Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis
Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intr...
Saved in:
| Published in: | Neuron (Cambridge, Mass.) Vol. 35; no. 3; p. 507 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.08.2002
|
| Subjects: | |
| ISSN: | 0896-6273 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current. |
|---|---|
| AbstractList | Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current. Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current. |
| Author | Hille, Bertil Suh, Byung-Chang |
| Author_xml | – sequence: 1 givenname: Byung-Chang surname: Suh fullname: Suh, Byung-Chang organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA – sequence: 2 givenname: Bertil surname: Hille fullname: Hille, Bertil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12165472$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kEtLxDAYRbMYcR76E5SsRMFqkjaTZCmDLxgRRNclaVIaaZNOvlbov3fAGVcXzj3cxV2iWYjBIXRByR0ldH0PRKp1tmYivybshhChSEZmaPGP52gJ8E0ILbiip2hOGV3zQrAFSh-uij8uTbhOscPdCJVOPvgKd9GOrR58DDjW-A1XY0ouDLhqdAiuBZzcbvTJAe6bCH2zV-3U-hDBD7HFxS3PjIdj5zBMYWgceDhDJ7VuwZ0fcoW-nh4_Ny_Z9v35dfOwzSrO5ZBZ42RREKqsZkobYbQQTBFma0MJ4ZxrWxdGaydMIY1UJueE17nVdS6UrQlboau_3T7F3ehgKDsPlWtbHVwcoRRUSSmF3IuXB3E0nbNln3yn01QeX2K_lRRuFQ |
| CitedBy_id | crossref_primary_10_1016_j_ejphar_2013_03_039 crossref_primary_10_1016_j_ejphar_2009_10_051 crossref_primary_10_1113_jphysiol_2007_132498 crossref_primary_10_1074_jbc_M111_322552 crossref_primary_10_1007_s00018_016_2359_y crossref_primary_10_1016_j_neuron_2005_07_001 crossref_primary_10_1073_pnas_2221242120 crossref_primary_10_1113_jphysiol_2009_182873 crossref_primary_10_1007_s00424_006_0153_7 crossref_primary_10_1017_S1472928808000344 crossref_primary_10_1016_j_bpj_2012_11_3832 crossref_primary_10_1073_pnas_2301985120 crossref_primary_10_1074_jbc_M111_289090 crossref_primary_10_1016_j_neuroscience_2008_11_023 crossref_primary_10_1113_jphysiol_2003_051847 crossref_primary_10_1038_nn_2830 crossref_primary_10_1016_j_ejpain_2007_07_001 crossref_primary_10_1074_jbc_M114_589796 crossref_primary_10_1038_nn1647 crossref_primary_10_1113_jphysiol_2004_066944 crossref_primary_10_3389_fnmol_2017_00181 crossref_primary_10_1073_pnas_2415047121 crossref_primary_10_1038_nrn1785 crossref_primary_10_1124_mol_109_058008 crossref_primary_10_1371_journal_pone_0201322 crossref_primary_10_1016_j_bbrc_2019_07_016 crossref_primary_10_1074_jbc_M110_153551 crossref_primary_10_3390_biomedicines10071540 crossref_primary_10_1038_nature03340 crossref_primary_10_1073_pnas_0509588102 crossref_primary_10_1016_j_ejcb_2015_06_003 crossref_primary_10_1111_ejn_12930 crossref_primary_10_1038_ncomms2439 crossref_primary_10_1073_pnas_1620598114 crossref_primary_10_1124_mol_115_101931 crossref_primary_10_1152_jn_00589_2006 crossref_primary_10_3390_ijms20102488 crossref_primary_10_1016_j_nbd_2018_07_004 crossref_primary_10_1172_JCI79727 crossref_primary_10_1016_j_neuroscience_2009_10_056 crossref_primary_10_1073_pnas_0503966102 crossref_primary_10_1038_sj_emboj_7600494 crossref_primary_10_1111_j_1460_9568_2004_03786_x crossref_primary_10_1152_jn_00332_2021 crossref_primary_10_1152_ajpheart_01011_2010 crossref_primary_10_1016_j_neuron_2010_07_001 crossref_primary_10_1073_pnas_1717724115 crossref_primary_10_1124_mol_119_117192 crossref_primary_10_1113_jphysiol_2014_284307 crossref_primary_10_1523_JNEUROSCI_4446_10_2011 crossref_primary_10_1016_j_neulet_2009_11_004 crossref_primary_10_1073_pnas_2334159100 crossref_primary_10_1523_JNEUROSCI_1830_08_2008 crossref_primary_10_1089_adt_2019_942 crossref_primary_10_1016_j_bbalip_2015_02_002 crossref_primary_10_1016_j_npep_2019_04_002 crossref_primary_10_1113_jphysiol_2007_133330 crossref_primary_10_3389_fendo_2023_1118744 crossref_primary_10_1016_j_mce_2009_03_008 crossref_primary_10_1523_JNEUROSCI_0882_04_2004 crossref_primary_10_1523_JNEUROSCI_2102_06_2006 crossref_primary_10_1126_science_1094113 crossref_primary_10_1523_JNEUROSCI_5175_09_2010 crossref_primary_10_1016_j_drudis_2013_12_003 crossref_primary_10_1242_jcs_233254 crossref_primary_10_1097_j_pain_0000000000001523 crossref_primary_10_1016_j_bbalip_2021_159107 crossref_primary_10_1038_emboj_2012_156 crossref_primary_10_1111_j_1476_5381_2009_00136_x crossref_primary_10_1517_14728222_12_5_565 crossref_primary_10_7554_eLife_38689 crossref_primary_10_1007_s12035_012_8358_6 crossref_primary_10_1038_s42003_020_1104_0 crossref_primary_10_1113_JP274219 crossref_primary_10_1016_j_neuroscience_2007_01_018 crossref_primary_10_1016_j_neuroscience_2016_10_048 crossref_primary_10_1523_JNEUROSCI_2297_08_2008 crossref_primary_10_1111_j_1460_9568_2004_03576_x crossref_primary_10_1113_jphysiol_2011_223404 crossref_primary_10_1146_annurev_physiol_65_092101_142453 crossref_primary_10_1016_j_ceca_2009_03_015 crossref_primary_10_1007_s00441_014_1806_z crossref_primary_10_1113_jphysiol_2006_125914 crossref_primary_10_1210_en_2013_1180 crossref_primary_10_1371_journal_pone_0103655 crossref_primary_10_1038_srep38167 crossref_primary_10_1073_pnas_1201544109 crossref_primary_10_7554_eLife_17159 crossref_primary_10_1523_JNEUROSCI_2138_06_2006 crossref_primary_10_1016_j_bbamem_2016_10_023 crossref_primary_10_1074_jbc_M113_527820 crossref_primary_10_1016_j_bbamem_2018_02_016 crossref_primary_10_1523_JNEUROSCI_2791_10_2011 crossref_primary_10_1016_j_mce_2008_04_014 crossref_primary_10_1113_JP271357 crossref_primary_10_1002_dneu_20509 crossref_primary_10_1016_j_neuron_2021_12_026 crossref_primary_10_12688_f1000research_16679_1 crossref_primary_10_1371_journal_pone_0058901 crossref_primary_10_1523_JNEUROSCI_2597_05_2005 crossref_primary_10_1016_j_mcn_2009_10_002 crossref_primary_10_1111_j_1471_4159_2008_05587_x crossref_primary_10_1016_S0006_8993_03_02799_9 crossref_primary_10_1073_pnas_1407133111 crossref_primary_10_1523_JNEUROSCI_1040_13_2014 crossref_primary_10_1523_JNEUROSCI_3521_06_2006 crossref_primary_10_1080_01677063_2018_1502762 crossref_primary_10_1093_function_zqac063 crossref_primary_10_1007_s00424_007_0295_2 crossref_primary_10_1016_j_bbalip_2018_08_005 crossref_primary_10_1111_bph_15214 crossref_primary_10_1007_s00424_007_0272_9 crossref_primary_10_1016_j_neures_2004_11_009 crossref_primary_10_1091_mbc_e04_09_0849 crossref_primary_10_1016_j_neuropharm_2017_11_024 crossref_primary_10_1038_sj_bjp_0706874 crossref_primary_10_1146_annurev_pharmtox_46_120604_141223 crossref_primary_10_1038_s42003_021_02729_3 crossref_primary_10_1073_pnas_2110200118 crossref_primary_10_1101_cshperspect_a027938 crossref_primary_10_1038_nrm1527 crossref_primary_10_1016_j_ejphar_2016_08_037 crossref_primary_10_1113_jphysiol_2007_141424 crossref_primary_10_1152_jn_00312_2003 crossref_primary_10_3389_fphar_2020_00895 crossref_primary_10_1073_pnas_2006737117 crossref_primary_10_1016_j_biochi_2017_05_014 crossref_primary_10_1523_JNEUROSCI_3869_04_2004 crossref_primary_10_1124_mol_105_014886 crossref_primary_10_1016_j_neuropharm_2019_04_007 crossref_primary_10_1124_mol_109_058701 crossref_primary_10_1113_jphysiol_2007_132712 crossref_primary_10_1007_s00424_010_0784_6 crossref_primary_10_1152_jn_01103_2006 crossref_primary_10_1523_JNEUROSCI_2911_06_2007 crossref_primary_10_1016_j_conb_2005_05_005 crossref_primary_10_1371_journal_pone_0026338 crossref_primary_10_1523_JNEUROSCI_4932_06_2007 crossref_primary_10_1016_j_jbc_2022_102819 crossref_primary_10_7554_eLife_56054 crossref_primary_10_1172_JCI41084 crossref_primary_10_1016_j_ajpath_2014_05_021 crossref_primary_10_1074_jbc_M110_166033 crossref_primary_10_1113_jphysiol_2011_220228 crossref_primary_10_1074_jbc_RA118_005401 crossref_primary_10_1111_bph_13978 crossref_primary_10_1523_JNEUROSCI_3086_05_2005 crossref_primary_10_1007_s00424_003_1111_2 crossref_primary_10_1016_j_resp_2015_10_003 crossref_primary_10_1111_bph_17419 crossref_primary_10_1523_JNEUROSCI_4313_04_2005 crossref_primary_10_1152_physrev_00028_2012 crossref_primary_10_1523_JNEUROSCI_2108_10_2010 crossref_primary_10_1016_j_bbrc_2013_01_117 crossref_primary_10_1016_j_tins_2003_10_013 crossref_primary_10_1523_JNEUROSCI_3535_15_2016 crossref_primary_10_1074_jbc_M313284200 crossref_primary_10_1254_jphs_14R14CP crossref_primary_10_1016_j_ejphar_2020_173536 crossref_primary_10_1016_j_cellsig_2012_03_013 crossref_primary_10_1371_journal_pone_0122014 crossref_primary_10_1152_jn_00516_2010 crossref_primary_10_1016_j_brainres_2016_04_015 crossref_primary_10_1124_mol_108_051292 crossref_primary_10_1523_JNEUROSCI_3442_12_2013 crossref_primary_10_1074_jbc_C500355200 crossref_primary_10_1515_hsz_2023_0204 crossref_primary_10_1007_s00249_004_0444_x crossref_primary_10_1113_expphysiol_2010_053355 crossref_primary_10_1038_ncb1315 crossref_primary_10_1517_14728222_7_6_737 crossref_primary_10_1007_s12031_012_9780_y crossref_primary_10_1007_s11302_004_4746_3 crossref_primary_10_1016_j_neuropharm_2013_09_005 crossref_primary_10_1113_jphysiol_2004_079285 crossref_primary_10_1073_pnas_1606348113 crossref_primary_10_1073_pnas_1312483110 crossref_primary_10_1371_journal_pone_0063733 crossref_primary_10_1073_pnas_1714448115 crossref_primary_10_1007_s00424_006_0063_8 crossref_primary_10_1113_jphysiol_2006_115246 crossref_primary_10_1074_jbc_M109_048868 crossref_primary_10_1113_jphysiol_2007_132787 crossref_primary_10_1038_s41598_020_61697_6 crossref_primary_10_1007_s00424_007_0259_6 crossref_primary_10_1016_j_bbamem_2024_184396 crossref_primary_10_1083_jcb_200301070 crossref_primary_10_1074_jbc_M408410200 crossref_primary_10_1016_j_mcn_2005_05_006 crossref_primary_10_1074_jbc_M509071200 crossref_primary_10_1124_mol_107_043612 crossref_primary_10_1016_j_cellsig_2015_04_002 crossref_primary_10_1128_JVI_00424_08 crossref_primary_10_1113_jphysiol_2007_141465 crossref_primary_10_1523_JNEUROSCI_3632_04_2005 crossref_primary_10_1016_j_yebeh_2012_09_017 crossref_primary_10_1124_mol_108_047019 crossref_primary_10_1074_jbc_M112_382085 crossref_primary_10_7554_eLife_44954 crossref_primary_10_1038_s41598_019_52194_6 crossref_primary_10_3389_fphys_2020_568667 crossref_primary_10_1113_jphysiol_2007_149187 crossref_primary_10_1016_j_vascn_2004_08_008 crossref_primary_10_1073_pnas_1916867116 crossref_primary_10_1371_journal_pone_0093255 crossref_primary_10_1113_jphysiol_2005_094995 crossref_primary_10_1124_mol_105_019059 crossref_primary_10_1016_j_ceca_2020_102283 crossref_primary_10_1038_s41598_018_31322_8 crossref_primary_10_1016_S0896_6273_03_00125_9 crossref_primary_10_1016_j_molcel_2010_01_014 crossref_primary_10_1146_annurev_biophys_37_032807_125859 crossref_primary_10_1146_annurev_biophys_120121_074034 crossref_primary_10_1186_1471_2210_12_6 crossref_primary_10_1523_JNEUROSCI_1296_05_2005 crossref_primary_10_1523_JNEUROSCI_3231_04_2005 crossref_primary_10_1016_j_neuropharm_2014_03_007 crossref_primary_10_1002_jcp_21378 crossref_primary_10_1038_nrn3311 crossref_primary_10_1113_jphysiol_2006_127449 crossref_primary_10_1113_jphysiol_2007_148304 crossref_primary_10_1523_JNEUROSCI_1381_05_2005 crossref_primary_10_3389_fphys_2021_679317 crossref_primary_10_1016_j_neuroscience_2013_08_004 crossref_primary_10_1113_jphysiol_2007_132647 crossref_primary_10_1152_jn_00487_2014 crossref_primary_10_1113_jphysiol_2004_081935 crossref_primary_10_1113_jphysiol_2008_152777 crossref_primary_10_1038_nrn934 crossref_primary_10_1007_s00424_010_0828_y crossref_primary_10_1073_pnas_0408851102 crossref_primary_10_1124_mol_114_093468 crossref_primary_10_1113_jphysiol_2008_153791 crossref_primary_10_1098_rsbm_2024_0008 crossref_primary_10_1074_jbc_M504283200 crossref_primary_10_1038_sj_bjp_0705044 crossref_primary_10_1146_annurev_physiol_021113_170358 crossref_primary_10_1016_j_taap_2014_04_005 crossref_primary_10_1152_jn_00686_2010 crossref_primary_10_3390_membranes13020250 crossref_primary_10_1016_j_neuroscience_2005_09_012 crossref_primary_10_1016_S0143_4160_03_00051_4 crossref_primary_10_1074_jbc_M502734200 crossref_primary_10_1007_s11302_024_09993_y crossref_primary_10_1038_srep45407 crossref_primary_10_1042_BCJ20180022 crossref_primary_10_1074_jbc_M109_068205 crossref_primary_10_1523_JNEUROSCI_2596_06_2006 crossref_primary_10_3389_fphys_2020_00513 crossref_primary_10_1016_j_pain_2012_12_005 crossref_primary_10_1016_j_yjmcc_2009_02_006 crossref_primary_10_1074_jbc_M506965200 crossref_primary_10_1002_glia_23589 crossref_primary_10_1038_sj_bjp_0705158 crossref_primary_10_1016_j_neuron_2020_02_030 crossref_primary_10_1074_jbc_M409374200 crossref_primary_10_1007_s11515_014_1305_3 crossref_primary_10_1523_JNEUROSCI_23_12_04931_2003 crossref_primary_10_1016_j_eplepsyres_2024_107296 crossref_primary_10_1523_JNEUROSCI_2635_06_2006 crossref_primary_10_1113_jphysiol_2006_114074 crossref_primary_10_1016_j_neuropharm_2015_03_004 crossref_primary_10_1515_hsz_2022_0247 crossref_primary_10_3389_fphys_2020_571813 crossref_primary_10_3390_ijms20184419 crossref_primary_10_1016_j_tox_2024_153809 crossref_primary_10_1073_pnas_1302770110 crossref_primary_10_1016_j_molcel_2004_09_015 crossref_primary_10_1210_en_2005_1315 crossref_primary_10_1134_S1990747812010059 crossref_primary_10_1113_jphysiol_2003_052449 crossref_primary_10_1002_j_2040_4603_2012_tb00406_x crossref_primary_10_1002_cne_21584 crossref_primary_10_1073_pnas_0711278105 crossref_primary_10_1038_sj_tpj_6500400 crossref_primary_10_1371_journal_pone_0186293 crossref_primary_10_1016_j_ceca_2016_12_008 crossref_primary_10_1371_journal_pone_0030402 crossref_primary_10_1113_JP273274 crossref_primary_10_1016_j_neuropharm_2007_11_012 crossref_primary_10_1073_pnas_0902675106 crossref_primary_10_1113_jphysiol_2010_192153 crossref_primary_10_1371_journal_pone_0076085 crossref_primary_10_1113_jphysiol_2002_026583 crossref_primary_10_1073_pnas_0408844102 crossref_primary_10_1523_JNEUROSCI_2666_11_2011 crossref_primary_10_1074_jbc_M115_645671 crossref_primary_10_1111_j_1535_7597_2005_05207_x crossref_primary_10_1152_jn_00757_2005 crossref_primary_10_1016_j_molcel_2020_10_037 crossref_primary_10_3389_fphys_2014_00195 crossref_primary_10_1371_journal_pone_0082290 crossref_primary_10_1007_s00424_006_0092_3 crossref_primary_10_1126_science_1097439 crossref_primary_10_1523_JNEUROSCI_1739_07_2007 crossref_primary_10_1523_JNEUROSCI_3203_11_2011 crossref_primary_10_1007_s00424_007_0280_9 crossref_primary_10_1146_annurev_pharmtox_010919_023755 crossref_primary_10_1016_j_jbior_2015_11_012 crossref_primary_10_1113_jphysiol_2011_208983 crossref_primary_10_1038_nrn2257 crossref_primary_10_1016_j_bbalip_2014_09_010 crossref_primary_10_1038_sj_bjp_0706239 crossref_primary_10_1523_JNEUROSCI_0990_04_2004 crossref_primary_10_1016_S0896_6273_02_00792_4 crossref_primary_10_1038_nn1062 crossref_primary_10_1529_biophysj_106_101287 crossref_primary_10_1007_s11055_017_0492_1 crossref_primary_10_3390_biom8030057 crossref_primary_10_5483_BMBRep_2013_46_6_121 crossref_primary_10_1073_pnas_2426744122 crossref_primary_10_1111_jnc_15647 crossref_primary_10_1126_science_1131163 crossref_primary_10_1016_j_cell_2017_05_019 crossref_primary_10_1083_jcb_200607116 crossref_primary_10_3390_ijms21041285 crossref_primary_10_1111_j_1476_5381_2009_00111_x crossref_primary_10_1523_JNEUROSCI_1536_14_2014 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/s0896-6273(02)00790-0 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| ExternalDocumentID | 12165472 |
| Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS 08174 – fundername: NIDA NIH HHS grantid: DA 00286 |
| GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 0SF 123 1RT 1~5 26- 29N 2WC 3O- 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P MVM N9A NCXOZ NPM O-L O9- OK1 OZT P2P P6G PKN PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW X7M ZGI 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c558t-dbe844019da29ab7ba772902dfb100555adf4baae7b48b89b3505f3daf379df02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 389 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000177331200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0896-6273 |
| IngestDate | Sat Sep 27 17:44:19 EDT 2025 Wed Feb 19 02:35:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c558t-dbe844019da29ab7ba772902dfb100555adf4baae7b48b89b3505f3daf379df02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/S0896-6273(02)00790-0 |
| PMID | 12165472 |
| PQID | 71988878 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_71988878 pubmed_primary_12165472 |
| PublicationCentury | 2000 |
| PublicationDate | 2002-08-01 |
| PublicationDateYYYYMMDD | 2002-08-01 |
| PublicationDate_xml | – month: 08 year: 2002 text: 2002-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2002 |
| References | 12165463 - Neuron. 2002 Aug 1;35(3):411-2 |
| References_xml | – reference: 12165463 - Neuron. 2002 Aug 1;35(3):411-2 |
| SSID | ssj0014591 |
| Score | 2.2832692 |
| Snippet | Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 507 |
| SubjectTerms | 1-Phosphatidylinositol 4-Kinase - antagonists & inhibitors 1-Phosphatidylinositol 4-Kinase - metabolism Adenosine Diphosphate - metabolism Adenosine Diphosphate - pharmacology Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - metabolism Adenosine Triphosphate - pharmacology Animals Cells, Cultured Enzyme Inhibitors - pharmacology Glucose - metabolism Glucose - pharmacology GTP-Binding Proteins - drug effects GTP-Binding Proteins - metabolism KCNQ2 Potassium Channel KCNQ3 Potassium Channel Male Membrane Potentials - drug effects Membrane Potentials - physiology Muscarinic Agonists - pharmacology Neural Inhibition - drug effects Neural Inhibition - physiology Neurons - cytology Neurons - drug effects Neurons - metabolism Phosphatidylinositol 4,5-Diphosphate - biosynthesis Phosphorylation Potassium Channels - drug effects Potassium Channels - genetics Potassium Channels - metabolism Potassium Channels, Voltage-Gated Rats Rats, Sprague-Dawley Receptors, Muscarinic - drug effects Receptors, Muscarinic - metabolism Superior Cervical Ganglion - cytology Superior Cervical Ganglion - drug effects Superior Cervical Ganglion - metabolism Synaptic Transmission - drug effects Synaptic Transmission - physiology Type C Phospholipases - antagonists & inhibitors Type C Phospholipases - metabolism |
| Title | Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/12165472 https://www.proquest.com/docview/71988878 |
| Volume | 35 |
| WOSCitedRecordID | wos000177331200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC7WqOAlJqvGTYzpg4iCjfPomZ4GQSRk8RAXD1H2tvQThezMur0K8-9TPbOTPYkHL3OYBwzd1V1fddVXH8BRoZkzVnOK4NVRJmNcUiJnNM2ZNrHlMmvo0fe_-WhUjMfitgcXHRcmlFV2e2KzUZtKhzPyc47RMS6I4nL2RINmVMitLgU01mA9RSATbJqPVzkElrV6eYXIaY5eesXfOff_b55EySm6SRHR6HWM2fia4fb7_vITfFxiTHLVGsVn6NmyDztXJcbX05ock6bqszlO78NmK0ZZ78A8RKJo2DUJlBMyffZahvSOJtPKLEW-SOXIDdFtTycSSMMl-lYyt6Ge2Hoye6j87AFfNTXC11APVv0l7CzD-Nt3zyzxdYmw0z_6Xbgb_vrz85ouFRmozrJiQY2yBcOITBiZCKm4kgGcR4lxKg7dvDJpHFNSWq5YoQqhUgRYLjXSpVwYFyV78KGsSrsPJFI6F1JblimcKZWEMleH8ISlLlMmlgP40Y3wBC0-pDFkaatnP-nGeABf2kmazNrGHJM4Cdwsnnx989tvsNXIujSVfAew7nCt2--woV8Wj35-2BgSXke3N_8AuTvVQw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+from+muscarinic+modulation+of+M+current+channels+requires+phosphatidylinositol+4%2C5-bisphosphate+synthesis&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Suh%2C+Byung-Chang&rft.au=Hille%2C+Bertil&rft.date=2002-08-01&rft.issn=0896-6273&rft.volume=35&rft.issue=3&rft.spage=507&rft_id=info:doi/10.1016%2Fs0896-6273%2802%2900790-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |