Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis

Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neuron (Cambridge, Mass.) Ročník 35; číslo 3; s. 507
Hlavní autori: Suh, Byung-Chang, Hille, Bertil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.08.2002
Predmet:
ISSN:0896-6273
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.
AbstractList Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.
Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.
Author Hille, Bertil
Suh, Byung-Chang
Author_xml – sequence: 1
  givenname: Byung-Chang
  surname: Suh
  fullname: Suh, Byung-Chang
  organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
– sequence: 2
  givenname: Bertil
  surname: Hille
  fullname: Hille, Bertil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12165472$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLxDAYRbMYcR76E5SsRMFqkjaTZCmDLxgRRNclaVIaaZNOvlbov3fAGVcXzj3cxV2iWYjBIXRByR0ldH0PRKp1tmYivybshhChSEZmaPGP52gJ8E0ILbiip2hOGV3zQrAFSh-uij8uTbhOscPdCJVOPvgKd9GOrR58DDjW-A1XY0ouDLhqdAiuBZzcbvTJAe6bCH2zV-3U-hDBD7HFxS3PjIdj5zBMYWgceDhDJ7VuwZ0fcoW-nh4_Ny_Z9v35dfOwzSrO5ZBZ42RREKqsZkobYbQQTBFma0MJ4ZxrWxdGaydMIY1UJueE17nVdS6UrQlboau_3T7F3ehgKDsPlWtbHVwcoRRUSSmF3IuXB3E0nbNln3yn01QeX2K_lRRuFQ
CitedBy_id crossref_primary_10_1016_j_ejphar_2013_03_039
crossref_primary_10_1016_j_ejphar_2009_10_051
crossref_primary_10_1113_jphysiol_2007_132498
crossref_primary_10_1074_jbc_M111_322552
crossref_primary_10_1007_s00018_016_2359_y
crossref_primary_10_1016_j_neuron_2005_07_001
crossref_primary_10_1073_pnas_2221242120
crossref_primary_10_1113_jphysiol_2009_182873
crossref_primary_10_1007_s00424_006_0153_7
crossref_primary_10_1017_S1472928808000344
crossref_primary_10_1016_j_bpj_2012_11_3832
crossref_primary_10_1073_pnas_2301985120
crossref_primary_10_1074_jbc_M111_289090
crossref_primary_10_1016_j_neuroscience_2008_11_023
crossref_primary_10_1113_jphysiol_2003_051847
crossref_primary_10_1038_nn_2830
crossref_primary_10_1016_j_ejpain_2007_07_001
crossref_primary_10_1074_jbc_M114_589796
crossref_primary_10_1038_nn1647
crossref_primary_10_1113_jphysiol_2004_066944
crossref_primary_10_3389_fnmol_2017_00181
crossref_primary_10_1073_pnas_2415047121
crossref_primary_10_1038_nrn1785
crossref_primary_10_1124_mol_109_058008
crossref_primary_10_1371_journal_pone_0201322
crossref_primary_10_1016_j_bbrc_2019_07_016
crossref_primary_10_1074_jbc_M110_153551
crossref_primary_10_3390_biomedicines10071540
crossref_primary_10_1038_nature03340
crossref_primary_10_1073_pnas_0509588102
crossref_primary_10_1016_j_ejcb_2015_06_003
crossref_primary_10_1111_ejn_12930
crossref_primary_10_1038_ncomms2439
crossref_primary_10_1073_pnas_1620598114
crossref_primary_10_1124_mol_115_101931
crossref_primary_10_1152_jn_00589_2006
crossref_primary_10_3390_ijms20102488
crossref_primary_10_1016_j_nbd_2018_07_004
crossref_primary_10_1172_JCI79727
crossref_primary_10_1016_j_neuroscience_2009_10_056
crossref_primary_10_1073_pnas_0503966102
crossref_primary_10_1038_sj_emboj_7600494
crossref_primary_10_1111_j_1460_9568_2004_03786_x
crossref_primary_10_1152_jn_00332_2021
crossref_primary_10_1152_ajpheart_01011_2010
crossref_primary_10_1016_j_neuron_2010_07_001
crossref_primary_10_1073_pnas_1717724115
crossref_primary_10_1124_mol_119_117192
crossref_primary_10_1113_jphysiol_2014_284307
crossref_primary_10_1523_JNEUROSCI_4446_10_2011
crossref_primary_10_1016_j_neulet_2009_11_004
crossref_primary_10_1073_pnas_2334159100
crossref_primary_10_1523_JNEUROSCI_1830_08_2008
crossref_primary_10_1089_adt_2019_942
crossref_primary_10_1016_j_bbalip_2015_02_002
crossref_primary_10_1016_j_npep_2019_04_002
crossref_primary_10_1113_jphysiol_2007_133330
crossref_primary_10_3389_fendo_2023_1118744
crossref_primary_10_1016_j_mce_2009_03_008
crossref_primary_10_1523_JNEUROSCI_0882_04_2004
crossref_primary_10_1523_JNEUROSCI_2102_06_2006
crossref_primary_10_1126_science_1094113
crossref_primary_10_1523_JNEUROSCI_5175_09_2010
crossref_primary_10_1016_j_drudis_2013_12_003
crossref_primary_10_1242_jcs_233254
crossref_primary_10_1097_j_pain_0000000000001523
crossref_primary_10_1016_j_bbalip_2021_159107
crossref_primary_10_1038_emboj_2012_156
crossref_primary_10_1111_j_1476_5381_2009_00136_x
crossref_primary_10_1517_14728222_12_5_565
crossref_primary_10_7554_eLife_38689
crossref_primary_10_1007_s12035_012_8358_6
crossref_primary_10_1038_s42003_020_1104_0
crossref_primary_10_1113_JP274219
crossref_primary_10_1016_j_neuroscience_2007_01_018
crossref_primary_10_1016_j_neuroscience_2016_10_048
crossref_primary_10_1523_JNEUROSCI_2297_08_2008
crossref_primary_10_1111_j_1460_9568_2004_03576_x
crossref_primary_10_1113_jphysiol_2011_223404
crossref_primary_10_1146_annurev_physiol_65_092101_142453
crossref_primary_10_1016_j_ceca_2009_03_015
crossref_primary_10_1007_s00441_014_1806_z
crossref_primary_10_1113_jphysiol_2006_125914
crossref_primary_10_1210_en_2013_1180
crossref_primary_10_1371_journal_pone_0103655
crossref_primary_10_1038_srep38167
crossref_primary_10_1073_pnas_1201544109
crossref_primary_10_7554_eLife_17159
crossref_primary_10_1523_JNEUROSCI_2138_06_2006
crossref_primary_10_1016_j_bbamem_2016_10_023
crossref_primary_10_1074_jbc_M113_527820
crossref_primary_10_1016_j_bbamem_2018_02_016
crossref_primary_10_1523_JNEUROSCI_2791_10_2011
crossref_primary_10_1016_j_mce_2008_04_014
crossref_primary_10_1113_JP271357
crossref_primary_10_1002_dneu_20509
crossref_primary_10_1016_j_neuron_2021_12_026
crossref_primary_10_12688_f1000research_16679_1
crossref_primary_10_1371_journal_pone_0058901
crossref_primary_10_1523_JNEUROSCI_2597_05_2005
crossref_primary_10_1016_j_mcn_2009_10_002
crossref_primary_10_1111_j_1471_4159_2008_05587_x
crossref_primary_10_1016_S0006_8993_03_02799_9
crossref_primary_10_1073_pnas_1407133111
crossref_primary_10_1523_JNEUROSCI_1040_13_2014
crossref_primary_10_1523_JNEUROSCI_3521_06_2006
crossref_primary_10_1080_01677063_2018_1502762
crossref_primary_10_1093_function_zqac063
crossref_primary_10_1007_s00424_007_0295_2
crossref_primary_10_1016_j_bbalip_2018_08_005
crossref_primary_10_1111_bph_15214
crossref_primary_10_1007_s00424_007_0272_9
crossref_primary_10_1016_j_neures_2004_11_009
crossref_primary_10_1091_mbc_e04_09_0849
crossref_primary_10_1016_j_neuropharm_2017_11_024
crossref_primary_10_1038_sj_bjp_0706874
crossref_primary_10_1146_annurev_pharmtox_46_120604_141223
crossref_primary_10_1038_s42003_021_02729_3
crossref_primary_10_1073_pnas_2110200118
crossref_primary_10_1101_cshperspect_a027938
crossref_primary_10_1038_nrm1527
crossref_primary_10_1016_j_ejphar_2016_08_037
crossref_primary_10_1113_jphysiol_2007_141424
crossref_primary_10_1152_jn_00312_2003
crossref_primary_10_3389_fphar_2020_00895
crossref_primary_10_1073_pnas_2006737117
crossref_primary_10_1016_j_biochi_2017_05_014
crossref_primary_10_1523_JNEUROSCI_3869_04_2004
crossref_primary_10_1124_mol_105_014886
crossref_primary_10_1016_j_neuropharm_2019_04_007
crossref_primary_10_1124_mol_109_058701
crossref_primary_10_1113_jphysiol_2007_132712
crossref_primary_10_1007_s00424_010_0784_6
crossref_primary_10_1152_jn_01103_2006
crossref_primary_10_1523_JNEUROSCI_2911_06_2007
crossref_primary_10_1016_j_conb_2005_05_005
crossref_primary_10_1371_journal_pone_0026338
crossref_primary_10_1523_JNEUROSCI_4932_06_2007
crossref_primary_10_1016_j_jbc_2022_102819
crossref_primary_10_7554_eLife_56054
crossref_primary_10_1172_JCI41084
crossref_primary_10_1016_j_ajpath_2014_05_021
crossref_primary_10_1074_jbc_M110_166033
crossref_primary_10_1113_jphysiol_2011_220228
crossref_primary_10_1074_jbc_RA118_005401
crossref_primary_10_1111_bph_13978
crossref_primary_10_1523_JNEUROSCI_3086_05_2005
crossref_primary_10_1007_s00424_003_1111_2
crossref_primary_10_1016_j_resp_2015_10_003
crossref_primary_10_1111_bph_17419
crossref_primary_10_1523_JNEUROSCI_4313_04_2005
crossref_primary_10_1152_physrev_00028_2012
crossref_primary_10_1523_JNEUROSCI_2108_10_2010
crossref_primary_10_1016_j_bbrc_2013_01_117
crossref_primary_10_1016_j_tins_2003_10_013
crossref_primary_10_1523_JNEUROSCI_3535_15_2016
crossref_primary_10_1074_jbc_M313284200
crossref_primary_10_1254_jphs_14R14CP
crossref_primary_10_1016_j_ejphar_2020_173536
crossref_primary_10_1016_j_cellsig_2012_03_013
crossref_primary_10_1371_journal_pone_0122014
crossref_primary_10_1152_jn_00516_2010
crossref_primary_10_1016_j_brainres_2016_04_015
crossref_primary_10_1124_mol_108_051292
crossref_primary_10_1523_JNEUROSCI_3442_12_2013
crossref_primary_10_1074_jbc_C500355200
crossref_primary_10_1515_hsz_2023_0204
crossref_primary_10_1007_s00249_004_0444_x
crossref_primary_10_1113_expphysiol_2010_053355
crossref_primary_10_1038_ncb1315
crossref_primary_10_1517_14728222_7_6_737
crossref_primary_10_1007_s12031_012_9780_y
crossref_primary_10_1007_s11302_004_4746_3
crossref_primary_10_1016_j_neuropharm_2013_09_005
crossref_primary_10_1113_jphysiol_2004_079285
crossref_primary_10_1073_pnas_1606348113
crossref_primary_10_1073_pnas_1312483110
crossref_primary_10_1371_journal_pone_0063733
crossref_primary_10_1073_pnas_1714448115
crossref_primary_10_1007_s00424_006_0063_8
crossref_primary_10_1113_jphysiol_2006_115246
crossref_primary_10_1074_jbc_M109_048868
crossref_primary_10_1113_jphysiol_2007_132787
crossref_primary_10_1038_s41598_020_61697_6
crossref_primary_10_1007_s00424_007_0259_6
crossref_primary_10_1016_j_bbamem_2024_184396
crossref_primary_10_1083_jcb_200301070
crossref_primary_10_1074_jbc_M408410200
crossref_primary_10_1016_j_mcn_2005_05_006
crossref_primary_10_1074_jbc_M509071200
crossref_primary_10_1124_mol_107_043612
crossref_primary_10_1016_j_cellsig_2015_04_002
crossref_primary_10_1128_JVI_00424_08
crossref_primary_10_1113_jphysiol_2007_141465
crossref_primary_10_1523_JNEUROSCI_3632_04_2005
crossref_primary_10_1016_j_yebeh_2012_09_017
crossref_primary_10_1124_mol_108_047019
crossref_primary_10_1074_jbc_M112_382085
crossref_primary_10_7554_eLife_44954
crossref_primary_10_1038_s41598_019_52194_6
crossref_primary_10_3389_fphys_2020_568667
crossref_primary_10_1113_jphysiol_2007_149187
crossref_primary_10_1016_j_vascn_2004_08_008
crossref_primary_10_1073_pnas_1916867116
crossref_primary_10_1371_journal_pone_0093255
crossref_primary_10_1113_jphysiol_2005_094995
crossref_primary_10_1124_mol_105_019059
crossref_primary_10_1016_j_ceca_2020_102283
crossref_primary_10_1038_s41598_018_31322_8
crossref_primary_10_1016_S0896_6273_03_00125_9
crossref_primary_10_1016_j_molcel_2010_01_014
crossref_primary_10_1146_annurev_biophys_37_032807_125859
crossref_primary_10_1146_annurev_biophys_120121_074034
crossref_primary_10_1186_1471_2210_12_6
crossref_primary_10_1523_JNEUROSCI_1296_05_2005
crossref_primary_10_1523_JNEUROSCI_3231_04_2005
crossref_primary_10_1016_j_neuropharm_2014_03_007
crossref_primary_10_1002_jcp_21378
crossref_primary_10_1038_nrn3311
crossref_primary_10_1113_jphysiol_2006_127449
crossref_primary_10_1113_jphysiol_2007_148304
crossref_primary_10_1523_JNEUROSCI_1381_05_2005
crossref_primary_10_3389_fphys_2021_679317
crossref_primary_10_1016_j_neuroscience_2013_08_004
crossref_primary_10_1113_jphysiol_2007_132647
crossref_primary_10_1152_jn_00487_2014
crossref_primary_10_1113_jphysiol_2004_081935
crossref_primary_10_1113_jphysiol_2008_152777
crossref_primary_10_1038_nrn934
crossref_primary_10_1007_s00424_010_0828_y
crossref_primary_10_1073_pnas_0408851102
crossref_primary_10_1124_mol_114_093468
crossref_primary_10_1113_jphysiol_2008_153791
crossref_primary_10_1098_rsbm_2024_0008
crossref_primary_10_1074_jbc_M504283200
crossref_primary_10_1038_sj_bjp_0705044
crossref_primary_10_1146_annurev_physiol_021113_170358
crossref_primary_10_1016_j_taap_2014_04_005
crossref_primary_10_1152_jn_00686_2010
crossref_primary_10_3390_membranes13020250
crossref_primary_10_1016_j_neuroscience_2005_09_012
crossref_primary_10_1016_S0143_4160_03_00051_4
crossref_primary_10_1074_jbc_M502734200
crossref_primary_10_1007_s11302_024_09993_y
crossref_primary_10_1038_srep45407
crossref_primary_10_1042_BCJ20180022
crossref_primary_10_1074_jbc_M109_068205
crossref_primary_10_1523_JNEUROSCI_2596_06_2006
crossref_primary_10_3389_fphys_2020_00513
crossref_primary_10_1016_j_pain_2012_12_005
crossref_primary_10_1016_j_yjmcc_2009_02_006
crossref_primary_10_1074_jbc_M506965200
crossref_primary_10_1002_glia_23589
crossref_primary_10_1038_sj_bjp_0705158
crossref_primary_10_1016_j_neuron_2020_02_030
crossref_primary_10_1074_jbc_M409374200
crossref_primary_10_1007_s11515_014_1305_3
crossref_primary_10_1523_JNEUROSCI_23_12_04931_2003
crossref_primary_10_1016_j_eplepsyres_2024_107296
crossref_primary_10_1523_JNEUROSCI_2635_06_2006
crossref_primary_10_1113_jphysiol_2006_114074
crossref_primary_10_1016_j_neuropharm_2015_03_004
crossref_primary_10_1515_hsz_2022_0247
crossref_primary_10_3389_fphys_2020_571813
crossref_primary_10_3390_ijms20184419
crossref_primary_10_1016_j_tox_2024_153809
crossref_primary_10_1073_pnas_1302770110
crossref_primary_10_1016_j_molcel_2004_09_015
crossref_primary_10_1210_en_2005_1315
crossref_primary_10_1134_S1990747812010059
crossref_primary_10_1113_jphysiol_2003_052449
crossref_primary_10_1002_j_2040_4603_2012_tb00406_x
crossref_primary_10_1002_cne_21584
crossref_primary_10_1073_pnas_0711278105
crossref_primary_10_1038_sj_tpj_6500400
crossref_primary_10_1371_journal_pone_0186293
crossref_primary_10_1016_j_ceca_2016_12_008
crossref_primary_10_1371_journal_pone_0030402
crossref_primary_10_1113_JP273274
crossref_primary_10_1016_j_neuropharm_2007_11_012
crossref_primary_10_1073_pnas_0902675106
crossref_primary_10_1113_jphysiol_2010_192153
crossref_primary_10_1371_journal_pone_0076085
crossref_primary_10_1113_jphysiol_2002_026583
crossref_primary_10_1073_pnas_0408844102
crossref_primary_10_1523_JNEUROSCI_2666_11_2011
crossref_primary_10_1074_jbc_M115_645671
crossref_primary_10_1111_j_1535_7597_2005_05207_x
crossref_primary_10_1152_jn_00757_2005
crossref_primary_10_1016_j_molcel_2020_10_037
crossref_primary_10_3389_fphys_2014_00195
crossref_primary_10_1371_journal_pone_0082290
crossref_primary_10_1007_s00424_006_0092_3
crossref_primary_10_1126_science_1097439
crossref_primary_10_1523_JNEUROSCI_1739_07_2007
crossref_primary_10_1523_JNEUROSCI_3203_11_2011
crossref_primary_10_1007_s00424_007_0280_9
crossref_primary_10_1146_annurev_pharmtox_010919_023755
crossref_primary_10_1016_j_jbior_2015_11_012
crossref_primary_10_1113_jphysiol_2011_208983
crossref_primary_10_1038_nrn2257
crossref_primary_10_1016_j_bbalip_2014_09_010
crossref_primary_10_1038_sj_bjp_0706239
crossref_primary_10_1523_JNEUROSCI_0990_04_2004
crossref_primary_10_1016_S0896_6273_02_00792_4
crossref_primary_10_1038_nn1062
crossref_primary_10_1529_biophysj_106_101287
crossref_primary_10_1007_s11055_017_0492_1
crossref_primary_10_3390_biom8030057
crossref_primary_10_5483_BMBRep_2013_46_6_121
crossref_primary_10_1073_pnas_2426744122
crossref_primary_10_1111_jnc_15647
crossref_primary_10_1126_science_1131163
crossref_primary_10_1016_j_cell_2017_05_019
crossref_primary_10_1083_jcb_200607116
crossref_primary_10_3390_ijms21041285
crossref_primary_10_1111_j_1476_5381_2009_00111_x
crossref_primary_10_1523_JNEUROSCI_1536_14_2014
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/s0896-6273(02)00790-0
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
ExternalDocumentID 12165472
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS 08174
– fundername: NIDA NIH HHS
  grantid: DA 00286
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
0SF
123
1RT
1~5
26-
29N
2WC
3O-
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
MVM
N9A
NCXOZ
NPM
O-L
O9-
OK1
OZT
P2P
P6G
PKN
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
X7M
ZGI
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c558t-dbe844019da29ab7ba772902dfb100555adf4baae7b48b89b3505f3daf379df02
IEDL.DBID 7X8
ISICitedReferencesCount 389
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000177331200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0896-6273
IngestDate Sat Sep 27 17:44:19 EDT 2025
Wed Feb 19 02:35:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-dbe844019da29ab7ba772902dfb100555adf4baae7b48b89b3505f3daf379df02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/S0896-6273(02)00790-0
PMID 12165472
PQID 71988878
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71988878
pubmed_primary_12165472
PublicationCentury 2000
PublicationDate 2002-08-01
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: 2002-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2002
References 12165463 - Neuron. 2002 Aug 1;35(3):411-2
References_xml – reference: 12165463 - Neuron. 2002 Aug 1;35(3):411-2
SSID ssj0014591
Score 2.2832692
Snippet Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 507
SubjectTerms 1-Phosphatidylinositol 4-Kinase - antagonists & inhibitors
1-Phosphatidylinositol 4-Kinase - metabolism
Adenosine Diphosphate - metabolism
Adenosine Diphosphate - pharmacology
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - metabolism
Adenosine Triphosphate - pharmacology
Animals
Cells, Cultured
Enzyme Inhibitors - pharmacology
Glucose - metabolism
Glucose - pharmacology
GTP-Binding Proteins - drug effects
GTP-Binding Proteins - metabolism
KCNQ2 Potassium Channel
KCNQ3 Potassium Channel
Male
Membrane Potentials - drug effects
Membrane Potentials - physiology
Muscarinic Agonists - pharmacology
Neural Inhibition - drug effects
Neural Inhibition - physiology
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Phosphatidylinositol 4,5-Diphosphate - biosynthesis
Phosphorylation
Potassium Channels - drug effects
Potassium Channels - genetics
Potassium Channels - metabolism
Potassium Channels, Voltage-Gated
Rats
Rats, Sprague-Dawley
Receptors, Muscarinic - drug effects
Receptors, Muscarinic - metabolism
Superior Cervical Ganglion - cytology
Superior Cervical Ganglion - drug effects
Superior Cervical Ganglion - metabolism
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Type C Phospholipases - antagonists & inhibitors
Type C Phospholipases - metabolism
Title Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis
URI https://www.ncbi.nlm.nih.gov/pubmed/12165472
https://www.proquest.com/docview/71988878
Volume 35
WOSCitedRecordID wos000177331200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64ghf3ZVxzEFGwTCZtTQqCiCgenGEOKnMbkibBAacdJzNC_70v7VRP4sFLD12gJC_5vpe3fACnRksahloEHLHLN9VmgRLorMSWIaAphODyaOD1iXc6otdLunNwXdfC-LTKek8sN2qdp_6MvMnRO8YFIW5GH4HXjPKx1ZmAxjwshkhkvE3z3k8MIYorvTyRXAVXiNI_9TtN933znLILhMmEBvR3jllizcPa__5yHVZnHJPcVkaxAXMm24St2wz962FBzkiZ9Vkep2_CciVGWWzB2HuiaNgF8SUnZDh1qfThnZQMcz0T-SK5JW2SVj2diC8azhBbydj4fGLjyOgtd6M3fFUXSF99Plj-TqLLGP1vVz8zxBUZ0k43cNvw8nD_fPcYzBQZgjSOxSTQyogIPbJES5ZIxZX05JwybVXLd_OKpbaRktJwFQklEhUiwbKhljbkibaU7cBClmdmD0hIrUhjwbXW6KTYWCJTpYqluOsZJRPagJN6hPto8T6MITOTT12_HuMG7FaT1B9VjTn6LeZrszjb__PbA1gpZV3KTL5DWLS41s0RLKWfk4EbH5eGhNdOt_0FdH7Ufg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+from+muscarinic+modulation+of+M+current+channels+requires+phosphatidylinositol+4%2C5-bisphosphate+synthesis&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Suh%2C+Byung-Chang&rft.au=Hille%2C+Bertil&rft.date=2002-08-01&rft.issn=0896-6273&rft.volume=35&rft.issue=3&rft.spage=507&rft_id=info:doi/10.1016%2Fs0896-6273%2802%2900790-0&rft_id=info%3Apmid%2F12165472&rft_id=info%3Apmid%2F12165472&rft.externalDocID=12165472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon