 crossref_primary_10_1002_sim_8340 crossref_primary_10_1002_sim_9550 crossref_primary_10_1111_rssb_12213 crossref_primary_10_1186_s12874_025_02661_8 crossref_primary_10_1073_pnas_2401882121 crossref_primary_10_1007_s00184_024_00962_4 crossref_primary_10_1136_emermed_2016_205715 crossref_primary_10_1017_S2045796018000367 crossref_primary_10_1097_EDE_0000000000000985 crossref_primary_10_1289_EHP7495 crossref_primary_10_1371_journal_pone_0267462 crossref_primary_10_1111_biom_12927 crossref_primary_10_1097_EDE_0000000000000627 crossref_primary_10_1080_24709360_2024_2347709 crossref_primary_10_1177_03000605241241920 crossref_primary_10_1017_cts_2023_656 crossref_primary_10_1080_03610918_2024_2319419 crossref_primary_10_1097_EDE_0000000000001272 crossref_primary_10_1016_j_sste_2021_100439 crossref_primary_10_1038_s41746_023_00961_1 crossref_primary_10_1093_epirev_mxac002 crossref_primary_10_1542_peds_2020_033316 crossref_primary_10_1093_aje_kwu197 crossref_primary_10_1177_17562864241284166 crossref_primary_10_6339_24_JDS1143 crossref_primary_10_1007_s10742_013_0109_2 crossref_primary_10_1097_EDE_0000000000000507 crossref_primary_10_1111_rssb_12300 crossref_primary_10_1001_jamanetworkopen_2021_26605 crossref_primary_10_1016_j_jadohealth_2020_07_006 crossref_primary_10_1093_jrsssa_qnae002 crossref_primary_10_1111_jmwh_12710 crossref_primary_10_1093_aje_kwaa221 crossref_primary_10_1177_00220345231164106 crossref_primary_10_1016_j_envres_2019_108649 crossref_primary_10_1177_09622802211047345 crossref_primary_10_3390_ijerph15010039 crossref_primary_10_1097_EDE_0000000000000078 crossref_primary_10_1093_aje_kwz099 crossref_primary_10_1097_EDE_0000000000000872 crossref_primary_10_1016_j_eururo_2014_08_061 crossref_primary_10_1186_s12874_022_01692_9 crossref_primary_10_1002_sim_7277 crossref_primary_10_1007_s40471_017_0124_x crossref_primary_10_1093_aje_kwae023 crossref_primary_10_1177_0962280220940334 crossref_primary_10_1093_aje_kwac087 crossref_primary_10_1038_srep23222 crossref_primary_10_1093_aje_kwx247 crossref_primary_10_1093_aje_kwac179 crossref_primary_10_1136_jech_2015_205886 crossref_primary_10_1111_biom_13716 crossref_primary_10_1177_0272989X20937257 crossref_primary_10_1093_aje_kwae115 crossref_primary_10_3389_fphar_2022_1034636 crossref_primary_10_1080_00031305_2022_2051605 crossref_primary_10_1002_sim_70034 crossref_primary_10_1002_sim_7046 crossref_primary_10_1093_aje_kwt318 crossref_primary_10_1002_sim_70037 crossref_primary_10_1111_biom_13162 crossref_primary_10_1136_jech_2022_219267 crossref_primary_10_1002_sim_9348 crossref_primary_10_1097_EDE_0000000000000409 crossref_primary_10_1080_00031305_2024_2368794 crossref_primary_10_1111_rssb_12487 crossref_primary_10_1007_s00484_025_02974_9 crossref_primary_10_1016_j_bodyim_2024_101704 crossref_primary_10_1093_bja_aev255 crossref_primary_10_1177_09622802241269646 crossref_primary_10_1093_biostatistics_kxae012 crossref_primary_10_1007_s10654_022_00901_5 crossref_primary_10_1016_j_jaci_2025_03_005 crossref_primary_10_1097_EDE_0000000000000774 crossref_primary_10_1186_s13195_021_00818_3 crossref_primary_10_1016_j_jss_2025_03_043 crossref_primary_10_1097_EDE_0000000000001502 crossref_primary_10_1111_add_15005 crossref_primary_10_1146_annurev_statistics_030718_105251 crossref_primary_10_1093_aje_kwad156 crossref_primary_10_1007_s12564_024_09957_2 crossref_primary_10_1016_j_jclinepi_2013_01_016 crossref_primary_10_1214_20_STS789 crossref_primary_10_1093_aje_kww165 crossref_primary_10_1097_EE9_0000000000000056 crossref_primary_10_1093_ije_dyy218 crossref_primary_10_1515_ijb_2017_0054 crossref_primary_10_1038_s41598_025_85501_5 crossref_primary_10_1016_j_cjca_2024_02_005 crossref_primary_10_1111_biom_13271 crossref_primary_10_1371_journal_pone_0310531 crossref_primary_10_1515_em_2012_0006 crossref_primary_10_1136_oemed_2023_108853 crossref_primary_10_1177_0962280217729845 crossref_primary_10_1080_01621459_2023_2187814 crossref_primary_10_1136_bmjopen_2021_058244 crossref_primary_10_1001_jamanetworkopen_2025_1714 crossref_primary_10_1007_s10551_014_2524_x crossref_primary_10_1515_em_2012_0001 crossref_primary_10_1097_EDE_0000000000001875 crossref_primary_10_1111_jmwh_12868 crossref_primary_10_1371_journal_pone_0291057 crossref_primary_10_1016_j_jbi_2023_104339 crossref_primary_10_1016_j_ypmed_2022_107257 crossref_primary_10_1016_j_annepidem_2024_12_013 crossref_primary_10_7554_eLife_79548 crossref_primary_10_1093_aje_kwad005 crossref_primary_10_1109_ACCESS_2021_3140189 crossref_primary_10_1093_aje_kwac036 crossref_primary_10_1097_EDE_0000000000001637 crossref_primary_10_1038_jes_2014_60 crossref_primary_10_1002_sim_8715 crossref_primary_10_1002_sim_9802 crossref_primary_10_1001_jamanetworkopen_2022_5026 crossref_primary_10_1002_sim_6099 crossref_primary_10_1186_s12874_024_02212_7 crossref_primary_10_1002_pds_5500 crossref_primary_10_1016_j_cmi_2021_06_034 crossref_primary_10_1111_add_70141 crossref_primary_10_1001_jamanetworkopen_2019_18554 crossref_primary_10_1002_ijc_70138 crossref_primary_10_1002_sim_8710 crossref_primary_10_1093_aje_kwt215 crossref_primary_10_1177_0962280212461194 crossref_primary_10_1093_aje_kwad241 crossref_primary_10_1002_bimj_201800132 crossref_primary_10_1002_pds_3569 crossref_primary_10_1038_nrrheum_2015_30 crossref_primary_10_1371_journal_pone_0101090 crossref_primary_10_1016_j_amepre_2025_02_014 crossref_primary_10_1097_EDE_0000000000001764 crossref_primary_10_1093_aje_kwy006 crossref_primary_10_1002_sim_10246 crossref_primary_10_1002_sim_10003 crossref_primary_10_1186_s12940_020_00599_6 crossref_primary_10_1097_MLR_0000000000001063 crossref_primary_10_1186_s12874_022_01720_8 crossref_primary_10_1111_biom_13800 crossref_primary_10_1097_EE9_0000000000000035 crossref_primary_10_1111_j_1541_0420_2011_01685_x crossref_primary_10_1093_jnci_djad092 crossref_primary_10_1186_s12891_020_03672_w crossref_primary_10_1097_QAD_0000000000003786 crossref_primary_10_1177_0962280215627335 crossref_primary_10_1515_ijb_2013_0014 crossref_primary_10_1002_pds_4767 crossref_primary_10_1007_s10654_023_01067_4 crossref_primary_10_1093_aje_kwac162 crossref_primary_10_1016_j_jad_2024_01_022 crossref_primary_10_1002_sim_70185 crossref_primary_10_1007_s10742_016_0157_5 crossref_primary_10_1016_j_csda_2021_107303 crossref_primary_10_1177_0962280218774817 |
| Cites_doi | 10.1002/sim.1110 10.1097/00001648-200009000-00011 10.2202/1557-4679.1043 10.2202/1557-4679.1238 10.2202/1557-4679.1022 10.2307/2971733 10.2202/1557-4679.1182 10.1016/S0021-9681(87)80018-8 10.1007/978-1-4757-2545-2 10.1016/0270-0255(86)90088-6 10.1016/j.jspi.2005.12.008 10.1007/978-0-387-84858-7 10.3386/t0330 10.1037/h0037350 10.1093/aje/kwn164 10.1002/sim.3301 10.2307/2527916 10.1214/ss/1177012031 10.1016/j.jspi.2004.06.060 10.1002/sim.3414 10.1080/01621459.1999.10473858 10.1177/0193841X08317586 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2010 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav SAGE Publications © Feb 2012 The Author(s) 2010 2010 |
| Copyright_xml | – notice: The Author(s) 2010 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav – notice: SAGE Publications © Feb 2012 – notice: The Author(s) 2010 2010 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7QJ 7SC 7X7 7XB 88E 88I 8C1 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA ALSLI AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ HEHIP JQ2 K9. L6V L7M L~C L~D M0S M1P M2P M2S M7S PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PTHSS Q9U 7X8 5PM |
| DOI | 10.1177/0962280210386207 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Applied Social Sciences Index & Abstracts (ASSIA) Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Sociology Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Sociology Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Sociology & Social Sciences Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Sociology ProQuest Medical Library (Alumni) Engineering Collection Social Science Premium Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Sociology Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Applied Social Sciences Index and Abstracts (ASSIA) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Sociology Collection Advanced Technologies Database with Aerospace ProQuest Public Health ProQuest One Social Sciences ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Applied Social Sciences Index and Abstracts (ASSIA) ProQuest Central Student MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Mathematics |
| EISSN | 1477-0334 |
| EndPage | 54 |
| ExternalDocumentID | PMC4107929 2561765531 21030422 10_1177_0962280210386207 10.1177_0962280210386207 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI074345 |
| GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI AAEJI AAPII AAYXX ABUAX AFFHD AJGYC AJHME AJVBE CITATION PJZUB POGQB PPXIY PQGLB PRQQA CGR CUY CVF ECM EIF NPM 3V. 7QJ 7SC 7XB 8FD 8FK JQ2 K9. L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c558t-eab4cea3b6f6441631843f0a0c91b634223ecb47087fa8c46b33a088c562f6973 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 397 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299122600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-2802 1477-0334 |
| IngestDate | Tue Nov 04 01:59:06 EST 2025 Sun Sep 28 01:03:51 EDT 2025 Sun Nov 09 11:47:32 EST 2025 Mon Nov 10 21:41:20 EST 2025 Mon Jul 21 05:54:03 EDT 2025 Sat Nov 29 08:12:05 EST 2025 Tue Nov 18 22:12:43 EST 2025 Tue Jun 17 22:42:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | realistic treatment rule positivity stabilised weights double robust parametric bootstrap trimming counterfactual experimental treatment assignment marginal structural model inverse probability weight causal inference truncation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c558t-eab4cea3b6f6441631843f0a0c91b634223ecb47087fa8c46b33a088c562f6973 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1177/0962280210386207 |
| PMID | 21030422 |
| PQID | 916249052 |
| PQPubID | 29398 |
| PageCount | 24 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107929 proquest_miscellaneous_964270126 proquest_miscellaneous_916697956 proquest_journals_916249052 pubmed_primary_21030422 crossref_citationtrail_10_1177_0962280210386207 crossref_primary_10_1177_0962280210386207 sage_journals_10_1177_0962280210386207 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-02-01 |
| PublicationDateYYYYMMDD | 2012-02-01 |
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: England – name: London |
| PublicationTitle | Statistical methods in medical research |
| PublicationTitleAlternate | Stat Methods Med Res |
| PublicationYear | 2012 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| References | van der Laan, Petersen 2007; 3 Robins, Hernan, Brumback 2000; 11 Robins, Orellana, Rotnitzky 2008; 27 Cole, Hernan 2008; 168 Bembom, Petersen, Rhee 2009; 28 van der Laan, Polley, Hubbard 2007; 6 Freedman, Berk 2008; 32 van der Laan, Rubin 2006; 2 Neyman 1923; 5 Rosenblum, van der Laan 2001; 1 Gruber, van der Laan 2010; 6 LaLonde 1986; 76 Cochran 1957; 13 Rubin 1974; 66 Scharfstein, Rotnitzky, Robins 1999; 94 Rosenblum, van der Laan 2010; 6 Heckman, Ichimura, Todd 1997; 64 Robins 1987; 40 Robins 2002; 21 Robins 1986; 7 Dehejia, Wahba 1999; 94 Bembom, van der Laan 2007; 1 Neugebauer, van der Laan 2005; 129 Robins, Rotnitzky 2001; 11 Kish 1992; 8 Johnson, Brun-Vezinet, Clotet 2009; 17 Neugebauer, van der Laan 2007; 137 Robins JM. (bibr9-0962280210386207) 1998 bibr13-0962280210386207 bibr21-0962280210386207 Robins JM. (bibr10-0962280210386207) 1999 Moore KL (bibr15-0962280210386207) 2009 Kish L. (bibr22-0962280210386207) 1992; 8 bibr39-0962280210386207 Wang Y (bibr5-0962280210386207) 2006 bibr25-0962280210386207 bibr8-0962280210386207 bibr20-0962280210386207 Scharfstein DO (bibr26-0962280210386207) 1999; 94 bibr38-0962280210386207 Johnson VA (bibr34-0962280210386207) 2009; 17 Rosenblum MM (bibr17-0962280210386207) 2001; 1 bibr33-0962280210386207 Robins JM (bibr24-0962280210386207) 2001; 11 bibr16-0962280210386207 bibr3-0962280210386207 bibr29-0962280210386207 bibr7-0962280210386207 bibr12-0962280210386207 bibr2-0962280210386207 Bembom O (bibr14-0962280210386207) 2007; 1 bibr32-0962280210386207 Bembom O (bibr23-0962280210386207) 2008 bibr28-0962280210386207 LaLonde RJ. (bibr37-0962280210386207) 1986; 76 bibr41-0962280210386207 van der Laan MJ (bibr18-0962280210386207) 2003 Robins JM. (bibr4-0962280210386207) 1999 bibr11-0962280210386207 bibr1-0962280210386207 Pearl J. (bibr6-0962280210386207) 2000 van der Laan MJ (bibr19-0962280210386207) 2007; 6 Petersen ML (bibr30-0962280210386207) 2010 bibr36-0962280210386207 bibr31-0962280210386207 Bembom O (bibr35-0962280210386207) 2008 bibr40-0962280210386207 bibr27-0962280210386207 |
| References_xml | – volume: 1 start-page: 574 year: 2007 end-page: 596 article-title: A practical illustration of the importance of realistic individualized treatment rules in causal inference – volume: 27 start-page: 4678 year: 2008 end-page: 4721 article-title: Estimation and extrapolation of optimal treatment and testing strategies – volume: 5 start-page: 465 year: 1923 end-page: 480 article-title: On the application of probability theory to agricultural experiments. Essay on principles: section 9 publication-title: Stat Sci – volume: 6 year: 2007 article-title: Super learner publication-title: Genet Mol Biol – volume: 66 start-page: 688 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol – volume: 7 start-page: 1393 year: 1986 end-page: 1512 article-title: A new approach to causal inference in mortality studies with sustained exposure periods – application to control of the healthy worker survivor effect publication-title: Math Model – volume: 32 start-page: 392 issue: 4 year: 2008 end-page: 409 article-title: Weighting regressions by propensity scores – volume: 2 start-page: 11 issue: 1 year: 2006 end-page: 11 article-title: Targeted maximum likelihood learning – volume: 28 start-page: 152 year: 2009 end-page: 172 article-title: Biomarker discovery using targeted maximum likelihood estimation: Application to the treatment of antiretroviral resistant HIV infection – volume: 76 start-page: 604 year: 1986 end-page: 620 article-title: Evaluating the econometric evaluations of training programs with experimental data – volume: 40 start-page: 139s issue: 2 year: 1987 end-page: 161s article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods – volume: 129 start-page: 405 issue: 1–2 year: 2005 end-page: 426 article-title: Why prefer DR estimates – volume: 1 start-page: 4 year: 2001 end-page: 4 article-title: Confidence intervals for the population mean tailored to small sample sizes, with applications to survey sampling – volume: 94 start-page: 1121 issue: 1096-1120 year: 1999 end-page: 1146 article-title: Adjusting for non-ignorable drop-out using semiparametric nonresponse models, (with discussion and rejoinder) – volume: 6 issue: 1 year: 2010 article-title: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics – volume: 94 start-page: 1053 year: 1999 end-page: 1062 article-title: Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs – volume: 137 start-page: 419 issue: 2 year: 2007 end-page: 434 article-title: Non-parametric causal effects based on marginal structural models – volume: 13 start-page: 261 year: 1957 end-page: 281 article-title: Analysis of covariance: its nature and uses publication-title: Biometrics – volume: 11 start-page: 550 issue: 5 year: 2000 end-page: 560 article-title: Marginal structural models and causal inference in epidemiology publication-title: Epidemiology – volume: 11 start-page: 920 issue: 4 year: 2001 end-page: 936 article-title: Comment on the Bickel and Kwon article, Inference for semiparametric models: some questions and an answer – volume: 7 start-page: 1393 issue: 9–12 year: 1986 end-page: 1512 article-title: Addendum to: A new approach to causal inference in mortality studies with a sustained exposure period–application to control of the healthy worker survivor effect publication-title: Math. Model. – volume: 17 start-page: 138 issue: 5 year: 2009 end-page: 145 article-title: Update of the drug resistance mutations in HIV-1: December 2009 – volume: 8 start-page: 183 year: 1992 end-page: 200 article-title: Weighting for unequal publication-title: J Official Stat – volume: 168 start-page: 656 issue: 6 year: 2008 end-page: 664 article-title: Constructing inverse probability weights for marginal structural models – volume: 3 start-page: 3 issue: 1 year: 2007 end-page: 3 article-title: Causal effect models for realistic individualized treatment and intention to treat rules – volume: 21 start-page: 1663 year: 2002 end-page: 1680 article-title: Commentary on using inverse weighting and predictive inference to estimate the effects of time-varying treatments on the discrete-time hazard by Dawson and Lavori – volume: 64 start-page: 605 year: 1997 end-page: 654 article-title: Matching as an econometric evaluation estimator: evidence from evaluating a job training programme – volume: 6 start-page: 19 issue: 2 year: 2010 end-page: 19 article-title: Targeted maximum likelihood estimation of the parameter of a marginal structural model – ident: bibr25-0962280210386207 doi: 10.1002/sim.1110 – ident: bibr21-0962280210386207 doi: 10.1097/00001648-200009000-00011 – volume-title: Technical Report 211, Division of Biostatistics year: 2006 ident: bibr5-0962280210386207 – ident: bibr27-0962280210386207 doi: 10.2202/1557-4679.1043 – start-page: 1 volume-title: In: Proceedings of the American Statistical Association. Section on Bayesian Statistical Science 1997 year: 1998 ident: bibr9-0962280210386207 – ident: bibr28-0962280210386207 doi: 10.2202/1557-4679.1238 – ident: bibr40-0962280210386207 doi: 10.2202/1557-4679.1022 – ident: bibr38-0962280210386207 doi: 10.2307/2971733 – volume-title: Technical Report 255, Division of Biostatistics year: 2009 ident: bibr15-0962280210386207 – volume: 8 start-page: 183 year: 1992 ident: bibr22-0962280210386207 publication-title: J Official Stat – volume-title: Technical report, division of Biostatstics year: 2010 ident: bibr30-0962280210386207 – ident: bibr33-0962280210386207 doi: 10.2202/1557-4679.1182 – start-page: 6 volume-title: In: Proceedings of the American Statistical Association: Section on Bayesian Statistical Science year: 1999 ident: bibr4-0962280210386207 – ident: bibr12-0962280210386207 doi: 10.1016/S0021-9681(87)80018-8 – ident: bibr31-0962280210386207 doi: 10.1007/978-1-4757-2545-2 – ident: bibr2-0962280210386207 doi: 10.1016/0270-0255(86)90088-6 – volume: 11 start-page: 920 issue: 4 year: 2001 ident: bibr24-0962280210386207 publication-title: Stat Sinica – volume-title: Causality: models, reasoning, and inference year: 2000 ident: bibr6-0962280210386207 – start-page: 95 volume-title: In: Halloran E and Berry D (eds) Statistical models in epidemiology, the environment, and clinical trials (Minneapolis, MN, 1997) year: 1999 ident: bibr10-0962280210386207 – ident: bibr11-0962280210386207 doi: 10.1016/j.jspi.2005.12.008 – volume: 94 start-page: 1121 issue: 1096 year: 1999 ident: bibr26-0962280210386207 publication-title: J Am Stat Assoc – ident: bibr20-0962280210386207 doi: 10.1007/978-0-387-84858-7 – ident: bibr36-0962280210386207 doi: 10.3386/t0330 – ident: bibr3-0962280210386207 doi: 10.1016/0270-0255(86)90088-6 – volume: 76 start-page: 604 year: 1986 ident: bibr37-0962280210386207 publication-title: Am Econ Rev – volume: 1 start-page: 4 year: 2001 ident: bibr17-0962280210386207 publication-title: Int J Biostat – ident: bibr8-0962280210386207 doi: 10.1037/h0037350 – volume-title: Technical Report 130, Division of Biostatistics year: 2003 ident: bibr18-0962280210386207 – volume: 1 start-page: 574 year: 2007 ident: bibr14-0962280210386207 publication-title: EJS – ident: bibr16-0962280210386207 doi: 10.1093/aje/kwn164 – ident: bibr41-0962280210386207 doi: 10.1002/sim.3301 – ident: bibr1-0962280210386207 doi: 10.2307/2527916 – ident: bibr7-0962280210386207 doi: 10.1214/ss/1177012031 – volume: 6 year: 2007 ident: bibr19-0962280210386207 publication-title: Genet Mol Biol – ident: bibr13-0962280210386207 doi: 10.1016/j.jspi.2004.06.060 – volume: 17 start-page: 138 issue: 5 year: 2009 ident: bibr34-0962280210386207 publication-title: Top HIV Med – ident: bibr32-0962280210386207 doi: 10.1002/sim.3414 – volume-title: Technical Report 230,Division of Biostatstics year: 2008 ident: bibr23-0962280210386207 – ident: bibr39-0962280210386207 doi: 10.1080/01621459.1999.10473858 – ident: bibr29-0962280210386207 doi: 10.1177/0193841X08317586 – volume-title: Technical Report 231, Division of Biostatstics year: 2008 ident: bibr35-0962280210386207 |
| SSID | ssj0007049 |
| Score | 2.512891 |
| Snippet | The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses... |
| SourceID | pubmedcentral proquest pubmed crossref sage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 31 |
| SubjectTerms | Anti-HIV Agents - therapeutic use Bias Biomedical Research - statistics & numerical data Cohort Studies Computer Simulation - statistics & numerical data Confounding Factors, Epidemiologic Data Data Interpretation, Statistical Drug Resistance, Viral HIV Infections - drug therapy HIV Infections - genetics Humans Inference Lopinavir - therapeutic use Models, Statistical Modification Mutation Parameters Positive affect Proximity Trading Treatment methods Treatment Outcome Violations Working models |
| Title | Diagnosing and responding to violations in the positivity assumption |
| URI | https://journals.sagepub.com/doi/full/10.1177/0962280210386207 https://www.ncbi.nlm.nih.gov/pubmed/21030422 https://www.proquest.com/docview/916249052 https://www.proquest.com/docview/916697956 https://www.proquest.com/docview/964270126 https://pubmed.ncbi.nlm.nih.gov/PMC4107929 |
| Volume | 21 |
| WOSCitedRecordID | wos000299122600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest sociology customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: M2S dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sociology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: 8C1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1477-0334 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQYg9DCgbyxiVHxASD1GT2ImTp2njQzzQquJLfati1xGVppT1g79_d44TYGh92YuVxJc21p19P-d-uQM45iEPxwhEfCVxuuF-Q-GRiH1hxnEUa60C-_nYw7Xs99PhMBs4bs7c0SrrNdEu1OOppnfkXYQxuFPAO78__fapaBQFV10FjXXYoCQJkWXu3TYLsXToN0voC2Qi8tRRyi5do0uUHjyJqJbsa6_0Dmq-Z0y-on1ZT3S5859j2IWPDoKyH5XN7MGaKdvwodfkb523YavnQu5t2CY4WmVz3ofz84qZh_6O5eWYzSzDltwfW0wZBfmrF4BsUjL8OVZRwqg8BUOQjpZDvZ_g_vLi7uzKd3UYfB3H6cI3uRLa5FwlBaGnhFONmCLIA52FKuECEYbRSsgglUWeatQ35zmuXhqxVZFkkn-GVjktzRdgPIkjoeM0MDqn2nZKCCkVglQeC1VkoQfdWg8j7ZKUU62MX6Owzkv-l-Y8OG3ueKoSdKyQPaz1MnJTdT5qlOIBa3pxjlHgJC_NdGlFcBi4k1whgvs4ic4eRQ4qU2mehv6eMq15IN8YUSNAGb7f9pSTR5vpW-DmHPGrBydkbi_P_K8Bfl05wEPYRrgXVZzzb9BazJbmCDb1M1rRrAPrcihtm2KbnoUd2Ph50R_c4FkvGtj2tmNn2B-HqiF0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrWA5tGX7SunDB1qph2iT2ImTQ1VVXRBoH-oB0N5C7HVUJJTd7i6t-FH8R2biJIWuujcO3KLYSexkHt_En2cA9rjP_TECEVdJVDeMNxQeidAVZhwGodbKK7ePnfblcBiPRsmPNbiu98IQrbK2iaWhHk80_SPvIIzBSAGv_Dr95VLRKFpcrStoWKnomas_GLHNvxx18fN-DIKD_ePvh25VVMDVYRgvXJMpoU3GVZQTFIg4FTzJvczTia8iLtBdGq2E9GKZZ7HGwXOeoSpqBAp5lEiO912HR2jGJTHI5KiJ71B5LNpOItrxTMShelW0Q-foFKUjjwKqXXvbCy5B22WG5i2aWen5Dp4-sHf2DJ5UEJt9szqxA2umaMP2oMlPO2_D5qCiFLShRXDbZqt-Dt2uZR6iP2dZMWazkkFM7p0tJoxIDPYHJzsvGN6OWcobld9gGISgZlDrCzi5l-m9hI1iUpjXwHgUBkKHsWd0RrX7lBBSKgThPBQqT3wHOvV3T3WVhJ1qgVykfp13_R9JceBzc8XUJiBZ0Xe3loO0MkXztBECB1jTijaEFoaywkwuyy44DYyUV3TBOFUimMEur6xoNqOhx1MmOQfkHaFtOlAG87stxfnPMpO58D2J-NyBTyTef8f8vwm-WTnBD7B1eDzop_2jYW8XWghtA8uvfwsbi9mleQeP9W-UqNn7Um8ZnN230N8ARqJ2vw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+and+responding+to+violations+in+the+positivity+assumption&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Petersen%2C+Maya+L&rft.au=Porter%2C+Kristin+E&rft.au=Gruber%2C+Susan&rft.au=Wang%2C+Yue&rft.date=2012-02-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=21&rft.issue=1&rft.spage=31&rft.epage=54&rft_id=info:doi/10.1177%2F0962280210386207&rft.externalDocID=10.1177_0962280210386207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon |