Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes

The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a proteas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Blood Ročník 119; číslo 3; s. 874
Hlavní autoři: Madhusudhan, Thati, Wang, Hongjie, Straub, Beate K, Gröne, Elisabeth, Zhou, Qianxing, Shahzad, Khurrum, Müller-Krebs, Sandra, Schwenger, Vedat, Gerlitz, Bruce, Grinnell, Brian W, Griffin, John H, Reiser, Jochen, Gröne, Hermann-Josef, Esmon, Charles T, Nawroth, Peter P, Isermann, Berend
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 19.01.2012
Témata:
ISSN:1528-0020, 1528-0020
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.
AbstractList The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.
The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.
Author Madhusudhan, Thati
Schwenger, Vedat
Reiser, Jochen
Isermann, Berend
Zhou, Qianxing
Müller-Krebs, Sandra
Gröne, Hermann-Josef
Straub, Beate K
Griffin, John H
Wang, Hongjie
Shahzad, Khurrum
Nawroth, Peter P
Grinnell, Brian W
Gröne, Elisabeth
Gerlitz, Bruce
Esmon, Charles T
Author_xml – sequence: 1
  givenname: Thati
  surname: Madhusudhan
  fullname: Madhusudhan, Thati
  organization: Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Germany
– sequence: 2
  givenname: Hongjie
  surname: Wang
  fullname: Wang, Hongjie
– sequence: 3
  givenname: Beate K
  surname: Straub
  fullname: Straub, Beate K
– sequence: 4
  givenname: Elisabeth
  surname: Gröne
  fullname: Gröne, Elisabeth
– sequence: 5
  givenname: Qianxing
  surname: Zhou
  fullname: Zhou, Qianxing
– sequence: 6
  givenname: Khurrum
  surname: Shahzad
  fullname: Shahzad, Khurrum
– sequence: 7
  givenname: Sandra
  surname: Müller-Krebs
  fullname: Müller-Krebs, Sandra
– sequence: 8
  givenname: Vedat
  surname: Schwenger
  fullname: Schwenger, Vedat
– sequence: 9
  givenname: Bruce
  surname: Gerlitz
  fullname: Gerlitz, Bruce
– sequence: 10
  givenname: Brian W
  surname: Grinnell
  fullname: Grinnell, Brian W
– sequence: 11
  givenname: John H
  surname: Griffin
  fullname: Griffin, John H
– sequence: 12
  givenname: Jochen
  surname: Reiser
  fullname: Reiser, Jochen
– sequence: 13
  givenname: Hermann-Josef
  surname: Gröne
  fullname: Gröne, Hermann-Josef
– sequence: 14
  givenname: Charles T
  surname: Esmon
  fullname: Esmon, Charles T
– sequence: 15
  givenname: Peter P
  surname: Nawroth
  fullname: Nawroth, Peter P
– sequence: 16
  givenname: Berend
  surname: Isermann
  fullname: Isermann, Berend
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22117049$$D View this record in MEDLINE/PubMed
BookMark eNpN0E1LxDAQBuAgK-6H_gOR3jxFZ9KmbY5SXBUWvOi5JOl0qXSbbpMK_feu7oqeZnh5eBlmyWad64ixa4Q7xFzcm9a5igtA5JDxOJUqi8_YAqXIOYCA2b99zpbefwBgEgt5weZCIGaQqAWzxRRcP7hANjSfFPlm2-m26baRmSL9nelAVfQjmi4qooH2YzOQP0baE_9TA1nqgxt4HB1s7ypnp0D-kp3XuvV0dZor9r5-fCue-eb16aV42HArZR44JpABCVkneR0jJXmmVWxMlUIttK1qZVBJUGQzCyilzQ0kVS2kQmvqVKFYsdtj7-G0_Ug-lLvGW2pb3ZEbfakwwxRBioO8OcnR7Kgq-6HZ6WEqf_8ivgCG7Gmx
CitedBy_id crossref_primary_10_1182_blood_2015_02_355974
crossref_primary_10_3389_fphys_2017_01010
crossref_primary_10_3390_ph15040401
crossref_primary_10_1007_s10555_015_9599_4
crossref_primary_10_1111_1753_0407_13304
crossref_primary_10_3390_ijms15046169
crossref_primary_10_1146_annurev_pharmtox_011613_140016
crossref_primary_10_1152_ajpcell_00143_2025
crossref_primary_10_1111_j_1538_7836_2012_04832_x
crossref_primary_10_1074_jbc_M116_768309
crossref_primary_10_12688_f1000research_7255_1
crossref_primary_10_1111_jth_12247
crossref_primary_10_1371_journal_pone_0089422
crossref_primary_10_1681_ASN_2016070789
crossref_primary_10_1160_TH12_11_0854
crossref_primary_10_1073_pnas_1218667110
crossref_primary_10_1160_TH15_07_0584
crossref_primary_10_1186_s12959_019_0194_8
crossref_primary_10_1111_jth_13494
crossref_primary_10_4331_wjbc_v5_i2_169
crossref_primary_10_1016_j_amjms_2022_05_025
crossref_primary_10_1097_MOH_0000000000000473
crossref_primary_10_1038_ncomms7496
crossref_primary_10_1038_s41467_022_32477_9
crossref_primary_10_1136_bcr_2016_218748
crossref_primary_10_1161_ATVBAHA_116_307883
crossref_primary_10_1097_CMR_0000000000000432
crossref_primary_10_1681_ASN_2014080846
crossref_primary_10_1160_th14_05_0448
crossref_primary_10_1681_ASN_2019111163
crossref_primary_10_1111_febs_16406
crossref_primary_10_1073_pnas_1707364114
crossref_primary_10_1111_j_1538_7836_2012_04847_x
crossref_primary_10_1111_jth_13229
crossref_primary_10_1055_s_0044_1782660
crossref_primary_10_1182_blood_2017_02_767921
crossref_primary_10_1182_blood_2013_03_488957
crossref_primary_10_1007_s12079_021_00664_w
crossref_primary_10_1080_13813455_2020_1749084
crossref_primary_10_3390_ijms20040903
crossref_primary_10_1016_j_bmc_2018_04_016
crossref_primary_10_1073_pnas_2106623118
crossref_primary_10_3389_fmolb_2023_1211597
crossref_primary_10_3389_fped_2019_00197
crossref_primary_10_1097_MNH_0000000000000117
crossref_primary_10_1038_ki_2014_271
crossref_primary_10_3389_fcvm_2021_758158
crossref_primary_10_3389_fimmu_2021_624821
crossref_primary_10_1111_j_1538_7836_2012_04833_x
crossref_primary_10_1371_journal_pone_0080340
crossref_primary_10_1038_s41467_019_09037_9
crossref_primary_10_1111_febs_15829
crossref_primary_10_1007_s12185_012_1059_0
crossref_primary_10_1038_s41581_019_0234_4
crossref_primary_10_1111_jth_14643
crossref_primary_10_3389_fendo_2014_00067
crossref_primary_10_1007_s11255_020_02756_9
crossref_primary_10_1111_jth_13315
crossref_primary_10_1111_jth_15133
crossref_primary_10_3390_nu14153138
crossref_primary_10_1038_nrneph_2015_177
crossref_primary_10_1016_j_immuni_2023_11_017
crossref_primary_10_1016_j_bmc_2019_06_043
crossref_primary_10_1177_2324709619858126
crossref_primary_10_1134_S0022093023050216
crossref_primary_10_1016_j_bbamcr_2020_118723
crossref_primary_10_1161_ATVBAHA_112_301082
crossref_primary_10_1016_j_cbi_2023_110470
crossref_primary_10_1038_s41420_025_02650_2
crossref_primary_10_1542_peds_2015_4528
crossref_primary_10_1182_blood_2021013119
crossref_primary_10_1111_jth_13721
crossref_primary_10_1160_TH13_11_0967
crossref_primary_10_1016_j_thromres_2018_07_019
crossref_primary_10_1111_j_1538_7836_2012_04825_x
crossref_primary_10_1182_blood_2017_05_782102
crossref_primary_10_1002_jcp_70025
crossref_primary_10_1016_j_jtha_2024_04_007
crossref_primary_10_1111_bph_13977
crossref_primary_10_1160_TH11_11_0766
crossref_primary_10_1182_blood_2017_10_810895
crossref_primary_10_1681_ASN_2015020208
crossref_primary_10_1038_s41467_017_00169_4
crossref_primary_10_1111_jth_13441
crossref_primary_10_1182_blood_2014_06_582775
crossref_primary_10_1371_journal_pone_0055740
crossref_primary_10_1124_pr_111_004747
crossref_primary_10_1186_s11658_022_00382_0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1182/blood-2011-07-365973
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
ExternalDocumentID 22117049
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL052246
– fundername: NHLBI NIH HHS
  grantid: P01 HL031950
GroupedDBID ---
-~X
.55
0R~
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6J9
AAEDW
AAXUO
ABOCM
ACGFO
ADBBV
ADVLN
AENEX
AFOSN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EX3
F5P
FDB
FRP
GS5
GX1
H13
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
NPM
OK1
P2P
R.V
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
7X8
AALRI
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
EFKBS
ID FETCH-LOGICAL-c558t-14070e25f48f31e487a93bbd60f2acdf9b19509ec7c0155c8b04df2591cbf6912
IEDL.DBID 7X8
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299594100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-0020
IngestDate Thu Oct 02 11:05:52 EDT 2025
Thu Apr 03 06:53:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-14070e25f48f31e487a93bbd60f2acdf9b19509ec7c0155c8b04df2591cbf6912
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1182/blood-2011-07-365973
PMID 22117049
PQID 917161052
PQPubID 23479
ParticipantIDs proquest_miscellaneous_917161052
pubmed_primary_22117049
PublicationCentury 2000
PublicationDate 2012-01-19
PublicationDateYYYYMMDD 2012-01-19
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Blood
PublicationTitleAlternate Blood
PublicationYear 2012
SSID ssj0014325
Score 2.3935332
Snippet The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 874
SubjectTerms Animals
Anticoagulants - metabolism
Apoptosis
Cell Communication
Cells, Cultured
Cytoprotection
Humans
Kidney Glomerulus - cytology
Kidney Glomerulus - metabolism
Lipopolysaccharides - pharmacology
Membrane Microdomains
Mice
Podocytes - drug effects
Podocytes - metabolism
Podocytes - pathology
Protein C - metabolism
Protein Multimerization
Receptor, PAR-1 - metabolism
Receptors, Thrombin - metabolism
Signal Transduction
Thrombin
Title Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes
URI https://www.ncbi.nlm.nih.gov/pubmed/22117049
https://www.proquest.com/docview/917161052
Volume 119
WOSCitedRecordID wos000299594100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4B5bXwaHmUlzwgNqtu4ibxhEpExUCrDiB1q3KOLXUgLW2plH_POUnphBhYoii6SJFzPn_n-84fwL0wfpj6FnlohOCSED5XFCt52pEyEYlRRhaNwq_hYBCNRmpYcXMWFa1yHROLQJ1Otdsjbyl3rguBAe9x9smdaJQrrlYKGttQ8wnJOKcOR5sigvQLzVVaoSLuYFHVOUeIulWywsv9QZpkAcFq_3eMWaw1veN_fuUJHFUgk3VLrziFLZPVodHNKMH-yNkDK2ifxX56Hfae1ncH8Vr8rQ77_arm3gAd58tpdZwDhUbmGB-Ja2JnmDPXFrEiuJqywmKSsZjNjWMXm0X5iFZJvrGi-GpmlOZzn5HtjHJinRPYPYP33vNb_MIraQauO51oySktC4XxOlZG1m8bynoS5SOmgbBeolOr0MnLKqND7UCZjlDI1FKq1dZoA9X2zmEnm2bmEliIidaEqwJElBgFSHFPY2SsQNQYiCaw9VCPaRBcPSPJzPRrMf4Z7CZclL9rPCuP6Bh7nlPUkerq75ev4ZD8wPFTeFvdQM3StDe3sKtXy8lifle4FF0Hw_43XkjXQQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytoprotective+signaling+by+activated+protein+C+requires+protease-activated+receptor-3+in+podocytes&rft.jtitle=Blood&rft.au=Madhusudhan%2C+Thati&rft.au=Wang%2C+Hongjie&rft.au=Straub%2C+Beate+K&rft.au=Gr%C3%B6ne%2C+Elisabeth&rft.date=2012-01-19&rft.issn=1528-0020&rft.eissn=1528-0020&rft.volume=119&rft.issue=3&rft.spage=874&rft_id=info:doi/10.1182%2Fblood-2011-07-365973&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-0020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-0020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-0020&client=summon